xref: /openbsd-src/sys/net/rtable.c (revision 25c4e8bd056e974b28f4a0ffd39d76c190a56013)
1 /*	$OpenBSD: rtable.c,v 1.80 2022/06/29 22:20:47 bluhm Exp $ */
2 
3 /*
4  * Copyright (c) 2014-2016 Martin Pieuchot
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #ifndef _KERNEL
20 #include "kern_compat.h"
21 #else
22 #include <sys/param.h>
23 #include <sys/systm.h>
24 #include <sys/socket.h>
25 #include <sys/malloc.h>
26 #include <sys/queue.h>
27 #include <sys/domain.h>
28 #include <sys/srp.h>
29 #endif
30 
31 #include <net/rtable.h>
32 #include <net/route.h>
33 
34 /*
35  * Structures used by rtable_get() to retrieve the corresponding
36  * routing table for a given pair of ``af'' and ``rtableid''.
37  *
38  * Note that once allocated routing table heads are never freed.
39  * This way we do not need to reference count them.
40  *
41  *	afmap		    rtmap/dommp
42  *   -----------          ---------     -----
43  *   |   0     |--------> | 0 | 0 | ... | 0 |	Array mapping rtableid (=index)
44  *   -----------          ---------     -----   to rdomain/loopback (=value).
45  *   | AF_INET |.
46  *   ----------- `.       .---------.     .---------.
47  *       ...	   `----> | rtable0 | ... | rtableN |	Array of pointers for
48  *   -----------          '---------'     '---------'	IPv4 routing tables
49  *   | AF_MPLS |					indexed by ``rtableid''.
50  *   -----------
51  */
52 struct srp	  *afmap;
53 uint8_t		   af2idx[AF_MAX+1];	/* To only allocate supported AF */
54 uint8_t		   af2idx_max;
55 
56 /* Array of routing table pointers. */
57 struct rtmap {
58 	unsigned int	   limit;
59 	void		 **tbl;
60 };
61 
62 /*
63  * Array of rtableid -> rdomain mapping.
64  *
65  * Only used for the first index as described above.
66  */
67 struct dommp {
68 	unsigned int	   limit;
69 	/*
70 	 * Array to get the routing domain and loopback interface related to
71 	 * a routing table. Format:
72 	 *
73 	 * 8 unused bits | 16 bits for loopback index | 8 bits for rdomain
74 	 */
75 	unsigned int	  *value;
76 };
77 
78 unsigned int	   rtmap_limit = 0;
79 
80 void		   rtmap_init(void);
81 void		   rtmap_grow(unsigned int, sa_family_t);
82 void		   rtmap_dtor(void *, void *);
83 
84 struct srp_gc	   rtmap_gc = SRP_GC_INITIALIZER(rtmap_dtor, NULL);
85 
86 void		   rtable_init_backend(void);
87 void		  *rtable_alloc(unsigned int, unsigned int, unsigned int);
88 void		  *rtable_get(unsigned int, sa_family_t);
89 
90 void
91 rtmap_init(void)
92 {
93 	const struct domain	*dp;
94 	int			 i;
95 
96 	/* Start with a single table for every domain that requires it. */
97 	for (i = 0; (dp = domains[i]) != NULL; i++) {
98 		if (dp->dom_rtoffset == 0)
99 			continue;
100 
101 		rtmap_grow(1, dp->dom_family);
102 	}
103 
104 	/* Initialize the rtableid->rdomain mapping table. */
105 	rtmap_grow(1, 0);
106 
107 	rtmap_limit = 1;
108 }
109 
110 /*
111  * Grow the size of the array of routing table for AF ``af'' to ``nlimit''.
112  */
113 void
114 rtmap_grow(unsigned int nlimit, sa_family_t af)
115 {
116 	struct rtmap	*map, *nmap;
117 	int		 i;
118 
119 	KERNEL_ASSERT_LOCKED();
120 
121 	KASSERT(nlimit > rtmap_limit);
122 
123 	nmap = malloc(sizeof(*nmap), M_RTABLE, M_WAITOK);
124 	nmap->limit = nlimit;
125 	nmap->tbl = mallocarray(nlimit, sizeof(*nmap[0].tbl), M_RTABLE,
126 	    M_WAITOK|M_ZERO);
127 
128 	map = srp_get_locked(&afmap[af2idx[af]]);
129 	if (map != NULL) {
130 		KASSERT(map->limit == rtmap_limit);
131 
132 		for (i = 0; i < map->limit; i++)
133 			nmap->tbl[i] = map->tbl[i];
134 	}
135 
136 	srp_update_locked(&rtmap_gc, &afmap[af2idx[af]], nmap);
137 }
138 
139 void
140 rtmap_dtor(void *null, void *xmap)
141 {
142 	struct rtmap	*map = xmap;
143 
144 	/*
145 	 * doesn't need to be serialized since this is the last reference
146 	 * to this map. there's nothing to race against.
147 	 */
148 	free(map->tbl, M_RTABLE, map->limit * sizeof(*map[0].tbl));
149 	free(map, M_RTABLE, sizeof(*map));
150 }
151 
152 void
153 rtable_init(void)
154 {
155 	const struct domain	*dp;
156 	int			 i;
157 
158 	KASSERT(sizeof(struct rtmap) == sizeof(struct dommp));
159 
160 	/* We use index 0 for the rtable/rdomain map. */
161 	af2idx_max = 1;
162 	memset(af2idx, 0, sizeof(af2idx));
163 
164 	/*
165 	 * Compute the maximum supported key length in case the routing
166 	 * table backend needs it.
167 	 */
168 	for (i = 0; (dp = domains[i]) != NULL; i++) {
169 		if (dp->dom_rtoffset == 0)
170 			continue;
171 
172 		af2idx[dp->dom_family] = af2idx_max++;
173 	}
174 	rtable_init_backend();
175 
176 	/*
177 	 * Allocate AF-to-id table now that we now how many AFs this
178 	 * kernel supports.
179 	 */
180 	afmap = mallocarray(af2idx_max + 1, sizeof(*afmap), M_RTABLE,
181 	    M_WAITOK|M_ZERO);
182 
183 	rtmap_init();
184 
185 	if (rtable_add(0) != 0)
186 		panic("unable to create default routing table");
187 
188 	rt_timer_init();
189 }
190 
191 int
192 rtable_add(unsigned int id)
193 {
194 	const struct domain	*dp;
195 	void			*tbl;
196 	struct rtmap		*map;
197 	struct dommp		*dmm;
198 	sa_family_t		 af;
199 	unsigned int		 off, alen;
200 	int			 i, error = 0;
201 
202 	if (id > RT_TABLEID_MAX)
203 		return (EINVAL);
204 
205 	KERNEL_LOCK();
206 
207 	if (rtable_exists(id))
208 		goto out;
209 
210 	for (i = 0; (dp = domains[i]) != NULL; i++) {
211 		if (dp->dom_rtoffset == 0)
212 			continue;
213 
214 		af = dp->dom_family;
215 		off = dp->dom_rtoffset;
216 		alen = dp->dom_maxplen;
217 
218 		if (id >= rtmap_limit)
219 			rtmap_grow(id + 1, af);
220 
221 		tbl = rtable_alloc(id, alen, off);
222 		if (tbl == NULL) {
223 			error = ENOMEM;
224 			goto out;
225 		}
226 
227 		map = srp_get_locked(&afmap[af2idx[af]]);
228 		map->tbl[id] = tbl;
229 	}
230 
231 	/* Reflect possible growth. */
232 	if (id >= rtmap_limit) {
233 		rtmap_grow(id + 1, 0);
234 		rtmap_limit = id + 1;
235 	}
236 
237 	/* Use main rtable/rdomain by default. */
238 	dmm = srp_get_locked(&afmap[0]);
239 	dmm->value[id] = 0;
240 out:
241 	KERNEL_UNLOCK();
242 
243 	return (error);
244 }
245 
246 void *
247 rtable_get(unsigned int rtableid, sa_family_t af)
248 {
249 	struct rtmap	*map;
250 	void		*tbl = NULL;
251 	struct srp_ref	 sr;
252 
253 	if (af >= nitems(af2idx) || af2idx[af] == 0)
254 		return (NULL);
255 
256 	map = srp_enter(&sr, &afmap[af2idx[af]]);
257 	if (rtableid < map->limit)
258 		tbl = map->tbl[rtableid];
259 	srp_leave(&sr);
260 
261 	return (tbl);
262 }
263 
264 int
265 rtable_exists(unsigned int rtableid)
266 {
267 	const struct domain	*dp;
268 	void			*tbl;
269 	int			 i;
270 
271 	for (i = 0; (dp = domains[i]) != NULL; i++) {
272 		if (dp->dom_rtoffset == 0)
273 			continue;
274 
275 		tbl = rtable_get(rtableid, dp->dom_family);
276 		if (tbl != NULL)
277 			return (1);
278 	}
279 
280 	return (0);
281 }
282 
283 int
284 rtable_empty(unsigned int rtableid)
285 {
286 	const struct domain	*dp;
287 	int			 i;
288 	struct art_root		*tbl;
289 
290 	for (i = 0; (dp = domains[i]) != NULL; i++) {
291 		if (dp->dom_rtoffset == 0)
292 			continue;
293 
294 		tbl = rtable_get(rtableid, dp->dom_family);
295 		if (tbl == NULL)
296 			continue;
297 		if (tbl->ar_root.ref != NULL)
298 			return (0);
299 	}
300 
301 	return (1);
302 }
303 
304 unsigned int
305 rtable_l2(unsigned int rtableid)
306 {
307 	struct dommp	*dmm;
308 	unsigned int	 rdomain = 0;
309 	struct srp_ref	 sr;
310 
311 	dmm = srp_enter(&sr, &afmap[0]);
312 	if (rtableid < dmm->limit)
313 		rdomain = (dmm->value[rtableid] & RT_TABLEID_MASK);
314 	srp_leave(&sr);
315 
316 	return (rdomain);
317 }
318 
319 unsigned int
320 rtable_loindex(unsigned int rtableid)
321 {
322 	struct dommp	*dmm;
323 	unsigned int	 loifidx = 0;
324 	struct srp_ref	 sr;
325 
326 	dmm = srp_enter(&sr, &afmap[0]);
327 	if (rtableid < dmm->limit)
328 		loifidx = (dmm->value[rtableid] >> RT_TABLEID_BITS);
329 	srp_leave(&sr);
330 
331 	return (loifidx);
332 }
333 
334 void
335 rtable_l2set(unsigned int rtableid, unsigned int rdomain, unsigned int loifidx)
336 {
337 	struct dommp	*dmm;
338 	unsigned int	 value;
339 
340 	KERNEL_ASSERT_LOCKED();
341 
342 	if (!rtable_exists(rtableid) || !rtable_exists(rdomain))
343 		return;
344 
345 	value = (rdomain & RT_TABLEID_MASK) | (loifidx << RT_TABLEID_BITS);
346 
347 	dmm = srp_get_locked(&afmap[0]);
348 	dmm->value[rtableid] = value;
349 }
350 
351 
352 static inline uint8_t	*satoaddr(struct art_root *, struct sockaddr *);
353 
354 int	an_match(struct art_node *, struct sockaddr *, int);
355 void	rtentry_ref(void *, void *);
356 void	rtentry_unref(void *, void *);
357 
358 void	rtable_mpath_insert(struct art_node *, struct rtentry *);
359 
360 struct srpl_rc rt_rc = SRPL_RC_INITIALIZER(rtentry_ref, rtentry_unref, NULL);
361 
362 void
363 rtable_init_backend(void)
364 {
365 	art_init();
366 }
367 
368 void *
369 rtable_alloc(unsigned int rtableid, unsigned int alen, unsigned int off)
370 {
371 	return (art_alloc(rtableid, alen, off));
372 }
373 
374 int
375 rtable_setsource(unsigned int rtableid, int af, struct sockaddr *src)
376 {
377 	struct art_root		*ar;
378 
379 	if ((ar = rtable_get(rtableid, af)) == NULL)
380 		return (EAFNOSUPPORT);
381 
382 	ar->source = src;
383 
384 	return (0);
385 }
386 
387 struct sockaddr *
388 rtable_getsource(unsigned int rtableid, int af)
389 {
390 	struct art_root		*ar;
391 
392 	ar = rtable_get(rtableid, af);
393 	if (ar == NULL)
394 		return (NULL);
395 
396 	return (ar->source);
397 }
398 
399 void
400 rtable_clearsource(unsigned int rtableid, struct sockaddr *src)
401 {
402 	struct sockaddr	*addr;
403 
404 	addr = rtable_getsource(rtableid, src->sa_family);
405 	if (addr && (addr->sa_len == src->sa_len)) {
406 		if (memcmp(src, addr, addr->sa_len) == 0) {
407 			rtable_setsource(rtableid, src->sa_family, NULL);
408 		}
409 	}
410 }
411 
412 struct rtentry *
413 rtable_lookup(unsigned int rtableid, struct sockaddr *dst,
414     struct sockaddr *mask, struct sockaddr *gateway, uint8_t prio)
415 {
416 	struct art_root			*ar;
417 	struct art_node			*an;
418 	struct rtentry			*rt = NULL;
419 	struct srp_ref			 sr, nsr;
420 	uint8_t				*addr;
421 	int				 plen;
422 
423 	ar = rtable_get(rtableid, dst->sa_family);
424 	if (ar == NULL)
425 		return (NULL);
426 
427 	addr = satoaddr(ar, dst);
428 
429 	/* No need for a perfect match. */
430 	if (mask == NULL) {
431 		an = art_match(ar, addr, &nsr);
432 		if (an == NULL)
433 			goto out;
434 	} else {
435 		plen = rtable_satoplen(dst->sa_family, mask);
436 		if (plen == -1)
437 			return (NULL);
438 
439 		an = art_lookup(ar, addr, plen, &nsr);
440 
441 		/* Make sure we've got a perfect match. */
442 		if (!an_match(an, dst, plen))
443 			goto out;
444 	}
445 
446 	SRPL_FOREACH(rt, &sr, &an->an_rtlist, rt_next) {
447 		if (prio != RTP_ANY &&
448 		    (rt->rt_priority & RTP_MASK) != (prio & RTP_MASK))
449 			continue;
450 
451 		if (gateway == NULL)
452 			break;
453 
454 		if (rt->rt_gateway->sa_len == gateway->sa_len &&
455 		    memcmp(rt->rt_gateway, gateway, gateway->sa_len) == 0)
456 			break;
457 	}
458 	if (rt != NULL)
459 		rtref(rt);
460 
461 	SRPL_LEAVE(&sr);
462 out:
463 	srp_leave(&nsr);
464 
465 	return (rt);
466 }
467 
468 struct rtentry *
469 rtable_match(unsigned int rtableid, struct sockaddr *dst, uint32_t *src)
470 {
471 	struct art_root			*ar;
472 	struct art_node			*an;
473 	struct rtentry			*rt = NULL;
474 	struct srp_ref			 sr, nsr;
475 	uint8_t				*addr;
476 	int				 hash;
477 
478 	ar = rtable_get(rtableid, dst->sa_family);
479 	if (ar == NULL)
480 		return (NULL);
481 
482 	addr = satoaddr(ar, dst);
483 
484 	an = art_match(ar, addr, &nsr);
485 	if (an == NULL)
486 		goto out;
487 
488 	rt = SRPL_FIRST(&sr, &an->an_rtlist);
489 	if (rt == NULL) {
490 		SRPL_LEAVE(&sr);
491 		goto out;
492 	}
493 	rtref(rt);
494 	SRPL_LEAVE(&sr);
495 
496 	/* Gateway selection by Hash-Threshold (RFC 2992) */
497 	if ((hash = rt_hash(rt, dst, src)) != -1) {
498 		struct rtentry		*mrt;
499 		int			 threshold, npaths = 0;
500 
501 		KASSERT(hash <= 0xffff);
502 
503 		SRPL_FOREACH(mrt, &sr, &an->an_rtlist, rt_next) {
504 			/* Only count nexthops with the same priority. */
505 			if (mrt->rt_priority == rt->rt_priority)
506 				npaths++;
507 		}
508 		SRPL_LEAVE(&sr);
509 
510 		threshold = (0xffff / npaths) + 1;
511 
512 		/*
513 		 * we have no protection against concurrent modification of the
514 		 * route list attached to the node, so we won't necessarily
515 		 * have the same number of routes.  for most modifications,
516 		 * we'll pick a route that we wouldn't have if we only saw the
517 		 * list before or after the change.  if we were going to use
518 		 * the last available route, but it got removed, we'll hit
519 		 * the end of the list and then pick the first route.
520 		 */
521 
522 		mrt = SRPL_FIRST(&sr, &an->an_rtlist);
523 		while (hash > threshold && mrt != NULL) {
524 			if (mrt->rt_priority == rt->rt_priority)
525 				hash -= threshold;
526 			mrt = SRPL_FOLLOW(&sr, mrt, rt_next);
527 		}
528 
529 		if (mrt != NULL) {
530 			rtref(mrt);
531 			rtfree(rt);
532 			rt = mrt;
533 		}
534 		SRPL_LEAVE(&sr);
535 	}
536 out:
537 	srp_leave(&nsr);
538 	return (rt);
539 }
540 
541 int
542 rtable_insert(unsigned int rtableid, struct sockaddr *dst,
543     struct sockaddr *mask, struct sockaddr *gateway, uint8_t prio,
544     struct rtentry *rt)
545 {
546 	struct rtentry			*mrt;
547 	struct srp_ref			 sr;
548 	struct art_root			*ar;
549 	struct art_node			*an, *prev;
550 	uint8_t				*addr;
551 	int				 plen;
552 	unsigned int			 rt_flags;
553 	int				 error = 0;
554 
555 	ar = rtable_get(rtableid, dst->sa_family);
556 	if (ar == NULL)
557 		return (EAFNOSUPPORT);
558 
559 	addr = satoaddr(ar, dst);
560 	plen = rtable_satoplen(dst->sa_family, mask);
561 	if (plen == -1)
562 		return (EINVAL);
563 
564 	rtref(rt); /* guarantee rtfree won't do anything during insert */
565 	rw_enter_write(&ar->ar_lock);
566 
567 	/* Do not permit exactly the same dst/mask/gw pair. */
568 	an = art_lookup(ar, addr, plen, &sr);
569 	srp_leave(&sr); /* an can't go away while we have the lock */
570 	if (an_match(an, dst, plen)) {
571 		struct rtentry  *mrt;
572 		int		 mpathok = ISSET(rt->rt_flags, RTF_MPATH);
573 
574 		SRPL_FOREACH_LOCKED(mrt, &an->an_rtlist, rt_next) {
575 			if (prio != RTP_ANY &&
576 			    (mrt->rt_priority & RTP_MASK) != (prio & RTP_MASK))
577 				continue;
578 
579 			if (!mpathok ||
580 			    (mrt->rt_gateway->sa_len == gateway->sa_len &&
581 			    memcmp(mrt->rt_gateway, gateway,
582 			    gateway->sa_len) == 0)) {
583 				error = EEXIST;
584 				goto leave;
585 			}
586 		}
587 	}
588 
589 	an = art_get(dst, plen);
590 	if (an == NULL) {
591 		error = ENOBUFS;
592 		goto leave;
593 	}
594 
595 	/* prepare for immediate operation if insert succeeds */
596 	rt_flags = rt->rt_flags;
597 	rt->rt_flags &= ~RTF_MPATH;
598 	rt->rt_dest = dst;
599 	rt->rt_plen = plen;
600 	SRPL_INSERT_HEAD_LOCKED(&rt_rc, &an->an_rtlist, rt, rt_next);
601 
602 	prev = art_insert(ar, an, addr, plen);
603 	if (prev != an) {
604 		SRPL_REMOVE_LOCKED(&rt_rc, &an->an_rtlist, rt, rtentry,
605 		    rt_next);
606 		rt->rt_flags = rt_flags;
607 		art_put(an);
608 
609 		if (prev == NULL) {
610 			error = ESRCH;
611 			goto leave;
612 		}
613 
614 		an = prev;
615 
616 		mrt = SRPL_FIRST_LOCKED(&an->an_rtlist);
617 		KASSERT(mrt != NULL);
618 		KASSERT((rt->rt_flags & RTF_MPATH) || mrt->rt_priority != prio);
619 
620 		/*
621 		 * An ART node with the same destination/netmask already
622 		 * exists, MPATH conflict must have been already checked.
623 		 */
624 		if (rt->rt_flags & RTF_MPATH) {
625 			/*
626 			 * Only keep the RTF_MPATH flag if two routes have
627 			 * the same gateway.
628 			 */
629 			rt->rt_flags &= ~RTF_MPATH;
630 			SRPL_FOREACH_LOCKED(mrt, &an->an_rtlist, rt_next) {
631 				if (mrt->rt_priority == prio) {
632 					mrt->rt_flags |= RTF_MPATH;
633 					rt->rt_flags |= RTF_MPATH;
634 				}
635 			}
636 		}
637 
638 		/* Put newly inserted entry at the right place. */
639 		rtable_mpath_insert(an, rt);
640 	}
641 leave:
642 	rw_exit_write(&ar->ar_lock);
643 	rtfree(rt);
644 	return (error);
645 }
646 
647 int
648 rtable_delete(unsigned int rtableid, struct sockaddr *dst,
649     struct sockaddr *mask, struct rtentry *rt)
650 {
651 	struct art_root			*ar;
652 	struct art_node			*an;
653 	struct srp_ref			 sr;
654 	uint8_t				*addr;
655 	int				 plen;
656 	struct rtentry			*mrt;
657 	int				 npaths = 0;
658 	int				 error = 0;
659 
660 	ar = rtable_get(rtableid, dst->sa_family);
661 	if (ar == NULL)
662 		return (EAFNOSUPPORT);
663 
664 	addr = satoaddr(ar, dst);
665 	plen = rtable_satoplen(dst->sa_family, mask);
666 	if (plen == -1)
667 		return (EINVAL);
668 
669 	rtref(rt); /* guarantee rtfree won't do anything under ar_lock */
670 	rw_enter_write(&ar->ar_lock);
671 	an = art_lookup(ar, addr, plen, &sr);
672 	srp_leave(&sr); /* an can't go away while we have the lock */
673 
674 	/* Make sure we've got a perfect match. */
675 	if (!an_match(an, dst, plen)) {
676 		error = ESRCH;
677 		goto leave;
678 	}
679 
680 	/*
681 	 * If other multipath route entries are still attached to
682 	 * this ART node we only have to unlink it.
683 	 */
684 	SRPL_FOREACH_LOCKED(mrt, &an->an_rtlist, rt_next)
685 		npaths++;
686 
687 	if (npaths > 1) {
688 		KASSERT(refcnt_read(&rt->rt_refcnt) >= 1);
689 		SRPL_REMOVE_LOCKED(&rt_rc, &an->an_rtlist, rt, rtentry,
690 		    rt_next);
691 
692 		mrt = SRPL_FIRST_LOCKED(&an->an_rtlist);
693 		if (npaths == 2)
694 			mrt->rt_flags &= ~RTF_MPATH;
695 
696 		goto leave;
697 	}
698 
699 	if (art_delete(ar, an, addr, plen) == NULL)
700 		panic("art_delete failed to find node %p", an);
701 
702 	KASSERT(refcnt_read(&rt->rt_refcnt) >= 1);
703 	SRPL_REMOVE_LOCKED(&rt_rc, &an->an_rtlist, rt, rtentry, rt_next);
704 	art_put(an);
705 
706 leave:
707 	rw_exit_write(&ar->ar_lock);
708 	rtfree(rt);
709 
710 	return (error);
711 }
712 
713 struct rtable_walk_cookie {
714 	int		(*rwc_func)(struct rtentry *, void *, unsigned int);
715 	void		 *rwc_arg;
716 	struct rtentry	**rwc_prt;
717 	unsigned int	  rwc_rid;
718 };
719 
720 /*
721  * Helper for rtable_walk to keep the ART code free from any "struct rtentry".
722  */
723 int
724 rtable_walk_helper(struct art_node *an, void *xrwc)
725 {
726 	struct srp_ref			 sr;
727 	struct rtable_walk_cookie	*rwc = xrwc;
728 	struct rtentry			*rt;
729 	int				 error = 0;
730 
731 	SRPL_FOREACH(rt, &sr, &an->an_rtlist, rt_next) {
732 		error = (*rwc->rwc_func)(rt, rwc->rwc_arg, rwc->rwc_rid);
733 		if (error != 0)
734 			break;
735 	}
736 	if (rwc->rwc_prt != NULL && rt != NULL) {
737 		rtref(rt);
738 		*rwc->rwc_prt = rt;
739 	}
740 	SRPL_LEAVE(&sr);
741 
742 	return (error);
743 }
744 
745 int
746 rtable_walk(unsigned int rtableid, sa_family_t af, struct rtentry **prt,
747     int (*func)(struct rtentry *, void *, unsigned int), void *arg)
748 {
749 	struct art_root			*ar;
750 	struct rtable_walk_cookie	 rwc;
751 	int				 error;
752 
753 	ar = rtable_get(rtableid, af);
754 	if (ar == NULL)
755 		return (EAFNOSUPPORT);
756 
757 	rwc.rwc_func = func;
758 	rwc.rwc_arg = arg;
759 	rwc.rwc_prt = prt;
760 	rwc.rwc_rid = rtableid;
761 
762 	error = art_walk(ar, rtable_walk_helper, &rwc);
763 
764 	return (error);
765 }
766 
767 struct rtentry *
768 rtable_iterate(struct rtentry *rt0)
769 {
770 	struct rtentry *rt = NULL;
771 	struct srp_ref sr;
772 
773 	rt = SRPL_NEXT(&sr, rt0, rt_next);
774 	if (rt != NULL)
775 		rtref(rt);
776 	SRPL_LEAVE(&sr);
777 	rtfree(rt0);
778 	return (rt);
779 }
780 
781 int
782 rtable_mpath_capable(unsigned int rtableid, sa_family_t af)
783 {
784 	return (1);
785 }
786 
787 int
788 rtable_mpath_reprio(unsigned int rtableid, struct sockaddr *dst,
789     int plen, uint8_t prio, struct rtentry *rt)
790 {
791 	struct art_root			*ar;
792 	struct art_node			*an;
793 	struct srp_ref			 sr;
794 	uint8_t				*addr;
795 	int				 error = 0;
796 
797 	ar = rtable_get(rtableid, dst->sa_family);
798 	if (ar == NULL)
799 		return (EAFNOSUPPORT);
800 
801 	addr = satoaddr(ar, dst);
802 
803 	rw_enter_write(&ar->ar_lock);
804 	an = art_lookup(ar, addr, plen, &sr);
805 	srp_leave(&sr); /* an can't go away while we have the lock */
806 
807 	/* Make sure we've got a perfect match. */
808 	if (!an_match(an, dst, plen)) {
809 		error = ESRCH;
810 	} else if (SRPL_FIRST_LOCKED(&an->an_rtlist) == rt &&
811 		SRPL_NEXT_LOCKED(rt, rt_next) == NULL) {
812 		/*
813 		 * If there's only one entry on the list do not go
814 		 * through an insert/remove cycle.  This is done to
815 		 * guarantee that ``an->an_rtlist''  is never empty
816 		 * when a node is in the tree.
817 		 */
818 		rt->rt_priority = prio;
819 	} else {
820 		rtref(rt); /* keep rt alive in between remove and insert */
821 		SRPL_REMOVE_LOCKED(&rt_rc, &an->an_rtlist,
822 		    rt, rtentry, rt_next);
823 		rt->rt_priority = prio;
824 		rtable_mpath_insert(an, rt);
825 		rtfree(rt);
826 		error = EAGAIN;
827 	}
828 	rw_exit_write(&ar->ar_lock);
829 
830 	return (error);
831 }
832 
833 void
834 rtable_mpath_insert(struct art_node *an, struct rtentry *rt)
835 {
836 	struct rtentry			*mrt, *prt = NULL;
837 	uint8_t				 prio = rt->rt_priority;
838 
839 	if ((mrt = SRPL_FIRST_LOCKED(&an->an_rtlist)) == NULL) {
840 		SRPL_INSERT_HEAD_LOCKED(&rt_rc, &an->an_rtlist, rt, rt_next);
841 		return;
842 	}
843 
844 	/* Iterate until we find the route to be placed after ``rt''. */
845 	while (mrt->rt_priority <= prio && SRPL_NEXT_LOCKED(mrt, rt_next)) {
846 		prt = mrt;
847 		mrt = SRPL_NEXT_LOCKED(mrt, rt_next);
848 	}
849 
850 	if (mrt->rt_priority <= prio) {
851 		SRPL_INSERT_AFTER_LOCKED(&rt_rc, mrt, rt, rt_next);
852 	} else if (prt != NULL) {
853 		SRPL_INSERT_AFTER_LOCKED(&rt_rc, prt, rt, rt_next);
854 	} else {
855 		SRPL_INSERT_HEAD_LOCKED(&rt_rc, &an->an_rtlist, rt, rt_next);
856 	}
857 }
858 
859 /*
860  * Returns 1 if ``an'' perfectly matches (``dst'', ``plen''), 0 otherwise.
861  */
862 int
863 an_match(struct art_node *an, struct sockaddr *dst, int plen)
864 {
865 	struct rtentry			*rt;
866 	struct srp_ref			 sr;
867 	int				 match;
868 
869 	if (an == NULL || an->an_plen != plen)
870 		return (0);
871 
872 	rt = SRPL_FIRST(&sr, &an->an_rtlist);
873 	match = (memcmp(rt->rt_dest, dst, dst->sa_len) == 0);
874 	SRPL_LEAVE(&sr);
875 
876 	return (match);
877 }
878 
879 void
880 rtentry_ref(void *null, void *xrt)
881 {
882 	struct rtentry *rt = xrt;
883 
884 	rtref(rt);
885 }
886 
887 void
888 rtentry_unref(void *null, void *xrt)
889 {
890 	struct rtentry *rt = xrt;
891 
892 	rtfree(rt);
893 }
894 
895 /*
896  * Return a pointer to the address (key).  This is an heritage from the
897  * BSD radix tree needed to skip the non-address fields from the flavor
898  * of "struct sockaddr" used by this routing table.
899  */
900 static inline uint8_t *
901 satoaddr(struct art_root *at, struct sockaddr *sa)
902 {
903 	return (((uint8_t *)sa) + at->ar_off);
904 }
905 
906 /*
907  * Return the prefix length of a mask.
908  */
909 int
910 rtable_satoplen(sa_family_t af, struct sockaddr *mask)
911 {
912 	const struct domain	*dp;
913 	uint8_t			*ap, *ep;
914 	int			 mlen, plen = 0;
915 	int			 i;
916 
917 	for (i = 0; (dp = domains[i]) != NULL; i++) {
918 		if (dp->dom_rtoffset == 0)
919 			continue;
920 
921 		if (af == dp->dom_family)
922 			break;
923 	}
924 	if (dp == NULL)
925 		return (-1);
926 
927 	/* Host route */
928 	if (mask == NULL)
929 		return (dp->dom_maxplen);
930 
931 	mlen = mask->sa_len;
932 
933 	/* Default route */
934 	if (mlen == 0)
935 		return (0);
936 
937 	ap = (uint8_t *)((uint8_t *)mask) + dp->dom_rtoffset;
938 	ep = (uint8_t *)((uint8_t *)mask) + mlen;
939 	if (ap > ep)
940 		return (-1);
941 
942 	/* Trim trailing zeroes. */
943 	while (ap < ep && ep[-1] == 0)
944 		ep--;
945 
946 	if (ap == ep)
947 		return (0);
948 
949 	/* "Beauty" adapted from sbin/route/show.c ... */
950 	while (ap < ep) {
951 		switch (*ap++) {
952 		case 0xff:
953 			plen += 8;
954 			break;
955 		case 0xfe:
956 			plen += 7;
957 			goto out;
958 		case 0xfc:
959 			plen += 6;
960 			goto out;
961 		case 0xf8:
962 			plen += 5;
963 			goto out;
964 		case 0xf0:
965 			plen += 4;
966 			goto out;
967 		case 0xe0:
968 			plen += 3;
969 			goto out;
970 		case 0xc0:
971 			plen += 2;
972 			goto out;
973 		case 0x80:
974 			plen += 1;
975 			goto out;
976 		default:
977 			/* Non contiguous mask. */
978 			return (-1);
979 		}
980 	}
981 
982 out:
983 	if (plen > dp->dom_maxplen || ap != ep)
984 		return -1;
985 
986 	return (plen);
987 }
988