xref: /openbsd-src/sys/net/route.c (revision f2da64fbbbf1b03f09f390ab01267c93dfd77c4c)
1 /*	$OpenBSD: route.c,v 1.330 2016/09/17 07:35:05 phessler Exp $	*/
2 /*	$NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1980, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)route.c	8.2 (Berkeley) 11/15/93
62  */
63 
64 /*
65  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
66  *
67  * NRL grants permission for redistribution and use in source and binary
68  * forms, with or without modification, of the software and documentation
69  * created at NRL provided that the following conditions are met:
70  *
71  * 1. Redistributions of source code must retain the above copyright
72  *    notice, this list of conditions and the following disclaimer.
73  * 2. Redistributions in binary form must reproduce the above copyright
74  *    notice, this list of conditions and the following disclaimer in the
75  *    documentation and/or other materials provided with the distribution.
76  * 3. All advertising materials mentioning features or use of this software
77  *    must display the following acknowledgements:
78  * 	This product includes software developed by the University of
79  * 	California, Berkeley and its contributors.
80  * 	This product includes software developed at the Information
81  * 	Technology Division, US Naval Research Laboratory.
82  * 4. Neither the name of the NRL nor the names of its contributors
83  *    may be used to endorse or promote products derived from this software
84  *    without specific prior written permission.
85  *
86  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
87  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
88  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
89  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
90  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
91  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
92  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
93  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
94  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
95  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
96  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
97  *
98  * The views and conclusions contained in the software and documentation
99  * are those of the authors and should not be interpreted as representing
100  * official policies, either expressed or implied, of the US Naval
101  * Research Laboratory (NRL).
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/mbuf.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/timeout.h>
110 #include <sys/domain.h>
111 #include <sys/protosw.h>
112 #include <sys/ioctl.h>
113 #include <sys/kernel.h>
114 #include <sys/queue.h>
115 #include <sys/pool.h>
116 #include <sys/atomic.h>
117 
118 #include <net/if.h>
119 #include <net/if_var.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 
123 #include <netinet/in.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/in_var.h>
126 
127 #ifdef INET6
128 #include <netinet/ip6.h>
129 #include <netinet6/ip6_var.h>
130 #include <netinet6/in6_var.h>
131 #endif
132 
133 #ifdef MPLS
134 #include <netmpls/mpls.h>
135 #endif
136 
137 #ifdef IPSEC
138 #include <netinet/ip_ipsp.h>
139 #include <net/if_enc.h>
140 #endif
141 
142 #ifdef BFD
143 #include <net/bfd.h>
144 #endif
145 
146 #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
147 
148 /* Give some jitter to hash, to avoid synchronization between routers. */
149 static uint32_t		rt_hashjitter;
150 
151 extern unsigned int	rtmap_limit;
152 
153 struct rtstat		rtstat;
154 int			rttrash;	/* routes not in table but not freed */
155 int			ifatrash;	/* ifas not in ifp list but not free */
156 
157 struct pool		rtentry_pool;	/* pool for rtentry structures */
158 struct pool		rttimer_pool;	/* pool for rttimer structures */
159 
160 void	rt_timer_init(void);
161 int	rt_setgwroute(struct rtentry *, u_int);
162 void	rt_putgwroute(struct rtentry *);
163 int	rtflushclone1(struct rtentry *, void *, u_int);
164 void	rtflushclone(unsigned int, struct rtentry *);
165 int	rt_ifa_purge_walker(struct rtentry *, void *, unsigned int);
166 struct rtentry *rt_match(struct sockaddr *, uint32_t *, int, unsigned int);
167 struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *);
168 
169 struct	ifaddr *ifa_ifwithroute(int, struct sockaddr *, struct sockaddr *,
170 		    u_int);
171 int	rtrequest_delete(struct rt_addrinfo *, u_int8_t, struct ifnet *,
172 	    struct rtentry **, u_int);
173 
174 #ifdef DDB
175 void	db_print_sa(struct sockaddr *);
176 void	db_print_ifa(struct ifaddr *);
177 int	db_show_rtentry(struct rtentry *, void *, unsigned int);
178 #endif
179 
180 #define	LABELID_MAX	50000
181 
182 struct rt_label {
183 	TAILQ_ENTRY(rt_label)	rtl_entry;
184 	char			rtl_name[RTLABEL_LEN];
185 	u_int16_t		rtl_id;
186 	int			rtl_ref;
187 };
188 
189 TAILQ_HEAD(rt_labels, rt_label)	rt_labels = TAILQ_HEAD_INITIALIZER(rt_labels);
190 
191 void
192 route_init(void)
193 {
194 	pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_SOFTNET, 0,
195 	    "rtentry", NULL);
196 
197 	while (rt_hashjitter == 0)
198 		rt_hashjitter = arc4random();
199 
200 	if (rtable_add(0) != 0)
201 		panic("route_init rtable_add");
202 #ifdef BFD
203 	bfdinit();
204 #endif
205 }
206 
207 /*
208  * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise.
209  */
210 int
211 rtisvalid(struct rtentry *rt)
212 {
213 	if (rt == NULL)
214 		return (0);
215 
216 	if (!ISSET(rt->rt_flags, RTF_UP))
217 		return (0);
218 
219 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
220 		KASSERT(rt->rt_gwroute != NULL);
221 	    	KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY));
222 	    	if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP))
223 			return (0);
224 	}
225 
226 	return (1);
227 }
228 
229 /*
230  * Do the actual lookup for rtalloc(9), do not use directly!
231  *
232  * Return the best matching entry for the destination ``dst''.
233  *
234  * "RT_RESOLVE" means that a corresponding L2 entry should
235  *   be added to the routing table and resolved (via ARP or
236  *   NDP), if it does not exist.
237  */
238 struct rtentry *
239 rt_match(struct sockaddr *dst, uint32_t *src, int flags, unsigned int tableid)
240 {
241 	struct rtentry		*rt0, *rt = NULL;
242 	int			 s, error = 0;
243 
244 	s = splsoftnet();
245 	rt = rtable_match(tableid, dst, src);
246 	if (rt != NULL) {
247 		if ((rt->rt_flags & RTF_CLONING) && ISSET(flags, RT_RESOLVE)) {
248 			struct rt_addrinfo	 info;
249 
250 			rt0 = rt;
251 
252 			memset(&info, 0, sizeof(info));
253 			info.rti_info[RTAX_DST] = dst;
254 
255 			KERNEL_LOCK();
256 			error = rtrequest(RTM_RESOLVE, &info, RTP_DEFAULT,
257 			    &rt, tableid);
258 			if (error) {
259 				rt_missmsg(RTM_MISS, &info, 0, RTP_NONE, 0,
260 				    error, tableid);
261 			} else {
262 				/* Inform listeners of the new route */
263 				rt_sendmsg(rt, RTM_ADD, tableid);
264 				rtfree(rt0);
265 			}
266 			KERNEL_UNLOCK();
267 		}
268 		rt->rt_use++;
269 	} else
270 		rtstat.rts_unreach++;
271 	splx(s);
272 	return (rt);
273 }
274 
275 #ifndef SMALL_KERNEL
276 /*
277  * Originated from bridge_hash() in if_bridge.c
278  */
279 #define mix(a, b, c) do {						\
280 	a -= b; a -= c; a ^= (c >> 13);					\
281 	b -= c; b -= a; b ^= (a << 8); 					\
282 	c -= a; c -= b; c ^= (b >> 13);					\
283 	a -= b; a -= c; a ^= (c >> 12);					\
284 	b -= c; b -= a; b ^= (a << 16);					\
285 	c -= a; c -= b; c ^= (b >> 5); 					\
286 	a -= b; a -= c; a ^= (c >> 3); 					\
287 	b -= c; b -= a; b ^= (a << 10);					\
288 	c -= a; c -= b; c ^= (b >> 15);					\
289 } while (0)
290 
291 int
292 rt_hash(struct rtentry *rt, struct sockaddr *dst, uint32_t *src)
293 {
294 	uint32_t a, b, c;
295 
296 	if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH))
297 		return (-1);
298 
299 	a = b = 0x9e3779b9;
300 	c = rt_hashjitter;
301 
302 	switch (dst->sa_family) {
303 	case AF_INET:
304 	    {
305 		struct sockaddr_in *sin;
306 
307 		if (!ipmultipath)
308 			return (-1);
309 
310 		sin = satosin(dst);
311 		a += sin->sin_addr.s_addr;
312 		b += (src != NULL) ? src[0] : 0;
313 		mix(a, b, c);
314 		break;
315 	    }
316 #ifdef INET6
317 	case AF_INET6:
318 	    {
319 		struct sockaddr_in6 *sin6;
320 
321 		if (!ip6_multipath)
322 			return (-1);
323 
324 		sin6 = satosin6(dst);
325 		a += sin6->sin6_addr.s6_addr32[0];
326 		b += sin6->sin6_addr.s6_addr32[2];
327 		c += (src != NULL) ? src[0] : 0;
328 		mix(a, b, c);
329 		a += sin6->sin6_addr.s6_addr32[1];
330 		b += sin6->sin6_addr.s6_addr32[3];
331 		c += (src != NULL) ? src[1] : 0;
332 		mix(a, b, c);
333 		a += sin6->sin6_addr.s6_addr32[2];
334 		b += sin6->sin6_addr.s6_addr32[1];
335 		c += (src != NULL) ? src[2] : 0;
336 		mix(a, b, c);
337 		a += sin6->sin6_addr.s6_addr32[3];
338 		b += sin6->sin6_addr.s6_addr32[0];
339 		c += (src != NULL) ? src[3] : 0;
340 		mix(a, b, c);
341 		break;
342 	    }
343 #endif /* INET6 */
344 	}
345 
346 	return (c & 0xffff);
347 }
348 
349 /*
350  * Allocate a route, potentially using multipath to select the peer.
351  */
352 struct rtentry *
353 rtalloc_mpath(struct sockaddr *dst, uint32_t *src, unsigned int rtableid)
354 {
355 	return (rt_match(dst, src, RT_RESOLVE, rtableid));
356 }
357 #endif /* SMALL_KERNEL */
358 
359 /*
360  * Look in the routing table for the best matching entry for
361  * ``dst''.
362  *
363  * If a route with a gateway is found and its next hop is no
364  * longer valid, try to cache it.
365  */
366 struct rtentry *
367 rtalloc(struct sockaddr *dst, int flags, unsigned int rtableid)
368 {
369 	return (rt_match(dst, NULL, flags, rtableid));
370 }
371 
372 /*
373  * Cache the route entry corresponding to a reachable next hop in
374  * the gateway entry ``rt''.
375  */
376 int
377 rt_setgwroute(struct rtentry *rt, u_int rtableid)
378 {
379 	struct rtentry *nhrt;
380 
381 	KERNEL_ASSERT_LOCKED();
382 
383 	KASSERT(ISSET(rt->rt_flags, RTF_GATEWAY));
384 
385 	/* If we cannot find a valid next hop bail. */
386 	nhrt = rt_match(rt->rt_gateway, NULL, RT_RESOLVE, rtable_l2(rtableid));
387 	if (nhrt == NULL)
388 		return (ENOENT);
389 
390 	/* Next hop entry must be on the same interface. */
391 	if (nhrt->rt_ifidx != rt->rt_ifidx) {
392 		rtfree(nhrt);
393 		return (EHOSTUNREACH);
394 	}
395 
396 	/*
397 	 * Next hop must be reachable, this also prevents rtentry
398 	 * loops for example when rt->rt_gwroute points to rt.
399 	 */
400 	if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) {
401 		rtfree(nhrt);
402 		return (ELOOP);
403 	}
404 
405 	/* Next hop is valid so remove possible old cache. */
406 	rt_putgwroute(rt);
407 	KASSERT(rt->rt_gwroute == NULL);
408 
409 	/*
410 	 * If the MTU of next hop is 0, this will reset the MTU of the
411 	 * route to run PMTUD again from scratch.
412 	 */
413 	if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu))
414 		rt->rt_mtu = nhrt->rt_mtu;
415 
416 	/*
417 	 * To avoid reference counting problems when writting link-layer
418 	 * addresses in an outgoing packet, we ensure that the lifetime
419 	 * of a cached entry is greater that the bigger lifetime of the
420 	 * gateway entries it is pointed by.
421 	 */
422 	nhrt->rt_flags |= RTF_CACHED;
423 	nhrt->rt_cachecnt++;
424 
425 	rt->rt_gwroute = nhrt;
426 
427 	return (0);
428 }
429 
430 /*
431  * Invalidate the cached route entry of the gateway entry ``rt''.
432  */
433 void
434 rt_putgwroute(struct rtentry *rt)
435 {
436 	struct rtentry *nhrt = rt->rt_gwroute;
437 
438 	KERNEL_ASSERT_LOCKED();
439 
440 	if (!ISSET(rt->rt_flags, RTF_GATEWAY) || nhrt == NULL)
441 		return;
442 
443 	KASSERT(ISSET(nhrt->rt_flags, RTF_CACHED));
444 	KASSERT(nhrt->rt_cachecnt > 0);
445 
446 	--nhrt->rt_cachecnt;
447 	if (nhrt->rt_cachecnt == 0)
448 		nhrt->rt_flags &= ~RTF_CACHED;
449 
450 	rtfree(rt->rt_gwroute);
451 	rt->rt_gwroute = NULL;
452 }
453 
454 void
455 rtref(struct rtentry *rt)
456 {
457 	atomic_inc_int(&rt->rt_refcnt);
458 }
459 
460 void
461 rtfree(struct rtentry *rt)
462 {
463 	int		 refcnt;
464 
465 	if (rt == NULL)
466 		return;
467 
468 	refcnt = (int)atomic_dec_int_nv(&rt->rt_refcnt);
469 	if (refcnt <= 0) {
470 		KASSERT(!ISSET(rt->rt_flags, RTF_UP));
471 		KASSERT(!RT_ROOT(rt));
472 		atomic_dec_int(&rttrash);
473 		if (refcnt < 0) {
474 			printf("rtfree: %p not freed (neg refs)\n", rt);
475 			return;
476 		}
477 
478 		KERNEL_LOCK();
479 		rt_timer_remove_all(rt);
480 		ifafree(rt->rt_ifa);
481 		rtlabel_unref(rt->rt_labelid);
482 #ifdef MPLS
483 		if (rt->rt_flags & RTF_MPLS)
484 			free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls));
485 #endif
486 		free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len));
487 		free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len);
488 		KERNEL_UNLOCK();
489 
490 		pool_put(&rtentry_pool, rt);
491 	}
492 }
493 
494 void
495 rt_sendmsg(struct rtentry *rt, int cmd, u_int rtableid)
496 {
497 	struct rt_addrinfo	 info;
498 	struct ifnet		*ifp;
499 	struct sockaddr_rtlabel	 sa_rl;
500 	struct sockaddr_in6	 sa_mask;
501 
502 	memset(&info, 0, sizeof(info));
503 	info.rti_info[RTAX_DST] = rt_key(rt);
504 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
505 	if (!ISSET(rt->rt_flags, RTF_HOST))
506 		info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask);
507 	info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl);
508 	ifp = if_get(rt->rt_ifidx);
509 	if (ifp != NULL) {
510 		info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl);
511 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
512 	}
513 
514 	rt_missmsg(cmd, &info, rt->rt_flags, rt->rt_priority, rt->rt_ifidx, 0,
515 	    rtableid);
516 	if_put(ifp);
517 }
518 
519 void
520 ifafree(struct ifaddr *ifa)
521 {
522 	if (ifa == NULL)
523 		panic("ifafree");
524 	if (ifa->ifa_refcnt == 0) {
525 		ifatrash--;
526 		free(ifa, M_IFADDR, 0);
527 	} else
528 		ifa->ifa_refcnt--;
529 }
530 
531 /*
532  * Force a routing table entry to the specified
533  * destination to go through the given gateway.
534  * Normally called as a result of a routing redirect
535  * message from the network layer.
536  *
537  * N.B.: must be called at splsoftnet
538  */
539 void
540 rtredirect(struct sockaddr *dst, struct sockaddr *gateway,
541     struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain)
542 {
543 	struct rtentry		*rt;
544 	int			 error = 0;
545 	u_int32_t		*stat = NULL;
546 	struct rt_addrinfo	 info;
547 	struct ifaddr		*ifa;
548 	unsigned int		 ifidx = 0;
549 	int 			 flags = RTF_GATEWAY|RTF_HOST;
550 	uint8_t			 prio = RTP_NONE;
551 
552 	splsoftassert(IPL_SOFTNET);
553 
554 	/* verify the gateway is directly reachable */
555 	if ((ifa = ifa_ifwithnet(gateway, rdomain)) == NULL) {
556 		error = ENETUNREACH;
557 		goto out;
558 	}
559 	ifidx = ifa->ifa_ifp->if_index;
560 	rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY);
561 	/*
562 	 * If the redirect isn't from our current router for this dst,
563 	 * it's either old or wrong.  If it redirects us to ourselves,
564 	 * we have a routing loop, perhaps as a result of an interface
565 	 * going down recently.
566 	 */
567 #define	equal(a1, a2) \
568 	((a1)->sa_len == (a2)->sa_len && \
569 	 bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
570 	if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa))
571 		error = EINVAL;
572 	else if (ifa_ifwithaddr(gateway, rdomain) != NULL ||
573 	    (gateway->sa_family = AF_INET &&
574 	    in_broadcast(satosin(gateway)->sin_addr, rdomain)))
575 		error = EHOSTUNREACH;
576 	if (error)
577 		goto done;
578 	/*
579 	 * Create a new entry if we just got back a wildcard entry
580 	 * or the lookup failed.  This is necessary for hosts
581 	 * which use routing redirects generated by smart gateways
582 	 * to dynamically build the routing tables.
583 	 */
584 	if (rt == NULL)
585 		goto create;
586 	/*
587 	 * Don't listen to the redirect if it's
588 	 * for a route to an interface.
589 	 */
590 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
591 		if (!ISSET(rt->rt_flags, RTF_HOST)) {
592 			/*
593 			 * Changing from route to net => route to host.
594 			 * Create new route, rather than smashing route to net.
595 			 */
596 create:
597 			rtfree(rt);
598 			flags |= RTF_DYNAMIC;
599 			bzero(&info, sizeof(info));
600 			info.rti_info[RTAX_DST] = dst;
601 			info.rti_info[RTAX_GATEWAY] = gateway;
602 			info.rti_ifa = ifa;
603 			info.rti_flags = flags;
604 			rt = NULL;
605 			error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt,
606 			    rdomain);
607 			if (error == 0) {
608 				flags = rt->rt_flags;
609 				prio = rt->rt_priority;
610 			}
611 			stat = &rtstat.rts_dynamic;
612 		} else {
613 			/*
614 			 * Smash the current notion of the gateway to
615 			 * this destination.  Should check about netmask!!!
616 			 */
617 			rt->rt_flags |= RTF_MODIFIED;
618 			flags |= RTF_MODIFIED;
619 			prio = rt->rt_priority;
620 			stat = &rtstat.rts_newgateway;
621 			rt_setgate(rt, gateway, rdomain);
622 		}
623 	} else
624 		error = EHOSTUNREACH;
625 done:
626 	if (rt) {
627 		if (rtp && !error)
628 			*rtp = rt;
629 		else
630 			rtfree(rt);
631 	}
632 out:
633 	if (error)
634 		rtstat.rts_badredirect++;
635 	else if (stat != NULL)
636 		(*stat)++;
637 	bzero((caddr_t)&info, sizeof(info));
638 	info.rti_info[RTAX_DST] = dst;
639 	info.rti_info[RTAX_GATEWAY] = gateway;
640 	info.rti_info[RTAX_AUTHOR] = src;
641 	rt_missmsg(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain);
642 }
643 
644 /*
645  * Delete a route and generate a message
646  */
647 int
648 rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid)
649 {
650 	int			error;
651 	struct rt_addrinfo	info;
652 	unsigned int		ifidx;
653 	struct sockaddr_in6	sa_mask;
654 
655 	KASSERT(rt->rt_ifidx == ifp->if_index);
656 
657 	/*
658 	 * Request the new route so that the entry is not actually
659 	 * deleted.  That will allow the information being reported to
660 	 * be accurate (and consistent with route_output()).
661 	 */
662 	bzero((caddr_t)&info, sizeof(info));
663 	info.rti_info[RTAX_DST] = rt_key(rt);
664 	if (!ISSET(rt->rt_flags, RTF_HOST))
665 		info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask);
666 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
667 	info.rti_flags = rt->rt_flags;
668 	ifidx = rt->rt_ifidx;
669 	error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid);
670 	rt_missmsg(RTM_DELETE, &info, info.rti_flags, rt->rt_priority, ifidx,
671 	    error, tableid);
672 	if (error == 0)
673 		rtfree(rt);
674 	return (error);
675 }
676 
677 static inline int
678 rtequal(struct rtentry *a, struct rtentry *b)
679 {
680 	if (a == b)
681 		return 1;
682 
683 	if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 &&
684 	    rt_plen(a) == rt_plen(b))
685 		return 1;
686 	else
687 		return 0;
688 }
689 
690 int
691 rtflushclone1(struct rtentry *rt, void *arg, u_int id)
692 {
693 	struct rtentry *parent = arg;
694 	struct ifnet *ifp;
695 	int error;
696 
697 	ifp = if_get(rt->rt_ifidx);
698 
699 	/*
700 	 * This happens when an interface with a RTF_CLONING route is
701 	 * being detached.  In this case it's safe to bail because all
702 	 * the routes are being purged by rt_ifa_purge().
703 	 */
704 	if (ifp == NULL)
705 	        return 0;
706 
707 	if (ISSET(rt->rt_flags, RTF_CLONED) && rtequal(rt->rt_parent, parent)) {
708 	        error = rtdeletemsg(rt, ifp, id);
709 	        if (error == 0)
710 			error = EAGAIN;
711 	} else
712 		error = 0;
713 
714 	if_put(ifp);
715 	return error;
716 }
717 
718 void
719 rtflushclone(unsigned int rtableid, struct rtentry *parent)
720 {
721 
722 #ifdef DIAGNOSTIC
723 	if (!parent || (parent->rt_flags & RTF_CLONING) == 0)
724 		panic("rtflushclone: called with a non-cloning route");
725 #endif
726 	rtable_walk(rtableid, rt_key(parent)->sa_family, rtflushclone1, parent);
727 }
728 
729 int
730 rtioctl(u_long req, caddr_t data, struct proc *p)
731 {
732 	return (EOPNOTSUPP);
733 }
734 
735 struct ifaddr *
736 ifa_ifwithroute(int flags, struct sockaddr *dst, struct sockaddr *gateway,
737     u_int rtableid)
738 {
739 	struct ifaddr	*ifa;
740 
741 	if ((flags & RTF_GATEWAY) == 0) {
742 		/*
743 		 * If we are adding a route to an interface,
744 		 * and the interface is a pt to pt link
745 		 * we should search for the destination
746 		 * as our clue to the interface.  Otherwise
747 		 * we can use the local address.
748 		 */
749 		ifa = NULL;
750 		if (flags & RTF_HOST)
751 			ifa = ifa_ifwithdstaddr(dst, rtableid);
752 		if (ifa == NULL)
753 			ifa = ifa_ifwithaddr(gateway, rtableid);
754 	} else {
755 		/*
756 		 * If we are adding a route to a remote net
757 		 * or host, the gateway may still be on the
758 		 * other end of a pt to pt link.
759 		 */
760 		ifa = ifa_ifwithdstaddr(gateway, rtableid);
761 	}
762 	if (ifa == NULL) {
763 		if (gateway->sa_family == AF_LINK) {
764 			struct sockaddr_dl *sdl = satosdl(gateway);
765 			struct ifnet *ifp = if_get(sdl->sdl_index);
766 
767 			if (ifp != NULL)
768 				ifa = ifaof_ifpforaddr(dst, ifp);
769 			if_put(ifp);
770 		} else {
771 			struct rtentry *rt;
772 
773 			rt = rtalloc(gateway, RT_RESOLVE, rtableid);
774 			if (rt != NULL)
775 				ifa = rt->rt_ifa;
776 			rtfree(rt);
777 		}
778 	}
779 	if (ifa == NULL)
780 		return (NULL);
781 	if (ifa->ifa_addr->sa_family != dst->sa_family) {
782 		struct ifaddr	*oifa = ifa;
783 		ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
784 		if (ifa == NULL)
785 			ifa = oifa;
786 	}
787 	return (ifa);
788 }
789 
790 int
791 rt_getifa(struct rt_addrinfo *info, u_int rtid)
792 {
793 	struct ifnet	*ifp = NULL;
794 
795 	/*
796 	 * ifp may be specified by sockaddr_dl when protocol address
797 	 * is ambiguous
798 	 */
799 	if (info->rti_info[RTAX_IFP] != NULL) {
800 		struct sockaddr_dl *sdl;
801 
802 		sdl = satosdl(info->rti_info[RTAX_IFP]);
803 		ifp = if_get(sdl->sdl_index);
804 	}
805 
806 #ifdef IPSEC
807 	/*
808 	 * If the destination is a PF_KEY address, we'll look
809 	 * for the existence of a encap interface number or address
810 	 * in the options list of the gateway. By default, we'll return
811 	 * enc0.
812 	 */
813 	if (info->rti_info[RTAX_DST] &&
814 	    info->rti_info[RTAX_DST]->sa_family == PF_KEY)
815 		info->rti_ifa = enc_getifa(rtid, 0);
816 #endif
817 
818 	if (info->rti_ifa == NULL && info->rti_info[RTAX_IFA] != NULL)
819 		info->rti_ifa = ifa_ifwithaddr(info->rti_info[RTAX_IFA], rtid);
820 
821 	if (info->rti_ifa == NULL) {
822 		struct sockaddr	*sa;
823 
824 		if ((sa = info->rti_info[RTAX_IFA]) == NULL)
825 			if ((sa = info->rti_info[RTAX_GATEWAY]) == NULL)
826 				sa = info->rti_info[RTAX_DST];
827 
828 		if (sa != NULL && ifp != NULL)
829 			info->rti_ifa = ifaof_ifpforaddr(sa, ifp);
830 		else if (info->rti_info[RTAX_DST] != NULL &&
831 		    info->rti_info[RTAX_GATEWAY] != NULL)
832 			info->rti_ifa = ifa_ifwithroute(info->rti_flags,
833 			    info->rti_info[RTAX_DST],
834 			    info->rti_info[RTAX_GATEWAY],
835 			    rtid);
836 		else if (sa != NULL)
837 			info->rti_ifa = ifa_ifwithroute(info->rti_flags,
838 			    sa, sa, rtid);
839 	}
840 
841 	if_put(ifp);
842 
843 	if (info->rti_ifa == NULL)
844 		return (ENETUNREACH);
845 
846 	return (0);
847 }
848 
849 int
850 rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp,
851     struct rtentry **ret_nrt, u_int tableid)
852 {
853 	struct rtentry	*rt;
854 	int		 error;
855 
856 	splsoftassert(IPL_SOFTNET);
857 
858 	if (!rtable_exists(tableid))
859 		return (EAFNOSUPPORT);
860 	rt = rtable_lookup(tableid, info->rti_info[RTAX_DST],
861 	    info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio);
862 	if (rt == NULL)
863 		return (ESRCH);
864 
865 	/* Make sure that's the route the caller want to delete. */
866 	if (ifp != NULL && ifp->if_index != rt->rt_ifidx) {
867 		rtfree(rt);
868 		return (ESRCH);
869 	}
870 
871 #ifndef SMALL_KERNEL
872 	/*
873 	 * If we got multipath routes, we require users to specify
874 	 * a matching gateway.
875 	 */
876 	if ((rt->rt_flags & RTF_MPATH) &&
877 	    info->rti_info[RTAX_GATEWAY] == NULL) {
878 		rtfree(rt);
879 		return (ESRCH);
880 	}
881 #endif
882 
883 	error = rtable_delete(tableid, info->rti_info[RTAX_DST],
884 	    info->rti_info[RTAX_NETMASK], rt);
885 	if (error != 0) {
886 		rtfree(rt);
887 		return (ESRCH);
888 	}
889 
890 #ifdef BFD
891 	if (ISSET(rt->rt_flags, RTF_BFD))
892 		bfdclear(rt);
893 #endif
894 
895 	/* Release next hop cache before flushing cloned entries. */
896 	rt_putgwroute(rt);
897 
898 	/* Clean up any cloned children. */
899 	if (ISSET(rt->rt_flags, RTF_CLONING))
900 		rtflushclone(tableid, rt);
901 
902 	rtfree(rt->rt_parent);
903 	rt->rt_parent = NULL;
904 
905 	rt->rt_flags &= ~RTF_UP;
906 
907 	if (ifp == NULL) {
908 		ifp = if_get(rt->rt_ifidx);
909 		if (ifp != NULL) {
910 			ifp->if_rtrequest(ifp, RTM_DELETE, rt);
911 			if_put(ifp);
912 		}
913 	} else {
914 		KASSERT(ifp->if_index == rt->rt_ifidx);
915 		ifp->if_rtrequest(ifp, RTM_DELETE, rt);
916 	}
917 
918 	atomic_inc_int(&rttrash);
919 
920 	if (ret_nrt != NULL)
921 		*ret_nrt = rt;
922 	else
923 		rtfree(rt);
924 
925 	return (0);
926 }
927 
928 int
929 rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio,
930     struct rtentry **ret_nrt, u_int tableid)
931 {
932 	struct ifnet		*ifp;
933 	struct rtentry		*rt, *crt;
934 	struct ifaddr		*ifa;
935 	struct sockaddr		*ndst;
936 	struct sockaddr_rtlabel	*sa_rl, sa_rl2;
937 	struct sockaddr_dl	 sa_dl = { sizeof(sa_dl), AF_LINK };
938 	int			 dlen, error;
939 #ifdef MPLS
940 	struct sockaddr_mpls	*sa_mpls;
941 #endif
942 
943 	splsoftassert(IPL_SOFTNET);
944 
945 	if (!rtable_exists(tableid))
946 		return (EAFNOSUPPORT);
947 	if (info->rti_flags & RTF_HOST)
948 		info->rti_info[RTAX_NETMASK] = NULL;
949 	switch (req) {
950 	case RTM_DELETE:
951 		error = rtrequest_delete(info, prio, NULL, ret_nrt, tableid);
952 		if (error)
953 			return (error);
954 		break;
955 
956 	case RTM_RESOLVE:
957 		if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
958 			return (EINVAL);
959 		if ((rt->rt_flags & RTF_CLONING) == 0)
960 			return (EINVAL);
961 		KASSERT(rt->rt_ifa->ifa_ifp != NULL);
962 		info->rti_ifa = rt->rt_ifa;
963 		info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST);
964 		info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC);
965 		info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl);
966 		info->rti_info[RTAX_LABEL] =
967 		    rtlabel_id2sa(rt->rt_labelid, &sa_rl2);
968 		/* FALLTHROUGH */
969 
970 	case RTM_ADD:
971 		if (info->rti_ifa == NULL && (error = rt_getifa(info, tableid)))
972 			return (error);
973 		ifa = info->rti_ifa;
974 		ifp = ifa->ifa_ifp;
975 		if (prio == 0)
976 			prio = ifp->if_priority + RTP_STATIC;
977 
978 		dlen = info->rti_info[RTAX_DST]->sa_len;
979 		ndst = malloc(dlen, M_RTABLE, M_NOWAIT);
980 		if (ndst == NULL)
981 			return (ENOBUFS);
982 
983 		if (info->rti_info[RTAX_NETMASK] != NULL)
984 			rt_maskedcopy(info->rti_info[RTAX_DST], ndst,
985 			    info->rti_info[RTAX_NETMASK]);
986 		else
987 			memcpy(ndst, info->rti_info[RTAX_DST], dlen);
988 
989 		rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO);
990 		if (rt == NULL) {
991 			free(ndst, M_RTABLE, dlen);
992 			return (ENOBUFS);
993 		}
994 
995 		rt->rt_refcnt = 1;
996 		rt->rt_flags = info->rti_flags | RTF_UP;
997 		rt->rt_priority = prio;	/* init routing priority */
998 		LIST_INIT(&rt->rt_timer);
999 
1000 #ifndef SMALL_KERNEL
1001 		/* Check the link state if the table supports it. */
1002 		if (rtable_mpath_capable(tableid, ndst->sa_family) &&
1003 		    !ISSET(rt->rt_flags, RTF_LOCAL) &&
1004 		    (!LINK_STATE_IS_UP(ifp->if_link_state) ||
1005 		    !ISSET(ifp->if_flags, IFF_UP))) {
1006 			rt->rt_flags &= ~RTF_UP;
1007 			rt->rt_priority |= RTP_DOWN;
1008 		}
1009 #endif
1010 
1011 		if (info->rti_info[RTAX_LABEL] != NULL) {
1012 			sa_rl = (struct sockaddr_rtlabel *)
1013 			    info->rti_info[RTAX_LABEL];
1014 			rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label);
1015 		}
1016 
1017 #ifdef MPLS
1018 		/* We have to allocate additional space for MPLS infos */
1019 		if (info->rti_flags & RTF_MPLS &&
1020 		    (info->rti_info[RTAX_SRC] != NULL ||
1021 		    info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) {
1022 			struct rt_mpls *rt_mpls;
1023 
1024 			sa_mpls = (struct sockaddr_mpls *)
1025 			    info->rti_info[RTAX_SRC];
1026 
1027 			rt->rt_llinfo = malloc(sizeof(struct rt_mpls),
1028 			    M_TEMP, M_NOWAIT|M_ZERO);
1029 
1030 			if (rt->rt_llinfo == NULL) {
1031 				free(ndst, M_RTABLE, dlen);
1032 				pool_put(&rtentry_pool, rt);
1033 				return (ENOMEM);
1034 			}
1035 
1036 			rt_mpls = (struct rt_mpls *)rt->rt_llinfo;
1037 
1038 			if (sa_mpls != NULL)
1039 				rt_mpls->mpls_label = sa_mpls->smpls_label;
1040 
1041 			rt_mpls->mpls_operation = info->rti_mpls;
1042 
1043 			/* XXX: set experimental bits */
1044 
1045 			rt->rt_flags |= RTF_MPLS;
1046 		} else
1047 			rt->rt_flags &= ~RTF_MPLS;
1048 #endif
1049 
1050 		ifa->ifa_refcnt++;
1051 		rt->rt_ifa = ifa;
1052 		rt->rt_ifidx = ifp->if_index;
1053 		if (rt->rt_flags & RTF_CLONED) {
1054 			/*
1055 			 * Copy both metrics and a back pointer to the cloned
1056 			 * route's parent.
1057 			 */
1058 			rt->rt_rmx = (*ret_nrt)->rt_rmx; /* copy metrics */
1059 			rt->rt_priority = (*ret_nrt)->rt_priority;
1060 			rt->rt_parent = *ret_nrt;	 /* Back ptr. to parent. */
1061 			rtref(rt->rt_parent);
1062 		}
1063 
1064 		/*
1065 		 * We must set rt->rt_gateway before adding ``rt'' to
1066 		 * the routing table because the radix MPATH code use
1067 		 * it to (re)order routes.
1068 		 */
1069 		if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY],
1070 		    tableid))) {
1071 			ifafree(ifa);
1072 			rtfree(rt->rt_parent);
1073 			rt_putgwroute(rt);
1074 			free(rt->rt_gateway, M_RTABLE, 0);
1075 			free(ndst, M_RTABLE, dlen);
1076 			pool_put(&rtentry_pool, rt);
1077 			return (error);
1078 		}
1079 
1080 		error = rtable_insert(tableid, ndst,
1081 		    info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY],
1082 		    rt->rt_priority, rt);
1083 		if (error != 0 && (crt = rtalloc(ndst, 0, tableid)) != NULL) {
1084 			/* overwrite cloned route */
1085 			if (ISSET(crt->rt_flags, RTF_CLONED)) {
1086 				struct ifnet *cifp;
1087 
1088 				cifp = if_get(crt->rt_ifidx);
1089 				KASSERT(cifp != NULL);
1090 				rtdeletemsg(crt, cifp, tableid);
1091 				if_put(cifp);
1092 
1093 				error = rtable_insert(tableid, ndst,
1094 				    info->rti_info[RTAX_NETMASK],
1095 				    info->rti_info[RTAX_GATEWAY],
1096 				    rt->rt_priority, rt);
1097 			}
1098 			rtfree(crt);
1099 		}
1100 		if (error != 0) {
1101 			ifafree(ifa);
1102 			rtfree(rt->rt_parent);
1103 			rt_putgwroute(rt);
1104 			free(rt->rt_gateway, M_RTABLE, 0);
1105 			free(ndst, M_RTABLE, dlen);
1106 			pool_put(&rtentry_pool, rt);
1107 			return (EEXIST);
1108 		}
1109 		ifp->if_rtrequest(ifp, req, rt);
1110 
1111 		if_group_routechange(info->rti_info[RTAX_DST],
1112 			info->rti_info[RTAX_NETMASK]);
1113 
1114 		if (ret_nrt != NULL)
1115 			*ret_nrt = rt;
1116 		else
1117 			rtfree(rt);
1118 		break;
1119 	}
1120 
1121 	return (0);
1122 }
1123 
1124 int
1125 rt_setgate(struct rtentry *rt, struct sockaddr *gate, u_int rtableid)
1126 {
1127 	int glen = ROUNDUP(gate->sa_len);
1128 	struct sockaddr *sa;
1129 
1130 	if (rt->rt_gateway == NULL || glen > ROUNDUP(rt->rt_gateway->sa_len)) {
1131 		sa = malloc(glen, M_RTABLE, M_NOWAIT);
1132 		if (sa == NULL)
1133 			return (ENOBUFS);
1134 		free(rt->rt_gateway, M_RTABLE, 0);
1135 		rt->rt_gateway = sa;
1136 	}
1137 	memmove(rt->rt_gateway, gate, glen);
1138 
1139 	if (ISSET(rt->rt_flags, RTF_GATEWAY))
1140 		return (rt_setgwroute(rt, rtableid));
1141 
1142 	return (0);
1143 }
1144 
1145 /*
1146  * Return the route entry containing the next hop link-layer
1147  * address corresponding to ``rt''.
1148  */
1149 struct rtentry *
1150 rt_getll(struct rtentry *rt)
1151 {
1152 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
1153 		KASSERT(rt->rt_gwroute != NULL);
1154 		return (rt->rt_gwroute);
1155 	}
1156 
1157 	return (rt);
1158 }
1159 
1160 void
1161 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst,
1162     struct sockaddr *netmask)
1163 {
1164 	u_char	*cp1 = (u_char *)src;
1165 	u_char	*cp2 = (u_char *)dst;
1166 	u_char	*cp3 = (u_char *)netmask;
1167 	u_char	*cplim = cp2 + *cp3;
1168 	u_char	*cplim2 = cp2 + *cp1;
1169 
1170 	*cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
1171 	cp3 += 2;
1172 	if (cplim > cplim2)
1173 		cplim = cplim2;
1174 	while (cp2 < cplim)
1175 		*cp2++ = *cp1++ & *cp3++;
1176 	if (cp2 < cplim2)
1177 		bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2));
1178 }
1179 
1180 int
1181 rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst)
1182 {
1183 	struct ifnet		*ifp = ifa->ifa_ifp;
1184 	struct rtentry		*rt;
1185 	struct sockaddr_rtlabel	 sa_rl;
1186 	struct rt_addrinfo	 info;
1187 	unsigned int		 rtableid = ifp->if_rdomain;
1188 	uint8_t			 prio = ifp->if_priority + RTP_STATIC;
1189 	int			 error;
1190 
1191 	memset(&info, 0, sizeof(info));
1192 	info.rti_ifa = ifa;
1193 	info.rti_flags = flags | RTF_MPATH;
1194 	info.rti_info[RTAX_DST] = dst;
1195 	if (flags & RTF_LLINFO)
1196 		info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl);
1197 	else
1198 		info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1199 	info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
1200 
1201 #ifdef MPLS
1202 	if ((flags & RTF_MPLS) == RTF_MPLS) {
1203 		info.rti_mpls = MPLS_OP_POP;
1204 
1205 		/* MPLS routes only exist in rdomain 0 */
1206 		rtableid = 0;
1207 	}
1208 #endif /* MPLS */
1209 
1210 	if ((flags & RTF_HOST) == 0)
1211 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1212 
1213 	if (flags & (RTF_LOCAL|RTF_BROADCAST))
1214 		prio = RTP_LOCAL;
1215 
1216 	if (flags & RTF_CONNECTED)
1217 		prio = RTP_CONNECTED;
1218 
1219 	error = rtrequest(RTM_ADD, &info, prio, &rt, rtableid);
1220 	if (error == 0) {
1221 		/*
1222 		 * A local route is created for every address configured
1223 		 * on an interface, so use this information to notify
1224 		 * userland that a new address has been added.
1225 		 */
1226 		if (flags & RTF_LOCAL)
1227 			rt_sendaddrmsg(rt, RTM_NEWADDR, ifa);
1228 		rt_sendmsg(rt, RTM_ADD, rtableid);
1229 		rtfree(rt);
1230 	}
1231 	return (error);
1232 }
1233 
1234 int
1235 rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst)
1236 {
1237 	struct ifnet		*ifp = ifa->ifa_ifp;
1238 	struct rtentry		*rt;
1239 	struct mbuf		*m = NULL;
1240 	struct sockaddr		*deldst;
1241 	struct rt_addrinfo	 info;
1242 	struct sockaddr_rtlabel	 sa_rl;
1243 	unsigned int		 rtableid = ifp->if_rdomain;
1244 	uint8_t			 prio = ifp->if_priority + RTP_STATIC;
1245 	int			 error;
1246 
1247 #ifdef MPLS
1248 	if ((flags & RTF_MPLS) == RTF_MPLS)
1249 		/* MPLS routes only exist in rdomain 0 */
1250 		rtableid = 0;
1251 #endif /* MPLS */
1252 
1253 	if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
1254 		m = m_get(M_DONTWAIT, MT_SONAME);
1255 		if (m == NULL)
1256 			return (ENOBUFS);
1257 		deldst = mtod(m, struct sockaddr *);
1258 		rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
1259 		dst = deldst;
1260 	}
1261 
1262 	memset(&info, 0, sizeof(info));
1263 	info.rti_ifa = ifa;
1264 	info.rti_flags = flags;
1265 	info.rti_info[RTAX_DST] = dst;
1266 	if ((flags & RTF_LLINFO) == 0)
1267 		info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1268 	info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
1269 
1270 	if ((flags & RTF_HOST) == 0)
1271 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1272 
1273 	if (flags & (RTF_LOCAL|RTF_BROADCAST))
1274 		prio = RTP_LOCAL;
1275 
1276 	if (flags & RTF_CONNECTED)
1277 		prio = RTP_CONNECTED;
1278 
1279 	error = rtrequest_delete(&info, prio, ifp, &rt, rtableid);
1280 	if (error == 0) {
1281 		rt_sendmsg(rt, RTM_DELETE, rtableid);
1282 		if (flags & RTF_LOCAL)
1283 			rt_sendaddrmsg(rt, RTM_DELADDR, ifa);
1284 		rtfree(rt);
1285 	}
1286 	if (m != NULL)
1287 		m_free(m);
1288 
1289 	return (error);
1290 }
1291 
1292 /*
1293  * Add ifa's address as a local rtentry.
1294  */
1295 int
1296 rt_ifa_addlocal(struct ifaddr *ifa)
1297 {
1298 	struct rtentry *rt;
1299 	u_int flags = RTF_HOST|RTF_LOCAL;
1300 	int error = 0;
1301 
1302 	/*
1303 	 * If the configured address correspond to the magical "any"
1304 	 * address do not add a local route entry because that might
1305 	 * corrupt the routing tree which uses this value for the
1306 	 * default routes.
1307 	 */
1308 	switch (ifa->ifa_addr->sa_family) {
1309 	case AF_INET:
1310 		if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
1311 			return (0);
1312 		break;
1313 #ifdef INET6
1314 	case AF_INET6:
1315 		if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
1316 		    &in6addr_any))
1317 			return (0);
1318 		break;
1319 #endif
1320 	default:
1321 		break;
1322 	}
1323 
1324 	if (!ISSET(ifa->ifa_ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
1325 		flags |= RTF_LLINFO;
1326 
1327 	/* If there is no loopback entry, allocate one. */
1328 	rt = rtalloc(ifa->ifa_addr, 0, ifa->ifa_ifp->if_rdomain);
1329 	if (rt == NULL || !ISSET(rt->rt_flags, flags))
1330 		error = rt_ifa_add(ifa, flags, ifa->ifa_addr);
1331 	rtfree(rt);
1332 
1333 	return (error);
1334 }
1335 
1336 /*
1337  * Remove local rtentry of ifa's addresss if it exists.
1338  */
1339 int
1340 rt_ifa_dellocal(struct ifaddr *ifa)
1341 {
1342 	struct rtentry *rt;
1343 	u_int flags = RTF_HOST|RTF_LOCAL;
1344 	int error = 0;
1345 
1346 	/*
1347 	 * We do not add local routes for such address, so do not bother
1348 	 * removing them.
1349 	 */
1350 	switch (ifa->ifa_addr->sa_family) {
1351 	case AF_INET:
1352 		if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
1353 			return (0);
1354 		break;
1355 #ifdef INET6
1356 	case AF_INET6:
1357 		if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
1358 		    &in6addr_any))
1359 			return (0);
1360 		break;
1361 #endif
1362 	default:
1363 		break;
1364 	}
1365 
1366 	if (!ISSET(ifa->ifa_ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
1367 		flags |= RTF_LLINFO;
1368 
1369 	/*
1370 	 * Before deleting, check if a corresponding local host
1371 	 * route surely exists.  With this check, we can avoid to
1372 	 * delete an interface direct route whose destination is same
1373 	 * as the address being removed.  This can happen when removing
1374 	 * a subnet-router anycast address on an interface attached
1375 	 * to a shared medium.
1376 	 */
1377 	rt = rtalloc(ifa->ifa_addr, 0, ifa->ifa_ifp->if_rdomain);
1378 	if (rt != NULL && ISSET(rt->rt_flags, flags))
1379 		error = rt_ifa_del(ifa, flags, ifa->ifa_addr);
1380 	rtfree(rt);
1381 
1382 	return (error);
1383 }
1384 
1385 /*
1386  * Remove all addresses attached to ``ifa''.
1387  */
1388 void
1389 rt_ifa_purge(struct ifaddr *ifa)
1390 {
1391 	struct ifnet		*ifp = ifa->ifa_ifp;
1392 	unsigned int		 rtableid;
1393 	int			 i;
1394 
1395 	KASSERT(ifp != NULL);
1396 
1397 	for (rtableid = 0; rtableid < rtmap_limit; rtableid++) {
1398 		/* skip rtables that are not in the rdomain of the ifp */
1399 		if (rtable_l2(rtableid) != ifp->if_rdomain)
1400 			continue;
1401 		for (i = 1; i <= AF_MAX; i++) {
1402 			rtable_walk(rtableid, i, rt_ifa_purge_walker, ifa);
1403 		}
1404 	}
1405 }
1406 
1407 int
1408 rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid)
1409 {
1410 	struct ifaddr		*ifa = vifa;
1411 	struct ifnet		*ifp = ifa->ifa_ifp;
1412 	int			 error;
1413 
1414 	if (rt->rt_ifa != ifa)
1415 		return (0);
1416 
1417 	if ((error = rtdeletemsg(rt, ifp, rtableid))) {
1418 		return (error);
1419 	}
1420 
1421 	return (EAGAIN);
1422 
1423 }
1424 
1425 /*
1426  * Route timer routines.  These routes allow functions to be called
1427  * for various routes at any time.  This is useful in supporting
1428  * path MTU discovery and redirect route deletion.
1429  *
1430  * This is similar to some BSDI internal functions, but it provides
1431  * for multiple queues for efficiency's sake...
1432  */
1433 
1434 LIST_HEAD(, rttimer_queue)	rttimer_queue_head;
1435 static int			rt_init_done = 0;
1436 
1437 #define RTTIMER_CALLOUT(r)	{				\
1438 	if (r->rtt_func != NULL) {				\
1439 		(*r->rtt_func)(r->rtt_rt, r);			\
1440 	} else {						\
1441 		struct rt_addrinfo info;			\
1442 		bzero(&info, sizeof(info));			\
1443 		info.rti_info[RTAX_DST] = rt_key(r->rtt_rt);	\
1444 		rtrequest(RTM_DELETE, &info,			\
1445 		    r->rtt_rt->rt_priority, NULL, r->rtt_tableid);	\
1446 	}							\
1447 }
1448 
1449 /*
1450  * Some subtle order problems with domain initialization mean that
1451  * we cannot count on this being run from rt_init before various
1452  * protocol initializations are done.  Therefore, we make sure
1453  * that this is run when the first queue is added...
1454  */
1455 
1456 void
1457 rt_timer_init(void)
1458 {
1459 	static struct timeout	rt_timer_timeout;
1460 
1461 	if (rt_init_done)
1462 		panic("rt_timer_init: already initialized");
1463 
1464 	pool_init(&rttimer_pool, sizeof(struct rttimer), 0, IPL_SOFTNET, 0,
1465 	    "rttmr", NULL);
1466 
1467 	LIST_INIT(&rttimer_queue_head);
1468 	timeout_set(&rt_timer_timeout, rt_timer_timer, &rt_timer_timeout);
1469 	timeout_add_sec(&rt_timer_timeout, 1);
1470 	rt_init_done = 1;
1471 }
1472 
1473 struct rttimer_queue *
1474 rt_timer_queue_create(u_int timeout)
1475 {
1476 	struct rttimer_queue	*rtq;
1477 
1478 	if (rt_init_done == 0)
1479 		rt_timer_init();
1480 
1481 	if ((rtq = malloc(sizeof(*rtq), M_RTABLE, M_NOWAIT|M_ZERO)) == NULL)
1482 		return (NULL);
1483 
1484 	rtq->rtq_timeout = timeout;
1485 	rtq->rtq_count = 0;
1486 	TAILQ_INIT(&rtq->rtq_head);
1487 	LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link);
1488 
1489 	return (rtq);
1490 }
1491 
1492 void
1493 rt_timer_queue_change(struct rttimer_queue *rtq, long timeout)
1494 {
1495 	rtq->rtq_timeout = timeout;
1496 }
1497 
1498 void
1499 rt_timer_queue_destroy(struct rttimer_queue *rtq)
1500 {
1501 	struct rttimer	*r;
1502 
1503 	while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
1504 		LIST_REMOVE(r, rtt_link);
1505 		TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1506 		RTTIMER_CALLOUT(r);
1507 		pool_put(&rttimer_pool, r);
1508 		if (rtq->rtq_count > 0)
1509 			rtq->rtq_count--;
1510 		else
1511 			printf("rt_timer_queue_destroy: rtq_count reached 0\n");
1512 	}
1513 
1514 	LIST_REMOVE(rtq, rtq_link);
1515 	free(rtq, M_RTABLE, sizeof(*rtq));
1516 }
1517 
1518 unsigned long
1519 rt_timer_queue_count(struct rttimer_queue *rtq)
1520 {
1521 	return (rtq->rtq_count);
1522 }
1523 
1524 void
1525 rt_timer_remove_all(struct rtentry *rt)
1526 {
1527 	struct rttimer	*r;
1528 
1529 	while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
1530 		LIST_REMOVE(r, rtt_link);
1531 		TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1532 		if (r->rtt_queue->rtq_count > 0)
1533 			r->rtt_queue->rtq_count--;
1534 		else
1535 			printf("rt_timer_remove_all: rtq_count reached 0\n");
1536 		pool_put(&rttimer_pool, r);
1537 	}
1538 }
1539 
1540 int
1541 rt_timer_add(struct rtentry *rt, void (*func)(struct rtentry *,
1542     struct rttimer *), struct rttimer_queue *queue, u_int rtableid)
1543 {
1544 	struct rttimer	*r;
1545 	long		 current_time;
1546 
1547 	current_time = time_uptime;
1548 	rt->rt_rmx.rmx_expire = time_uptime + queue->rtq_timeout;
1549 
1550 	/*
1551 	 * If there's already a timer with this action, destroy it before
1552 	 * we add a new one.
1553 	 */
1554 	for (r = LIST_FIRST(&rt->rt_timer); r != NULL;
1555 	     r = LIST_NEXT(r, rtt_link)) {
1556 		if (r->rtt_func == func) {
1557 			LIST_REMOVE(r, rtt_link);
1558 			TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1559 			if (r->rtt_queue->rtq_count > 0)
1560 				r->rtt_queue->rtq_count--;
1561 			else
1562 				printf("rt_timer_add: rtq_count reached 0\n");
1563 			pool_put(&rttimer_pool, r);
1564 			break;  /* only one per list, so we can quit... */
1565 		}
1566 	}
1567 
1568 	r = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO);
1569 	if (r == NULL)
1570 		return (ENOBUFS);
1571 
1572 	r->rtt_rt = rt;
1573 	r->rtt_time = current_time;
1574 	r->rtt_func = func;
1575 	r->rtt_queue = queue;
1576 	r->rtt_tableid = rtableid;
1577 	LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link);
1578 	TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next);
1579 	r->rtt_queue->rtq_count++;
1580 
1581 	return (0);
1582 }
1583 
1584 void
1585 rt_timer_timer(void *arg)
1586 {
1587 	struct timeout		*to = (struct timeout *)arg;
1588 	struct rttimer_queue	*rtq;
1589 	struct rttimer		*r;
1590 	long			 current_time;
1591 	int			 s;
1592 
1593 	current_time = time_uptime;
1594 
1595 	s = splsoftnet();
1596 	for (rtq = LIST_FIRST(&rttimer_queue_head); rtq != NULL;
1597 	     rtq = LIST_NEXT(rtq, rtq_link)) {
1598 		while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL &&
1599 		    (r->rtt_time + rtq->rtq_timeout) < current_time) {
1600 			LIST_REMOVE(r, rtt_link);
1601 			TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1602 			RTTIMER_CALLOUT(r);
1603 			pool_put(&rttimer_pool, r);
1604 			if (rtq->rtq_count > 0)
1605 				rtq->rtq_count--;
1606 			else
1607 				printf("rt_timer_timer: rtq_count reached 0\n");
1608 		}
1609 	}
1610 	splx(s);
1611 
1612 	timeout_add_sec(to, 1);
1613 }
1614 
1615 u_int16_t
1616 rtlabel_name2id(char *name)
1617 {
1618 	struct rt_label		*label, *p = NULL;
1619 	u_int16_t		 new_id = 1;
1620 
1621 	if (!name[0])
1622 		return (0);
1623 
1624 	TAILQ_FOREACH(label, &rt_labels, rtl_entry)
1625 		if (strcmp(name, label->rtl_name) == 0) {
1626 			label->rtl_ref++;
1627 			return (label->rtl_id);
1628 		}
1629 
1630 	/*
1631 	 * to avoid fragmentation, we do a linear search from the beginning
1632 	 * and take the first free slot we find. if there is none or the list
1633 	 * is empty, append a new entry at the end.
1634 	 */
1635 
1636 	if (!TAILQ_EMPTY(&rt_labels))
1637 		for (p = TAILQ_FIRST(&rt_labels); p != NULL &&
1638 		    p->rtl_id == new_id; p = TAILQ_NEXT(p, rtl_entry))
1639 			new_id = p->rtl_id + 1;
1640 
1641 	if (new_id > LABELID_MAX)
1642 		return (0);
1643 
1644 	label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO);
1645 	if (label == NULL)
1646 		return (0);
1647 	strlcpy(label->rtl_name, name, sizeof(label->rtl_name));
1648 	label->rtl_id = new_id;
1649 	label->rtl_ref++;
1650 
1651 	if (p != NULL)	/* insert new entry before p */
1652 		TAILQ_INSERT_BEFORE(p, label, rtl_entry);
1653 	else		/* either list empty or no free slot in between */
1654 		TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry);
1655 
1656 	return (label->rtl_id);
1657 }
1658 
1659 const char *
1660 rtlabel_id2name(u_int16_t id)
1661 {
1662 	struct rt_label	*label;
1663 
1664 	TAILQ_FOREACH(label, &rt_labels, rtl_entry)
1665 		if (label->rtl_id == id)
1666 			return (label->rtl_name);
1667 
1668 	return (NULL);
1669 }
1670 
1671 struct sockaddr *
1672 rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl)
1673 {
1674 	const char	*label;
1675 
1676 	if (labelid == 0 || (label = rtlabel_id2name(labelid)) == NULL)
1677 		return (NULL);
1678 
1679 	bzero(sa_rl, sizeof(*sa_rl));
1680 	sa_rl->sr_len = sizeof(*sa_rl);
1681 	sa_rl->sr_family = AF_UNSPEC;
1682 	strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label));
1683 
1684 	return ((struct sockaddr *)sa_rl);
1685 }
1686 
1687 void
1688 rtlabel_unref(u_int16_t id)
1689 {
1690 	struct rt_label	*p, *next;
1691 
1692 	if (id == 0)
1693 		return;
1694 
1695 	for (p = TAILQ_FIRST(&rt_labels); p != NULL; p = next) {
1696 		next = TAILQ_NEXT(p, rtl_entry);
1697 		if (id == p->rtl_id) {
1698 			if (--p->rtl_ref == 0) {
1699 				TAILQ_REMOVE(&rt_labels, p, rtl_entry);
1700 				free(p, M_RTABLE, sizeof(*p));
1701 			}
1702 			break;
1703 		}
1704 	}
1705 }
1706 
1707 #ifndef SMALL_KERNEL
1708 void
1709 rt_if_track(struct ifnet *ifp)
1710 {
1711 	int i;
1712 	u_int tid;
1713 
1714 	for (tid = 0; tid < rtmap_limit; tid++) {
1715 		/* skip rtables that are not in the rdomain of the ifp */
1716 		if (rtable_l2(tid) != ifp->if_rdomain)
1717 			continue;
1718 		for (i = 1; i <= AF_MAX; i++) {
1719 			if (!rtable_mpath_capable(tid, i))
1720 				continue;
1721 
1722 			rtable_walk(tid, i, rt_if_linkstate_change, ifp);
1723 		}
1724 	}
1725 }
1726 
1727 int
1728 rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id)
1729 {
1730 	struct ifnet *ifp = arg;
1731 	struct sockaddr_in6 sa_mask;
1732 
1733 	if (rt->rt_ifidx != ifp->if_index)
1734 	    	return (0);
1735 
1736 	/* Local routes are always usable. */
1737 	if (rt->rt_flags & RTF_LOCAL) {
1738 		rt->rt_flags |= RTF_UP;
1739 		return (0);
1740 	}
1741 
1742 	if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) {
1743 		if (!(rt->rt_flags & RTF_UP)) {
1744 			/* bring route up */
1745 			rt->rt_flags |= RTF_UP;
1746 			rtable_mpath_reprio(id, rt_key(rt),
1747 			    rt_plen2mask(rt, &sa_mask),
1748 			    rt->rt_priority & RTP_MASK, rt);
1749 		}
1750 	} else {
1751 		if (rt->rt_flags & RTF_UP) {
1752 			/*
1753 			 * Remove redirected and cloned routes (mainly ARP)
1754 			 * from down interfaces so we have a chance to get
1755 			 * new routes from a better source.
1756 			 */
1757 			if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) &&
1758 			    !ISSET(rt->rt_flags, RTF_CACHED)) {
1759 				int error;
1760 
1761 				if ((error = rtdeletemsg(rt, ifp, id)))
1762 					return (error);
1763 				return (EAGAIN);
1764 			}
1765 			/* take route down */
1766 			rt->rt_flags &= ~RTF_UP;
1767 			rtable_mpath_reprio(id, rt_key(rt),
1768 			    rt_plen2mask(rt, &sa_mask),
1769 			    rt->rt_priority | RTP_DOWN, rt);
1770 		}
1771 	}
1772 	if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask));
1773 
1774 	return (0);
1775 }
1776 #endif
1777 
1778 struct sockaddr *
1779 rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask)
1780 {
1781 	struct sockaddr_in	*sin = (struct sockaddr_in *)sa_mask;
1782 #ifdef INET6
1783 	struct sockaddr_in6	*sin6 = (struct sockaddr_in6 *)sa_mask;
1784 #endif
1785 
1786 	KASSERT(plen >= 0 || plen == -1);
1787 
1788 	if (plen == -1)
1789 		return (NULL);
1790 
1791 	memset(sa_mask, 0, sizeof(*sa_mask));
1792 
1793 	switch (af) {
1794 	case AF_INET:
1795 		sin->sin_family = AF_INET;
1796 		sin->sin_len = sizeof(struct sockaddr_in);
1797 		in_prefixlen2mask(&sin->sin_addr, plen);
1798 		break;
1799 #ifdef INET6
1800 	case AF_INET6:
1801 		sin6->sin6_family = AF_INET6;
1802 		sin6->sin6_len = sizeof(struct sockaddr_in6);
1803 		in6_prefixlen2mask(&sin6->sin6_addr, plen);
1804 		break;
1805 #endif /* INET6 */
1806 	default:
1807 		return (NULL);
1808 	}
1809 
1810 	return ((struct sockaddr *)sa_mask);
1811 }
1812 
1813 struct sockaddr *
1814 rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask)
1815 {
1816 #ifndef ART
1817 	return (rt_mask(rt));
1818 #else
1819 	return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask));
1820 #endif /* ART */
1821 }
1822 
1823 #ifdef DDB
1824 #include <machine/db_machdep.h>
1825 #include <ddb/db_output.h>
1826 
1827 void
1828 db_print_sa(struct sockaddr *sa)
1829 {
1830 	int len;
1831 	u_char *p;
1832 
1833 	if (sa == NULL) {
1834 		db_printf("[NULL]");
1835 		return;
1836 	}
1837 
1838 	p = (u_char *)sa;
1839 	len = sa->sa_len;
1840 	db_printf("[");
1841 	while (len > 0) {
1842 		db_printf("%d", *p);
1843 		p++;
1844 		len--;
1845 		if (len)
1846 			db_printf(",");
1847 	}
1848 	db_printf("]\n");
1849 }
1850 
1851 void
1852 db_print_ifa(struct ifaddr *ifa)
1853 {
1854 	if (ifa == NULL)
1855 		return;
1856 	db_printf("  ifa_addr=");
1857 	db_print_sa(ifa->ifa_addr);
1858 	db_printf("  ifa_dsta=");
1859 	db_print_sa(ifa->ifa_dstaddr);
1860 	db_printf("  ifa_mask=");
1861 	db_print_sa(ifa->ifa_netmask);
1862 	db_printf("  flags=0x%x, refcnt=%d, metric=%d\n",
1863 	    ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric);
1864 }
1865 
1866 /*
1867  * Function to pass to rtalble_walk().
1868  * Return non-zero error to abort walk.
1869  */
1870 int
1871 db_show_rtentry(struct rtentry *rt, void *w, unsigned int id)
1872 {
1873 	db_printf("rtentry=%p", rt);
1874 
1875 	db_printf(" flags=0x%x refcnt=%d use=%llu expire=%lld rtableid=%u\n",
1876 	    rt->rt_flags, rt->rt_refcnt, rt->rt_use, rt->rt_expire, id);
1877 
1878 	db_printf(" key="); db_print_sa(rt_key(rt));
1879 	db_printf(" plen=%d", rt_plen(rt));
1880 	db_printf(" gw="); db_print_sa(rt->rt_gateway);
1881 	db_printf(" ifidx=%u ", rt->rt_ifidx);
1882 	db_printf(" ifa=%p\n", rt->rt_ifa);
1883 	db_print_ifa(rt->rt_ifa);
1884 
1885 	db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo);
1886 	return (0);
1887 }
1888 
1889 /*
1890  * Function to print all the route trees.
1891  * Use this from ddb:  "call db_show_arptab"
1892  */
1893 int
1894 db_show_arptab(void)
1895 {
1896 	db_printf("Route tree for AF_INET\n");
1897 	rtable_walk(0, AF_INET, db_show_rtentry, NULL);
1898 	return (0);
1899 }
1900 #endif /* DDB */
1901