xref: /openbsd-src/sys/net/route.c (revision d59bb9942320b767f2a19aaa7690c8c6e30b724c)
1 /*	$OpenBSD: route.c,v 1.353 2017/03/02 03:09:50 renato Exp $	*/
2 /*	$NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1980, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)route.c	8.2 (Berkeley) 11/15/93
62  */
63 
64 /*
65  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
66  *
67  * NRL grants permission for redistribution and use in source and binary
68  * forms, with or without modification, of the software and documentation
69  * created at NRL provided that the following conditions are met:
70  *
71  * 1. Redistributions of source code must retain the above copyright
72  *    notice, this list of conditions and the following disclaimer.
73  * 2. Redistributions in binary form must reproduce the above copyright
74  *    notice, this list of conditions and the following disclaimer in the
75  *    documentation and/or other materials provided with the distribution.
76  * 3. All advertising materials mentioning features or use of this software
77  *    must display the following acknowledgements:
78  *	This product includes software developed by the University of
79  *	California, Berkeley and its contributors.
80  *	This product includes software developed at the Information
81  *	Technology Division, US Naval Research Laboratory.
82  * 4. Neither the name of the NRL nor the names of its contributors
83  *    may be used to endorse or promote products derived from this software
84  *    without specific prior written permission.
85  *
86  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
87  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
88  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
89  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
90  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
91  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
92  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
93  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
94  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
95  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
96  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
97  *
98  * The views and conclusions contained in the software and documentation
99  * are those of the authors and should not be interpreted as representing
100  * official policies, either expressed or implied, of the US Naval
101  * Research Laboratory (NRL).
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/mbuf.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/timeout.h>
110 #include <sys/domain.h>
111 #include <sys/protosw.h>
112 #include <sys/ioctl.h>
113 #include <sys/kernel.h>
114 #include <sys/queue.h>
115 #include <sys/pool.h>
116 #include <sys/atomic.h>
117 
118 #include <net/if.h>
119 #include <net/if_var.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 
123 #include <netinet/in.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/in_var.h>
126 
127 #ifdef INET6
128 #include <netinet/ip6.h>
129 #include <netinet6/ip6_var.h>
130 #include <netinet6/in6_var.h>
131 #endif
132 
133 #ifdef MPLS
134 #include <netmpls/mpls.h>
135 #endif
136 
137 #ifdef IPSEC
138 #include <netinet/ip_ipsp.h>
139 #include <net/if_enc.h>
140 #endif
141 
142 #ifdef BFD
143 #include <net/bfd.h>
144 #endif
145 
146 #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
147 
148 /* Give some jitter to hash, to avoid synchronization between routers. */
149 static uint32_t		rt_hashjitter;
150 
151 extern unsigned int	rtmap_limit;
152 
153 struct cpumem *		rtcounters;
154 int			rttrash;	/* routes not in table but not freed */
155 int			ifatrash;	/* ifas not in ifp list but not free */
156 
157 struct pool		rtentry_pool;	/* pool for rtentry structures */
158 struct pool		rttimer_pool;	/* pool for rttimer structures */
159 
160 void	rt_timer_init(void);
161 int	rt_setgwroute(struct rtentry *, u_int);
162 void	rt_putgwroute(struct rtentry *);
163 int	rtflushclone1(struct rtentry *, void *, u_int);
164 void	rtflushclone(unsigned int, struct rtentry *);
165 int	rt_ifa_purge_walker(struct rtentry *, void *, unsigned int);
166 struct rtentry *rt_match(struct sockaddr *, uint32_t *, int, unsigned int);
167 struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *);
168 
169 struct	ifaddr *ifa_ifwithroute(int, struct sockaddr *, struct sockaddr *,
170 		    u_int);
171 int	rtrequest_delete(struct rt_addrinfo *, u_int8_t, struct ifnet *,
172 	    struct rtentry **, u_int);
173 
174 #ifdef DDB
175 void	db_print_sa(struct sockaddr *);
176 void	db_print_ifa(struct ifaddr *);
177 int	db_show_rtentry(struct rtentry *, void *, unsigned int);
178 #endif
179 
180 #define	LABELID_MAX	50000
181 
182 struct rt_label {
183 	TAILQ_ENTRY(rt_label)	rtl_entry;
184 	char			rtl_name[RTLABEL_LEN];
185 	u_int16_t		rtl_id;
186 	int			rtl_ref;
187 };
188 
189 TAILQ_HEAD(rt_labels, rt_label)	rt_labels = TAILQ_HEAD_INITIALIZER(rt_labels);
190 
191 void
192 route_init(void)
193 {
194 	rtcounters = counters_alloc(rts_ncounters);
195 
196 	pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_SOFTNET, 0,
197 	    "rtentry", NULL);
198 
199 	while (rt_hashjitter == 0)
200 		rt_hashjitter = arc4random();
201 
202 #ifdef BFD
203 	bfdinit();
204 #endif
205 }
206 
207 /*
208  * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise.
209  */
210 int
211 rtisvalid(struct rtentry *rt)
212 {
213 	if (rt == NULL)
214 		return (0);
215 
216 	if (!ISSET(rt->rt_flags, RTF_UP))
217 		return (0);
218 
219 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
220 		KASSERT(rt->rt_gwroute != NULL);
221 		KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY));
222 		if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP))
223 			return (0);
224 	}
225 
226 	return (1);
227 }
228 
229 /*
230  * Do the actual lookup for rtalloc(9), do not use directly!
231  *
232  * Return the best matching entry for the destination ``dst''.
233  *
234  * "RT_RESOLVE" means that a corresponding L2 entry should
235  *   be added to the routing table and resolved (via ARP or
236  *   NDP), if it does not exist.
237  */
238 struct rtentry *
239 rt_match(struct sockaddr *dst, uint32_t *src, int flags, unsigned int tableid)
240 {
241 	struct rtentry		*rt0, *rt = NULL;
242 	int			 error = 0;
243 
244 	splsoftassert(IPL_SOFTNET);
245 
246 	rt = rtable_match(tableid, dst, src);
247 	if (rt != NULL) {
248 		if ((rt->rt_flags & RTF_CLONING) && ISSET(flags, RT_RESOLVE)) {
249 			struct rt_addrinfo	 info;
250 
251 			rt0 = rt;
252 
253 			memset(&info, 0, sizeof(info));
254 			info.rti_info[RTAX_DST] = dst;
255 
256 			KERNEL_LOCK();
257 			/*
258 			 * The priority of cloned route should be different
259 			 * to avoid conflict with /32 cloning routes.
260 			 *
261 			 * It should also be higher to let the ARP layer find
262 			 * cloned routes instead of the cloning one.
263 			 */
264 			error = rtrequest(RTM_RESOLVE, &info,
265 			    rt->rt_priority - 1, &rt, tableid);
266 			if (error) {
267 				rt_missmsg(RTM_MISS, &info, 0, RTP_NONE, 0,
268 				    error, tableid);
269 			} else {
270 				/* Inform listeners of the new route */
271 				rt_sendmsg(rt, RTM_ADD, tableid);
272 				rtfree(rt0);
273 			}
274 			KERNEL_UNLOCK();
275 		}
276 		rt->rt_use++;
277 	} else
278 		rtstat_inc(rts_unreach);
279 	return (rt);
280 }
281 
282 #ifndef SMALL_KERNEL
283 /*
284  * Originated from bridge_hash() in if_bridge.c
285  */
286 #define mix(a, b, c) do {						\
287 	a -= b; a -= c; a ^= (c >> 13);					\
288 	b -= c; b -= a; b ^= (a << 8);					\
289 	c -= a; c -= b; c ^= (b >> 13);					\
290 	a -= b; a -= c; a ^= (c >> 12);					\
291 	b -= c; b -= a; b ^= (a << 16);					\
292 	c -= a; c -= b; c ^= (b >> 5);					\
293 	a -= b; a -= c; a ^= (c >> 3);					\
294 	b -= c; b -= a; b ^= (a << 10);					\
295 	c -= a; c -= b; c ^= (b >> 15);					\
296 } while (0)
297 
298 int
299 rt_hash(struct rtentry *rt, struct sockaddr *dst, uint32_t *src)
300 {
301 	uint32_t a, b, c;
302 
303 	if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH))
304 		return (-1);
305 
306 	a = b = 0x9e3779b9;
307 	c = rt_hashjitter;
308 
309 	switch (dst->sa_family) {
310 	case AF_INET:
311 	    {
312 		struct sockaddr_in *sin;
313 
314 		if (!ipmultipath)
315 			return (-1);
316 
317 		sin = satosin(dst);
318 		a += sin->sin_addr.s_addr;
319 		b += (src != NULL) ? src[0] : 0;
320 		mix(a, b, c);
321 		break;
322 	    }
323 #ifdef INET6
324 	case AF_INET6:
325 	    {
326 		struct sockaddr_in6 *sin6;
327 
328 		if (!ip6_multipath)
329 			return (-1);
330 
331 		sin6 = satosin6(dst);
332 		a += sin6->sin6_addr.s6_addr32[0];
333 		b += sin6->sin6_addr.s6_addr32[2];
334 		c += (src != NULL) ? src[0] : 0;
335 		mix(a, b, c);
336 		a += sin6->sin6_addr.s6_addr32[1];
337 		b += sin6->sin6_addr.s6_addr32[3];
338 		c += (src != NULL) ? src[1] : 0;
339 		mix(a, b, c);
340 		a += sin6->sin6_addr.s6_addr32[2];
341 		b += sin6->sin6_addr.s6_addr32[1];
342 		c += (src != NULL) ? src[2] : 0;
343 		mix(a, b, c);
344 		a += sin6->sin6_addr.s6_addr32[3];
345 		b += sin6->sin6_addr.s6_addr32[0];
346 		c += (src != NULL) ? src[3] : 0;
347 		mix(a, b, c);
348 		break;
349 	    }
350 #endif /* INET6 */
351 	}
352 
353 	return (c & 0xffff);
354 }
355 
356 /*
357  * Allocate a route, potentially using multipath to select the peer.
358  */
359 struct rtentry *
360 rtalloc_mpath(struct sockaddr *dst, uint32_t *src, unsigned int rtableid)
361 {
362 	return (rt_match(dst, src, RT_RESOLVE, rtableid));
363 }
364 #endif /* SMALL_KERNEL */
365 
366 /*
367  * Look in the routing table for the best matching entry for
368  * ``dst''.
369  *
370  * If a route with a gateway is found and its next hop is no
371  * longer valid, try to cache it.
372  */
373 struct rtentry *
374 rtalloc(struct sockaddr *dst, int flags, unsigned int rtableid)
375 {
376 	return (rt_match(dst, NULL, flags, rtableid));
377 }
378 
379 /*
380  * Cache the route entry corresponding to a reachable next hop in
381  * the gateway entry ``rt''.
382  */
383 int
384 rt_setgwroute(struct rtentry *rt, u_int rtableid)
385 {
386 	struct rtentry *nhrt;
387 
388 	KERNEL_ASSERT_LOCKED();
389 
390 	KASSERT(ISSET(rt->rt_flags, RTF_GATEWAY));
391 
392 	/* If we cannot find a valid next hop bail. */
393 	nhrt = rt_match(rt->rt_gateway, NULL, RT_RESOLVE, rtable_l2(rtableid));
394 	if (nhrt == NULL)
395 		return (ENOENT);
396 
397 	/* Next hop entry must be on the same interface. */
398 	if (nhrt->rt_ifidx != rt->rt_ifidx) {
399 		rtfree(nhrt);
400 		return (EHOSTUNREACH);
401 	}
402 
403 	/*
404 	 * Next hop must be reachable, this also prevents rtentry
405 	 * loops for example when rt->rt_gwroute points to rt.
406 	 */
407 	if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) {
408 		rtfree(nhrt);
409 		return (ENETUNREACH);
410 	}
411 
412 	/* Next hop is valid so remove possible old cache. */
413 	rt_putgwroute(rt);
414 	KASSERT(rt->rt_gwroute == NULL);
415 
416 	/*
417 	 * If the MTU of next hop is 0, this will reset the MTU of the
418 	 * route to run PMTUD again from scratch.
419 	 */
420 	if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu))
421 		rt->rt_mtu = nhrt->rt_mtu;
422 
423 	/*
424 	 * To avoid reference counting problems when writting link-layer
425 	 * addresses in an outgoing packet, we ensure that the lifetime
426 	 * of a cached entry is greater that the bigger lifetime of the
427 	 * gateway entries it is pointed by.
428 	 */
429 	nhrt->rt_flags |= RTF_CACHED;
430 	nhrt->rt_cachecnt++;
431 
432 	rt->rt_gwroute = nhrt;
433 
434 	return (0);
435 }
436 
437 /*
438  * Invalidate the cached route entry of the gateway entry ``rt''.
439  */
440 void
441 rt_putgwroute(struct rtentry *rt)
442 {
443 	struct rtentry *nhrt = rt->rt_gwroute;
444 
445 	KERNEL_ASSERT_LOCKED();
446 
447 	if (!ISSET(rt->rt_flags, RTF_GATEWAY) || nhrt == NULL)
448 		return;
449 
450 	KASSERT(ISSET(nhrt->rt_flags, RTF_CACHED));
451 	KASSERT(nhrt->rt_cachecnt > 0);
452 
453 	--nhrt->rt_cachecnt;
454 	if (nhrt->rt_cachecnt == 0)
455 		nhrt->rt_flags &= ~RTF_CACHED;
456 
457 	rtfree(rt->rt_gwroute);
458 	rt->rt_gwroute = NULL;
459 }
460 
461 void
462 rtref(struct rtentry *rt)
463 {
464 	atomic_inc_int(&rt->rt_refcnt);
465 }
466 
467 void
468 rtfree(struct rtentry *rt)
469 {
470 	int		 refcnt;
471 
472 	if (rt == NULL)
473 		return;
474 
475 	refcnt = (int)atomic_dec_int_nv(&rt->rt_refcnt);
476 	if (refcnt <= 0) {
477 		KASSERT(!ISSET(rt->rt_flags, RTF_UP));
478 		KASSERT(!RT_ROOT(rt));
479 		atomic_dec_int(&rttrash);
480 		if (refcnt < 0) {
481 			printf("rtfree: %p not freed (neg refs)\n", rt);
482 			return;
483 		}
484 
485 		KERNEL_LOCK();
486 		rt_timer_remove_all(rt);
487 		ifafree(rt->rt_ifa);
488 		rtlabel_unref(rt->rt_labelid);
489 #ifdef MPLS
490 		if (rt->rt_flags & RTF_MPLS)
491 			free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls));
492 #endif
493 		free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len));
494 		free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len);
495 		KERNEL_UNLOCK();
496 
497 		pool_put(&rtentry_pool, rt);
498 	}
499 }
500 
501 void
502 rt_sendmsg(struct rtentry *rt, int cmd, u_int rtableid)
503 {
504 	struct rt_addrinfo	 info;
505 	struct ifnet		*ifp;
506 	struct sockaddr_rtlabel	 sa_rl;
507 	struct sockaddr_in6	 sa_mask;
508 
509 	memset(&info, 0, sizeof(info));
510 	info.rti_info[RTAX_DST] = rt_key(rt);
511 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
512 	if (!ISSET(rt->rt_flags, RTF_HOST))
513 		info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask);
514 	info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl);
515 	ifp = if_get(rt->rt_ifidx);
516 	if (ifp != NULL) {
517 		info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl);
518 		info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
519 	}
520 
521 	rt_missmsg(cmd, &info, rt->rt_flags, rt->rt_priority, rt->rt_ifidx, 0,
522 	    rtableid);
523 	if_put(ifp);
524 }
525 
526 void
527 ifafree(struct ifaddr *ifa)
528 {
529 	if (ifa == NULL)
530 		panic("ifafree");
531 	if (ifa->ifa_refcnt == 0) {
532 		ifatrash--;
533 		free(ifa, M_IFADDR, 0);
534 	} else
535 		ifa->ifa_refcnt--;
536 }
537 
538 /*
539  * Force a routing table entry to the specified
540  * destination to go through the given gateway.
541  * Normally called as a result of a routing redirect
542  * message from the network layer.
543  */
544 void
545 rtredirect(struct sockaddr *dst, struct sockaddr *gateway,
546     struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain)
547 {
548 	struct rtentry		*rt;
549 	int			 error = 0;
550 	enum rtstat_counters	 stat = rts_ncounters;
551 	struct rt_addrinfo	 info;
552 	struct ifaddr		*ifa;
553 	unsigned int		 ifidx = 0;
554 	int			 flags = RTF_GATEWAY|RTF_HOST;
555 	uint8_t			 prio = RTP_NONE;
556 
557 	NET_ASSERT_LOCKED();
558 
559 	/* verify the gateway is directly reachable */
560 	rt = rtalloc(gateway, 0, rdomain);
561 	if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY)) {
562 		rtfree(rt);
563 		error = ENETUNREACH;
564 		goto out;
565 	}
566 	ifidx = rt->rt_ifidx;
567 	ifa = rt->rt_ifa;
568 	rtfree(rt);
569 	rt = NULL;
570 
571 	rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY);
572 	/*
573 	 * If the redirect isn't from our current router for this dst,
574 	 * it's either old or wrong.  If it redirects us to ourselves,
575 	 * we have a routing loop, perhaps as a result of an interface
576 	 * going down recently.
577 	 */
578 #define	equal(a1, a2) \
579 	((a1)->sa_len == (a2)->sa_len && \
580 	 bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
581 	if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa))
582 		error = EINVAL;
583 	else if (ifa_ifwithaddr(gateway, rdomain) != NULL ||
584 	    (gateway->sa_family = AF_INET &&
585 	    in_broadcast(satosin(gateway)->sin_addr, rdomain)))
586 		error = EHOSTUNREACH;
587 	if (error)
588 		goto done;
589 	/*
590 	 * Create a new entry if we just got back a wildcard entry
591 	 * or the lookup failed.  This is necessary for hosts
592 	 * which use routing redirects generated by smart gateways
593 	 * to dynamically build the routing tables.
594 	 */
595 	if (rt == NULL)
596 		goto create;
597 	/*
598 	 * Don't listen to the redirect if it's
599 	 * for a route to an interface.
600 	 */
601 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
602 		if (!ISSET(rt->rt_flags, RTF_HOST)) {
603 			/*
604 			 * Changing from route to net => route to host.
605 			 * Create new route, rather than smashing route to net.
606 			 */
607 create:
608 			rtfree(rt);
609 			flags |= RTF_DYNAMIC;
610 			bzero(&info, sizeof(info));
611 			info.rti_info[RTAX_DST] = dst;
612 			info.rti_info[RTAX_GATEWAY] = gateway;
613 			info.rti_ifa = ifa;
614 			info.rti_flags = flags;
615 			rt = NULL;
616 			error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt,
617 			    rdomain);
618 			if (error == 0) {
619 				flags = rt->rt_flags;
620 				prio = rt->rt_priority;
621 			}
622 			stat = rts_dynamic;
623 		} else {
624 			/*
625 			 * Smash the current notion of the gateway to
626 			 * this destination.  Should check about netmask!!!
627 			 */
628 			rt->rt_flags |= RTF_MODIFIED;
629 			flags |= RTF_MODIFIED;
630 			prio = rt->rt_priority;
631 			stat = rts_newgateway;
632 			rt_setgate(rt, gateway, rdomain);
633 		}
634 	} else
635 		error = EHOSTUNREACH;
636 done:
637 	if (rt) {
638 		if (rtp && !error)
639 			*rtp = rt;
640 		else
641 			rtfree(rt);
642 	}
643 out:
644 	if (error)
645 		rtstat_inc(rts_badredirect);
646 	else if (stat != rts_ncounters)
647 		rtstat_inc(stat);
648 	bzero((caddr_t)&info, sizeof(info));
649 	info.rti_info[RTAX_DST] = dst;
650 	info.rti_info[RTAX_GATEWAY] = gateway;
651 	info.rti_info[RTAX_AUTHOR] = src;
652 	rt_missmsg(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain);
653 }
654 
655 /*
656  * Delete a route and generate a message
657  */
658 int
659 rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid)
660 {
661 	int			error;
662 	struct rt_addrinfo	info;
663 	unsigned int		ifidx;
664 	struct sockaddr_in6	sa_mask;
665 
666 	KASSERT(rt->rt_ifidx == ifp->if_index);
667 
668 	/*
669 	 * Request the new route so that the entry is not actually
670 	 * deleted.  That will allow the information being reported to
671 	 * be accurate (and consistent with route_output()).
672 	 */
673 	bzero((caddr_t)&info, sizeof(info));
674 	info.rti_info[RTAX_DST] = rt_key(rt);
675 	if (!ISSET(rt->rt_flags, RTF_HOST))
676 		info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask);
677 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
678 	info.rti_flags = rt->rt_flags;
679 	ifidx = rt->rt_ifidx;
680 	error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid);
681 	rt_missmsg(RTM_DELETE, &info, info.rti_flags, rt->rt_priority, ifidx,
682 	    error, tableid);
683 	if (error == 0)
684 		rtfree(rt);
685 	return (error);
686 }
687 
688 static inline int
689 rtequal(struct rtentry *a, struct rtentry *b)
690 {
691 	if (a == b)
692 		return 1;
693 
694 	if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 &&
695 	    rt_plen(a) == rt_plen(b))
696 		return 1;
697 	else
698 		return 0;
699 }
700 
701 int
702 rtflushclone1(struct rtentry *rt, void *arg, u_int id)
703 {
704 	struct rtentry *parent = arg;
705 	struct ifnet *ifp;
706 	int error;
707 
708 	ifp = if_get(rt->rt_ifidx);
709 
710 	/*
711 	 * This happens when an interface with a RTF_CLONING route is
712 	 * being detached.  In this case it's safe to bail because all
713 	 * the routes are being purged by rt_ifa_purge().
714 	 */
715 	if (ifp == NULL)
716 	        return 0;
717 
718 	if (ISSET(rt->rt_flags, RTF_CLONED) && rtequal(rt->rt_parent, parent)) {
719 	        error = rtdeletemsg(rt, ifp, id);
720 	        if (error == 0)
721 			error = EAGAIN;
722 	} else
723 		error = 0;
724 
725 	if_put(ifp);
726 	return error;
727 }
728 
729 void
730 rtflushclone(unsigned int rtableid, struct rtentry *parent)
731 {
732 
733 #ifdef DIAGNOSTIC
734 	if (!parent || (parent->rt_flags & RTF_CLONING) == 0)
735 		panic("rtflushclone: called with a non-cloning route");
736 #endif
737 	rtable_walk(rtableid, rt_key(parent)->sa_family, rtflushclone1, parent);
738 }
739 
740 struct ifaddr *
741 ifa_ifwithroute(int flags, struct sockaddr *dst, struct sockaddr *gateway,
742     u_int rtableid)
743 {
744 	struct ifaddr	*ifa;
745 
746 	if ((flags & RTF_GATEWAY) == 0) {
747 		/*
748 		 * If we are adding a route to an interface,
749 		 * and the interface is a pt to pt link
750 		 * we should search for the destination
751 		 * as our clue to the interface.  Otherwise
752 		 * we can use the local address.
753 		 */
754 		ifa = NULL;
755 		if (flags & RTF_HOST)
756 			ifa = ifa_ifwithdstaddr(dst, rtableid);
757 		if (ifa == NULL)
758 			ifa = ifa_ifwithaddr(gateway, rtableid);
759 	} else {
760 		/*
761 		 * If we are adding a route to a remote net
762 		 * or host, the gateway may still be on the
763 		 * other end of a pt to pt link.
764 		 */
765 		ifa = ifa_ifwithdstaddr(gateway, rtableid);
766 	}
767 	if (ifa == NULL) {
768 		if (gateway->sa_family == AF_LINK) {
769 			struct sockaddr_dl *sdl = satosdl(gateway);
770 			struct ifnet *ifp = if_get(sdl->sdl_index);
771 
772 			if (ifp != NULL)
773 				ifa = ifaof_ifpforaddr(dst, ifp);
774 			if_put(ifp);
775 		} else {
776 			struct rtentry *rt;
777 
778 			rt = rtalloc(gateway, RT_RESOLVE, rtableid);
779 			if (rt != NULL)
780 				ifa = rt->rt_ifa;
781 			rtfree(rt);
782 		}
783 	}
784 	if (ifa == NULL)
785 		return (NULL);
786 	if (ifa->ifa_addr->sa_family != dst->sa_family) {
787 		struct ifaddr	*oifa = ifa;
788 		ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
789 		if (ifa == NULL)
790 			ifa = oifa;
791 	}
792 	return (ifa);
793 }
794 
795 int
796 rt_getifa(struct rt_addrinfo *info, u_int rtid)
797 {
798 	struct ifnet	*ifp = NULL;
799 
800 	/*
801 	 * ifp may be specified by sockaddr_dl when protocol address
802 	 * is ambiguous
803 	 */
804 	if (info->rti_info[RTAX_IFP] != NULL) {
805 		struct sockaddr_dl *sdl;
806 
807 		sdl = satosdl(info->rti_info[RTAX_IFP]);
808 		ifp = if_get(sdl->sdl_index);
809 	}
810 
811 #ifdef IPSEC
812 	/*
813 	 * If the destination is a PF_KEY address, we'll look
814 	 * for the existence of a encap interface number or address
815 	 * in the options list of the gateway. By default, we'll return
816 	 * enc0.
817 	 */
818 	if (info->rti_info[RTAX_DST] &&
819 	    info->rti_info[RTAX_DST]->sa_family == PF_KEY)
820 		info->rti_ifa = enc_getifa(rtid, 0);
821 #endif
822 
823 	if (info->rti_ifa == NULL && info->rti_info[RTAX_IFA] != NULL)
824 		info->rti_ifa = ifa_ifwithaddr(info->rti_info[RTAX_IFA], rtid);
825 
826 	if (info->rti_ifa == NULL) {
827 		struct sockaddr	*sa;
828 
829 		if ((sa = info->rti_info[RTAX_IFA]) == NULL)
830 			if ((sa = info->rti_info[RTAX_GATEWAY]) == NULL)
831 				sa = info->rti_info[RTAX_DST];
832 
833 		if (sa != NULL && ifp != NULL)
834 			info->rti_ifa = ifaof_ifpforaddr(sa, ifp);
835 		else if (info->rti_info[RTAX_DST] != NULL &&
836 		    info->rti_info[RTAX_GATEWAY] != NULL)
837 			info->rti_ifa = ifa_ifwithroute(info->rti_flags,
838 			    info->rti_info[RTAX_DST],
839 			    info->rti_info[RTAX_GATEWAY],
840 			    rtid);
841 		else if (sa != NULL)
842 			info->rti_ifa = ifa_ifwithroute(info->rti_flags,
843 			    sa, sa, rtid);
844 	}
845 
846 	if_put(ifp);
847 
848 	if (info->rti_ifa == NULL)
849 		return (ENETUNREACH);
850 
851 	return (0);
852 }
853 
854 int
855 rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp,
856     struct rtentry **ret_nrt, u_int tableid)
857 {
858 	struct rtentry	*rt;
859 	int		 error;
860 
861 	splsoftassert(IPL_SOFTNET);
862 
863 	if (!rtable_exists(tableid))
864 		return (EAFNOSUPPORT);
865 	rt = rtable_lookup(tableid, info->rti_info[RTAX_DST],
866 	    info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio);
867 	if (rt == NULL)
868 		return (ESRCH);
869 
870 	/* Make sure that's the route the caller want to delete. */
871 	if (ifp != NULL && ifp->if_index != rt->rt_ifidx) {
872 		rtfree(rt);
873 		return (ESRCH);
874 	}
875 
876 #ifndef SMALL_KERNEL
877 	/*
878 	 * If we got multipath routes, we require users to specify
879 	 * a matching gateway.
880 	 */
881 	if ((rt->rt_flags & RTF_MPATH) &&
882 	    info->rti_info[RTAX_GATEWAY] == NULL) {
883 		rtfree(rt);
884 		return (ESRCH);
885 	}
886 #endif
887 
888 #ifdef BFD
889 	if (ISSET(rt->rt_flags, RTF_BFD))
890 		bfdclear(rt);
891 #endif
892 
893 	error = rtable_delete(tableid, info->rti_info[RTAX_DST],
894 	    info->rti_info[RTAX_NETMASK], rt);
895 	if (error != 0) {
896 		rtfree(rt);
897 		return (ESRCH);
898 	}
899 
900 	/* Release next hop cache before flushing cloned entries. */
901 	rt_putgwroute(rt);
902 
903 	/* Clean up any cloned children. */
904 	if (ISSET(rt->rt_flags, RTF_CLONING))
905 		rtflushclone(tableid, rt);
906 
907 	rtfree(rt->rt_parent);
908 	rt->rt_parent = NULL;
909 
910 	rt->rt_flags &= ~RTF_UP;
911 
912 	if (ifp == NULL) {
913 		ifp = if_get(rt->rt_ifidx);
914 		if (ifp != NULL) {
915 			ifp->if_rtrequest(ifp, RTM_DELETE, rt);
916 			if_put(ifp);
917 		}
918 	} else {
919 		KASSERT(ifp->if_index == rt->rt_ifidx);
920 		ifp->if_rtrequest(ifp, RTM_DELETE, rt);
921 	}
922 
923 	atomic_inc_int(&rttrash);
924 
925 	if (ret_nrt != NULL)
926 		*ret_nrt = rt;
927 	else
928 		rtfree(rt);
929 
930 	return (0);
931 }
932 
933 int
934 rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio,
935     struct rtentry **ret_nrt, u_int tableid)
936 {
937 	struct ifnet		*ifp;
938 	struct rtentry		*rt, *crt;
939 	struct ifaddr		*ifa;
940 	struct sockaddr		*ndst;
941 	struct sockaddr_rtlabel	*sa_rl, sa_rl2;
942 	struct sockaddr_dl	 sa_dl = { sizeof(sa_dl), AF_LINK };
943 	int			 dlen, error;
944 #ifdef MPLS
945 	struct sockaddr_mpls	*sa_mpls;
946 #endif
947 
948 	splsoftassert(IPL_SOFTNET);
949 
950 	if (!rtable_exists(tableid))
951 		return (EAFNOSUPPORT);
952 	if (info->rti_flags & RTF_HOST)
953 		info->rti_info[RTAX_NETMASK] = NULL;
954 	switch (req) {
955 	case RTM_DELETE:
956 		error = rtrequest_delete(info, prio, NULL, ret_nrt, tableid);
957 		if (error)
958 			return (error);
959 		break;
960 
961 	case RTM_RESOLVE:
962 		if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
963 			return (EINVAL);
964 		if ((rt->rt_flags & RTF_CLONING) == 0)
965 			return (EINVAL);
966 		KASSERT(rt->rt_ifa->ifa_ifp != NULL);
967 		info->rti_ifa = rt->rt_ifa;
968 		info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST);
969 		info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC);
970 		info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl);
971 		info->rti_info[RTAX_LABEL] =
972 		    rtlabel_id2sa(rt->rt_labelid, &sa_rl2);
973 		/* FALLTHROUGH */
974 
975 	case RTM_ADD:
976 		if (info->rti_ifa == NULL && (error = rt_getifa(info, tableid)))
977 			return (error);
978 		ifa = info->rti_ifa;
979 		ifp = ifa->ifa_ifp;
980 		if (prio == 0)
981 			prio = ifp->if_priority + RTP_STATIC;
982 
983 		dlen = info->rti_info[RTAX_DST]->sa_len;
984 		ndst = malloc(dlen, M_RTABLE, M_NOWAIT);
985 		if (ndst == NULL)
986 			return (ENOBUFS);
987 
988 		if (info->rti_info[RTAX_NETMASK] != NULL)
989 			rt_maskedcopy(info->rti_info[RTAX_DST], ndst,
990 			    info->rti_info[RTAX_NETMASK]);
991 		else
992 			memcpy(ndst, info->rti_info[RTAX_DST], dlen);
993 
994 		rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO);
995 		if (rt == NULL) {
996 			free(ndst, M_RTABLE, dlen);
997 			return (ENOBUFS);
998 		}
999 
1000 		rt->rt_refcnt = 1;
1001 		rt->rt_flags = info->rti_flags | RTF_UP;
1002 		rt->rt_priority = prio;	/* init routing priority */
1003 		LIST_INIT(&rt->rt_timer);
1004 
1005 #ifndef SMALL_KERNEL
1006 		/* Check the link state if the table supports it. */
1007 		if (rtable_mpath_capable(tableid, ndst->sa_family) &&
1008 		    !ISSET(rt->rt_flags, RTF_LOCAL) &&
1009 		    (!LINK_STATE_IS_UP(ifp->if_link_state) ||
1010 		    !ISSET(ifp->if_flags, IFF_UP))) {
1011 			rt->rt_flags &= ~RTF_UP;
1012 			rt->rt_priority |= RTP_DOWN;
1013 		}
1014 #endif
1015 
1016 		if (info->rti_info[RTAX_LABEL] != NULL) {
1017 			sa_rl = (struct sockaddr_rtlabel *)
1018 			    info->rti_info[RTAX_LABEL];
1019 			rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label);
1020 		}
1021 
1022 #ifdef MPLS
1023 		/* We have to allocate additional space for MPLS infos */
1024 		if (info->rti_flags & RTF_MPLS &&
1025 		    (info->rti_info[RTAX_SRC] != NULL ||
1026 		    info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) {
1027 			struct rt_mpls *rt_mpls;
1028 
1029 			sa_mpls = (struct sockaddr_mpls *)
1030 			    info->rti_info[RTAX_SRC];
1031 
1032 			rt->rt_llinfo = malloc(sizeof(struct rt_mpls),
1033 			    M_TEMP, M_NOWAIT|M_ZERO);
1034 
1035 			if (rt->rt_llinfo == NULL) {
1036 				free(ndst, M_RTABLE, dlen);
1037 				pool_put(&rtentry_pool, rt);
1038 				return (ENOMEM);
1039 			}
1040 
1041 			rt_mpls = (struct rt_mpls *)rt->rt_llinfo;
1042 
1043 			if (sa_mpls != NULL)
1044 				rt_mpls->mpls_label = sa_mpls->smpls_label;
1045 
1046 			rt_mpls->mpls_operation = info->rti_mpls;
1047 
1048 			/* XXX: set experimental bits */
1049 
1050 			rt->rt_flags |= RTF_MPLS;
1051 		} else
1052 			rt->rt_flags &= ~RTF_MPLS;
1053 #endif
1054 
1055 		ifa->ifa_refcnt++;
1056 		rt->rt_ifa = ifa;
1057 		rt->rt_ifidx = ifp->if_index;
1058 		/*
1059 		 * Copy metrics and a back pointer from the cloned
1060 		 * route's parent.
1061 		 */
1062 		if (ISSET(rt->rt_flags, RTF_CLONED)) {
1063 			rtref(*ret_nrt);
1064 			rt->rt_parent = *ret_nrt;
1065 			rt->rt_rmx = (*ret_nrt)->rt_rmx;
1066 		}
1067 
1068 		/*
1069 		 * We must set rt->rt_gateway before adding ``rt'' to
1070 		 * the routing table because the radix MPATH code use
1071 		 * it to (re)order routes.
1072 		 */
1073 		if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY],
1074 		    tableid))) {
1075 			ifafree(ifa);
1076 			rtfree(rt->rt_parent);
1077 			rt_putgwroute(rt);
1078 			free(rt->rt_gateway, M_RTABLE, 0);
1079 			free(ndst, M_RTABLE, dlen);
1080 			pool_put(&rtentry_pool, rt);
1081 			return (error);
1082 		}
1083 
1084 		error = rtable_insert(tableid, ndst,
1085 		    info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY],
1086 		    rt->rt_priority, rt);
1087 		if (error != 0 &&
1088 		    (crt = rtable_match(tableid, ndst, NULL)) != NULL) {
1089 			/* overwrite cloned route */
1090 			if (ISSET(crt->rt_flags, RTF_CLONED)) {
1091 				struct ifnet *cifp;
1092 
1093 				cifp = if_get(crt->rt_ifidx);
1094 				KASSERT(cifp != NULL);
1095 				rtdeletemsg(crt, cifp, tableid);
1096 				if_put(cifp);
1097 
1098 				error = rtable_insert(tableid, ndst,
1099 				    info->rti_info[RTAX_NETMASK],
1100 				    info->rti_info[RTAX_GATEWAY],
1101 				    rt->rt_priority, rt);
1102 			}
1103 			rtfree(crt);
1104 		}
1105 		if (error != 0) {
1106 			ifafree(ifa);
1107 			rtfree(rt->rt_parent);
1108 			rt_putgwroute(rt);
1109 			free(rt->rt_gateway, M_RTABLE, 0);
1110 			free(ndst, M_RTABLE, dlen);
1111 			pool_put(&rtentry_pool, rt);
1112 			return (EEXIST);
1113 		}
1114 		ifp->if_rtrequest(ifp, req, rt);
1115 
1116 		if_group_routechange(info->rti_info[RTAX_DST],
1117 			info->rti_info[RTAX_NETMASK]);
1118 
1119 		if (ret_nrt != NULL)
1120 			*ret_nrt = rt;
1121 		else
1122 			rtfree(rt);
1123 		break;
1124 	}
1125 
1126 	return (0);
1127 }
1128 
1129 int
1130 rt_setgate(struct rtentry *rt, struct sockaddr *gate, u_int rtableid)
1131 {
1132 	int glen = ROUNDUP(gate->sa_len);
1133 	struct sockaddr *sa;
1134 
1135 	if (rt->rt_gateway == NULL || glen > ROUNDUP(rt->rt_gateway->sa_len)) {
1136 		sa = malloc(glen, M_RTABLE, M_NOWAIT);
1137 		if (sa == NULL)
1138 			return (ENOBUFS);
1139 		free(rt->rt_gateway, M_RTABLE, 0);
1140 		rt->rt_gateway = sa;
1141 	}
1142 	memmove(rt->rt_gateway, gate, glen);
1143 
1144 	if (ISSET(rt->rt_flags, RTF_GATEWAY))
1145 		return (rt_setgwroute(rt, rtableid));
1146 
1147 	return (0);
1148 }
1149 
1150 /*
1151  * Return the route entry containing the next hop link-layer
1152  * address corresponding to ``rt''.
1153  */
1154 struct rtentry *
1155 rt_getll(struct rtentry *rt)
1156 {
1157 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
1158 		KASSERT(rt->rt_gwroute != NULL);
1159 		return (rt->rt_gwroute);
1160 	}
1161 
1162 	return (rt);
1163 }
1164 
1165 void
1166 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst,
1167     struct sockaddr *netmask)
1168 {
1169 	u_char	*cp1 = (u_char *)src;
1170 	u_char	*cp2 = (u_char *)dst;
1171 	u_char	*cp3 = (u_char *)netmask;
1172 	u_char	*cplim = cp2 + *cp3;
1173 	u_char	*cplim2 = cp2 + *cp1;
1174 
1175 	*cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
1176 	cp3 += 2;
1177 	if (cplim > cplim2)
1178 		cplim = cplim2;
1179 	while (cp2 < cplim)
1180 		*cp2++ = *cp1++ & *cp3++;
1181 	if (cp2 < cplim2)
1182 		bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2));
1183 }
1184 
1185 int
1186 rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst)
1187 {
1188 	struct ifnet		*ifp = ifa->ifa_ifp;
1189 	struct rtentry		*rt;
1190 	struct sockaddr_rtlabel	 sa_rl;
1191 	struct rt_addrinfo	 info;
1192 	unsigned int		 rtableid = ifp->if_rdomain;
1193 	uint8_t			 prio = ifp->if_priority + RTP_STATIC;
1194 	int			 error;
1195 
1196 	memset(&info, 0, sizeof(info));
1197 	info.rti_ifa = ifa;
1198 	info.rti_flags = flags | RTF_MPATH;
1199 	info.rti_info[RTAX_DST] = dst;
1200 	if (flags & RTF_LLINFO)
1201 		info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl);
1202 	else
1203 		info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1204 	info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
1205 
1206 #ifdef MPLS
1207 	if ((flags & RTF_MPLS) == RTF_MPLS)
1208 		info.rti_mpls = MPLS_OP_POP;
1209 #endif /* MPLS */
1210 
1211 	if ((flags & RTF_HOST) == 0)
1212 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1213 
1214 	if (flags & (RTF_LOCAL|RTF_BROADCAST))
1215 		prio = RTP_LOCAL;
1216 
1217 	if (flags & RTF_CONNECTED)
1218 		prio = ifp->if_priority + RTP_CONNECTED;
1219 
1220 	error = rtrequest(RTM_ADD, &info, prio, &rt, rtableid);
1221 	if (error == 0) {
1222 		/*
1223 		 * A local route is created for every address configured
1224 		 * on an interface, so use this information to notify
1225 		 * userland that a new address has been added.
1226 		 */
1227 		if (flags & RTF_LOCAL)
1228 			rt_sendaddrmsg(rt, RTM_NEWADDR, ifa);
1229 		rt_sendmsg(rt, RTM_ADD, rtableid);
1230 		rtfree(rt);
1231 	}
1232 	return (error);
1233 }
1234 
1235 int
1236 rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst)
1237 {
1238 	struct ifnet		*ifp = ifa->ifa_ifp;
1239 	struct rtentry		*rt;
1240 	struct mbuf		*m = NULL;
1241 	struct sockaddr		*deldst;
1242 	struct rt_addrinfo	 info;
1243 	struct sockaddr_rtlabel	 sa_rl;
1244 	unsigned int		 rtableid = ifp->if_rdomain;
1245 	uint8_t			 prio = ifp->if_priority + RTP_STATIC;
1246 	int			 error;
1247 
1248 #ifdef MPLS
1249 	if ((flags & RTF_MPLS) == RTF_MPLS)
1250 		/* MPLS routes only exist in rdomain 0 */
1251 		rtableid = 0;
1252 #endif /* MPLS */
1253 
1254 	if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
1255 		m = m_get(M_DONTWAIT, MT_SONAME);
1256 		if (m == NULL)
1257 			return (ENOBUFS);
1258 		deldst = mtod(m, struct sockaddr *);
1259 		rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
1260 		dst = deldst;
1261 	}
1262 
1263 	memset(&info, 0, sizeof(info));
1264 	info.rti_ifa = ifa;
1265 	info.rti_flags = flags;
1266 	info.rti_info[RTAX_DST] = dst;
1267 	if ((flags & RTF_LLINFO) == 0)
1268 		info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1269 	info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
1270 
1271 	if ((flags & RTF_HOST) == 0)
1272 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1273 
1274 	if (flags & (RTF_LOCAL|RTF_BROADCAST))
1275 		prio = RTP_LOCAL;
1276 
1277 	if (flags & RTF_CONNECTED)
1278 		prio = ifp->if_priority + RTP_CONNECTED;
1279 
1280 	error = rtrequest_delete(&info, prio, ifp, &rt, rtableid);
1281 	if (error == 0) {
1282 		rt_sendmsg(rt, RTM_DELETE, rtableid);
1283 		if (flags & RTF_LOCAL)
1284 			rt_sendaddrmsg(rt, RTM_DELADDR, ifa);
1285 		rtfree(rt);
1286 	}
1287 	m_free(m);
1288 
1289 	return (error);
1290 }
1291 
1292 /*
1293  * Add ifa's address as a local rtentry.
1294  */
1295 int
1296 rt_ifa_addlocal(struct ifaddr *ifa)
1297 {
1298 	struct rtentry *rt;
1299 	u_int flags = RTF_HOST|RTF_LOCAL;
1300 	int error = 0;
1301 
1302 	/*
1303 	 * If the configured address correspond to the magical "any"
1304 	 * address do not add a local route entry because that might
1305 	 * corrupt the routing tree which uses this value for the
1306 	 * default routes.
1307 	 */
1308 	switch (ifa->ifa_addr->sa_family) {
1309 	case AF_INET:
1310 		if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
1311 			return (0);
1312 		break;
1313 #ifdef INET6
1314 	case AF_INET6:
1315 		if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
1316 		    &in6addr_any))
1317 			return (0);
1318 		break;
1319 #endif
1320 	default:
1321 		break;
1322 	}
1323 
1324 	if (!ISSET(ifa->ifa_ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
1325 		flags |= RTF_LLINFO;
1326 
1327 	/* If there is no local entry, allocate one. */
1328 	rt = rtalloc(ifa->ifa_addr, 0, ifa->ifa_ifp->if_rdomain);
1329 	if (rt == NULL || ISSET(rt->rt_flags, flags) != flags)
1330 		error = rt_ifa_add(ifa, flags, ifa->ifa_addr);
1331 	rtfree(rt);
1332 
1333 	return (error);
1334 }
1335 
1336 /*
1337  * Remove local rtentry of ifa's addresss if it exists.
1338  */
1339 int
1340 rt_ifa_dellocal(struct ifaddr *ifa)
1341 {
1342 	struct rtentry *rt;
1343 	u_int flags = RTF_HOST|RTF_LOCAL;
1344 	int error = 0;
1345 
1346 	/*
1347 	 * We do not add local routes for such address, so do not bother
1348 	 * removing them.
1349 	 */
1350 	switch (ifa->ifa_addr->sa_family) {
1351 	case AF_INET:
1352 		if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
1353 			return (0);
1354 		break;
1355 #ifdef INET6
1356 	case AF_INET6:
1357 		if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
1358 		    &in6addr_any))
1359 			return (0);
1360 		break;
1361 #endif
1362 	default:
1363 		break;
1364 	}
1365 
1366 	if (!ISSET(ifa->ifa_ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
1367 		flags |= RTF_LLINFO;
1368 
1369 	/*
1370 	 * Before deleting, check if a corresponding local host
1371 	 * route surely exists.  With this check, we can avoid to
1372 	 * delete an interface direct route whose destination is same
1373 	 * as the address being removed.  This can happen when removing
1374 	 * a subnet-router anycast address on an interface attached
1375 	 * to a shared medium.
1376 	 */
1377 	rt = rtalloc(ifa->ifa_addr, 0, ifa->ifa_ifp->if_rdomain);
1378 	if (rt != NULL && ISSET(rt->rt_flags, flags) == flags)
1379 		error = rt_ifa_del(ifa, flags, ifa->ifa_addr);
1380 	rtfree(rt);
1381 
1382 	return (error);
1383 }
1384 
1385 /*
1386  * Remove all addresses attached to ``ifa''.
1387  */
1388 void
1389 rt_ifa_purge(struct ifaddr *ifa)
1390 {
1391 	struct ifnet		*ifp = ifa->ifa_ifp;
1392 	unsigned int		 rtableid;
1393 	int			 i;
1394 
1395 	KASSERT(ifp != NULL);
1396 
1397 	for (rtableid = 0; rtableid < rtmap_limit; rtableid++) {
1398 		/* skip rtables that are not in the rdomain of the ifp */
1399 		if (rtable_l2(rtableid) != ifp->if_rdomain)
1400 			continue;
1401 		for (i = 1; i <= AF_MAX; i++) {
1402 			rtable_walk(rtableid, i, rt_ifa_purge_walker, ifa);
1403 		}
1404 	}
1405 }
1406 
1407 int
1408 rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid)
1409 {
1410 	struct ifaddr		*ifa = vifa;
1411 	struct ifnet		*ifp = ifa->ifa_ifp;
1412 	int			 error;
1413 
1414 	if (rt->rt_ifa != ifa)
1415 		return (0);
1416 
1417 	if ((error = rtdeletemsg(rt, ifp, rtableid))) {
1418 		return (error);
1419 	}
1420 
1421 	return (EAGAIN);
1422 
1423 }
1424 
1425 /*
1426  * Route timer routines.  These routes allow functions to be called
1427  * for various routes at any time.  This is useful in supporting
1428  * path MTU discovery and redirect route deletion.
1429  *
1430  * This is similar to some BSDI internal functions, but it provides
1431  * for multiple queues for efficiency's sake...
1432  */
1433 
1434 LIST_HEAD(, rttimer_queue)	rttimer_queue_head;
1435 static int			rt_init_done = 0;
1436 
1437 #define RTTIMER_CALLOUT(r)	{				\
1438 	if (r->rtt_func != NULL) {				\
1439 		(*r->rtt_func)(r->rtt_rt, r);			\
1440 	} else {						\
1441 		struct rt_addrinfo info;			\
1442 		bzero(&info, sizeof(info));			\
1443 		info.rti_info[RTAX_DST] = rt_key(r->rtt_rt);	\
1444 		rtrequest(RTM_DELETE, &info,			\
1445 		    r->rtt_rt->rt_priority, NULL, r->rtt_tableid);	\
1446 	}							\
1447 }
1448 
1449 /*
1450  * Some subtle order problems with domain initialization mean that
1451  * we cannot count on this being run from rt_init before various
1452  * protocol initializations are done.  Therefore, we make sure
1453  * that this is run when the first queue is added...
1454  */
1455 
1456 void
1457 rt_timer_init(void)
1458 {
1459 	static struct timeout	rt_timer_timeout;
1460 
1461 	if (rt_init_done)
1462 		panic("rt_timer_init: already initialized");
1463 
1464 	pool_init(&rttimer_pool, sizeof(struct rttimer), 0, IPL_SOFTNET, 0,
1465 	    "rttmr", NULL);
1466 
1467 	LIST_INIT(&rttimer_queue_head);
1468 	timeout_set_proc(&rt_timer_timeout, rt_timer_timer, &rt_timer_timeout);
1469 	timeout_add_sec(&rt_timer_timeout, 1);
1470 	rt_init_done = 1;
1471 }
1472 
1473 struct rttimer_queue *
1474 rt_timer_queue_create(u_int timeout)
1475 {
1476 	struct rttimer_queue	*rtq;
1477 
1478 	if (rt_init_done == 0)
1479 		rt_timer_init();
1480 
1481 	if ((rtq = malloc(sizeof(*rtq), M_RTABLE, M_NOWAIT|M_ZERO)) == NULL)
1482 		return (NULL);
1483 
1484 	rtq->rtq_timeout = timeout;
1485 	rtq->rtq_count = 0;
1486 	TAILQ_INIT(&rtq->rtq_head);
1487 	LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link);
1488 
1489 	return (rtq);
1490 }
1491 
1492 void
1493 rt_timer_queue_change(struct rttimer_queue *rtq, long timeout)
1494 {
1495 	rtq->rtq_timeout = timeout;
1496 }
1497 
1498 void
1499 rt_timer_queue_destroy(struct rttimer_queue *rtq)
1500 {
1501 	struct rttimer	*r;
1502 
1503 	NET_ASSERT_LOCKED();
1504 
1505 	while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
1506 		LIST_REMOVE(r, rtt_link);
1507 		TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1508 		RTTIMER_CALLOUT(r);
1509 		pool_put(&rttimer_pool, r);
1510 		if (rtq->rtq_count > 0)
1511 			rtq->rtq_count--;
1512 		else
1513 			printf("rt_timer_queue_destroy: rtq_count reached 0\n");
1514 	}
1515 
1516 	LIST_REMOVE(rtq, rtq_link);
1517 	free(rtq, M_RTABLE, sizeof(*rtq));
1518 }
1519 
1520 unsigned long
1521 rt_timer_queue_count(struct rttimer_queue *rtq)
1522 {
1523 	return (rtq->rtq_count);
1524 }
1525 
1526 void
1527 rt_timer_remove_all(struct rtentry *rt)
1528 {
1529 	struct rttimer	*r;
1530 
1531 	while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
1532 		LIST_REMOVE(r, rtt_link);
1533 		TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1534 		if (r->rtt_queue->rtq_count > 0)
1535 			r->rtt_queue->rtq_count--;
1536 		else
1537 			printf("rt_timer_remove_all: rtq_count reached 0\n");
1538 		pool_put(&rttimer_pool, r);
1539 	}
1540 }
1541 
1542 int
1543 rt_timer_add(struct rtentry *rt, void (*func)(struct rtentry *,
1544     struct rttimer *), struct rttimer_queue *queue, u_int rtableid)
1545 {
1546 	struct rttimer	*r;
1547 	long		 current_time;
1548 
1549 	current_time = time_uptime;
1550 	rt->rt_rmx.rmx_expire = time_uptime + queue->rtq_timeout;
1551 
1552 	/*
1553 	 * If there's already a timer with this action, destroy it before
1554 	 * we add a new one.
1555 	 */
1556 	LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
1557 		if (r->rtt_func == func) {
1558 			LIST_REMOVE(r, rtt_link);
1559 			TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1560 			if (r->rtt_queue->rtq_count > 0)
1561 				r->rtt_queue->rtq_count--;
1562 			else
1563 				printf("rt_timer_add: rtq_count reached 0\n");
1564 			pool_put(&rttimer_pool, r);
1565 			break;  /* only one per list, so we can quit... */
1566 		}
1567 	}
1568 
1569 	r = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO);
1570 	if (r == NULL)
1571 		return (ENOBUFS);
1572 
1573 	r->rtt_rt = rt;
1574 	r->rtt_time = current_time;
1575 	r->rtt_func = func;
1576 	r->rtt_queue = queue;
1577 	r->rtt_tableid = rtableid;
1578 	LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link);
1579 	TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next);
1580 	r->rtt_queue->rtq_count++;
1581 
1582 	return (0);
1583 }
1584 
1585 void
1586 rt_timer_timer(void *arg)
1587 {
1588 	struct timeout		*to = (struct timeout *)arg;
1589 	struct rttimer_queue	*rtq;
1590 	struct rttimer		*r;
1591 	long			 current_time;
1592 	int			 s;
1593 
1594 	current_time = time_uptime;
1595 
1596 	NET_LOCK(s);
1597 	LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) {
1598 		while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL &&
1599 		    (r->rtt_time + rtq->rtq_timeout) < current_time) {
1600 			LIST_REMOVE(r, rtt_link);
1601 			TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1602 			RTTIMER_CALLOUT(r);
1603 			pool_put(&rttimer_pool, r);
1604 			if (rtq->rtq_count > 0)
1605 				rtq->rtq_count--;
1606 			else
1607 				printf("rt_timer_timer: rtq_count reached 0\n");
1608 		}
1609 	}
1610 	NET_UNLOCK(s);
1611 
1612 	timeout_add_sec(to, 1);
1613 }
1614 
1615 u_int16_t
1616 rtlabel_name2id(char *name)
1617 {
1618 	struct rt_label		*label, *p;
1619 	u_int16_t		 new_id = 1;
1620 
1621 	if (!name[0])
1622 		return (0);
1623 
1624 	TAILQ_FOREACH(label, &rt_labels, rtl_entry)
1625 		if (strcmp(name, label->rtl_name) == 0) {
1626 			label->rtl_ref++;
1627 			return (label->rtl_id);
1628 		}
1629 
1630 	/*
1631 	 * to avoid fragmentation, we do a linear search from the beginning
1632 	 * and take the first free slot we find. if there is none or the list
1633 	 * is empty, append a new entry at the end.
1634 	 */
1635 	TAILQ_FOREACH(p, &rt_labels, rtl_entry) {
1636 		if (p->rtl_id != new_id)
1637 			break;
1638 		new_id = p->rtl_id + 1;
1639 	}
1640 	if (new_id > LABELID_MAX)
1641 		return (0);
1642 
1643 	label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO);
1644 	if (label == NULL)
1645 		return (0);
1646 	strlcpy(label->rtl_name, name, sizeof(label->rtl_name));
1647 	label->rtl_id = new_id;
1648 	label->rtl_ref++;
1649 
1650 	if (p != NULL)	/* insert new entry before p */
1651 		TAILQ_INSERT_BEFORE(p, label, rtl_entry);
1652 	else		/* either list empty or no free slot in between */
1653 		TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry);
1654 
1655 	return (label->rtl_id);
1656 }
1657 
1658 const char *
1659 rtlabel_id2name(u_int16_t id)
1660 {
1661 	struct rt_label	*label;
1662 
1663 	TAILQ_FOREACH(label, &rt_labels, rtl_entry)
1664 		if (label->rtl_id == id)
1665 			return (label->rtl_name);
1666 
1667 	return (NULL);
1668 }
1669 
1670 struct sockaddr *
1671 rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl)
1672 {
1673 	const char	*label;
1674 
1675 	if (labelid == 0 || (label = rtlabel_id2name(labelid)) == NULL)
1676 		return (NULL);
1677 
1678 	bzero(sa_rl, sizeof(*sa_rl));
1679 	sa_rl->sr_len = sizeof(*sa_rl);
1680 	sa_rl->sr_family = AF_UNSPEC;
1681 	strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label));
1682 
1683 	return ((struct sockaddr *)sa_rl);
1684 }
1685 
1686 void
1687 rtlabel_unref(u_int16_t id)
1688 {
1689 	struct rt_label	*p, *next;
1690 
1691 	if (id == 0)
1692 		return;
1693 
1694 	TAILQ_FOREACH_SAFE(p, &rt_labels, rtl_entry, next) {
1695 		if (id == p->rtl_id) {
1696 			if (--p->rtl_ref == 0) {
1697 				TAILQ_REMOVE(&rt_labels, p, rtl_entry);
1698 				free(p, M_RTABLE, sizeof(*p));
1699 			}
1700 			break;
1701 		}
1702 	}
1703 }
1704 
1705 #ifndef SMALL_KERNEL
1706 void
1707 rt_if_track(struct ifnet *ifp)
1708 {
1709 	int i;
1710 	u_int tid;
1711 
1712 	for (tid = 0; tid < rtmap_limit; tid++) {
1713 		/* skip rtables that are not in the rdomain of the ifp */
1714 		if (rtable_l2(tid) != ifp->if_rdomain)
1715 			continue;
1716 		for (i = 1; i <= AF_MAX; i++) {
1717 			if (!rtable_mpath_capable(tid, i))
1718 				continue;
1719 
1720 			rtable_walk(tid, i, rt_if_linkstate_change, ifp);
1721 		}
1722 	}
1723 }
1724 
1725 int
1726 rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id)
1727 {
1728 	struct ifnet *ifp = arg;
1729 	struct sockaddr_in6 sa_mask;
1730 
1731 	if (rt->rt_ifidx != ifp->if_index)
1732 		return (0);
1733 
1734 	/* Local routes are always usable. */
1735 	if (rt->rt_flags & RTF_LOCAL) {
1736 		rt->rt_flags |= RTF_UP;
1737 		return (0);
1738 	}
1739 
1740 	if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) {
1741 		if (!(rt->rt_flags & RTF_UP)) {
1742 			/* bring route up */
1743 			rt->rt_flags |= RTF_UP;
1744 			rtable_mpath_reprio(id, rt_key(rt),
1745 			    rt_plen2mask(rt, &sa_mask),
1746 			    rt->rt_priority & RTP_MASK, rt);
1747 		}
1748 	} else {
1749 		if (rt->rt_flags & RTF_UP) {
1750 			/*
1751 			 * Remove redirected and cloned routes (mainly ARP)
1752 			 * from down interfaces so we have a chance to get
1753 			 * new routes from a better source.
1754 			 */
1755 			if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) &&
1756 			    !ISSET(rt->rt_flags, RTF_CACHED|RTF_BFD)) {
1757 				int error;
1758 
1759 				if ((error = rtdeletemsg(rt, ifp, id)))
1760 					return (error);
1761 				return (EAGAIN);
1762 			}
1763 			/* take route down */
1764 			rt->rt_flags &= ~RTF_UP;
1765 			rtable_mpath_reprio(id, rt_key(rt),
1766 			    rt_plen2mask(rt, &sa_mask),
1767 			    rt->rt_priority | RTP_DOWN, rt);
1768 		}
1769 	}
1770 	if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask));
1771 
1772 	return (0);
1773 }
1774 #endif
1775 
1776 struct sockaddr *
1777 rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask)
1778 {
1779 	struct sockaddr_in	*sin = (struct sockaddr_in *)sa_mask;
1780 #ifdef INET6
1781 	struct sockaddr_in6	*sin6 = (struct sockaddr_in6 *)sa_mask;
1782 #endif
1783 
1784 	KASSERT(plen >= 0 || plen == -1);
1785 
1786 	if (plen == -1)
1787 		return (NULL);
1788 
1789 	memset(sa_mask, 0, sizeof(*sa_mask));
1790 
1791 	switch (af) {
1792 	case AF_INET:
1793 		sin->sin_family = AF_INET;
1794 		sin->sin_len = sizeof(struct sockaddr_in);
1795 		in_prefixlen2mask(&sin->sin_addr, plen);
1796 		break;
1797 #ifdef INET6
1798 	case AF_INET6:
1799 		sin6->sin6_family = AF_INET6;
1800 		sin6->sin6_len = sizeof(struct sockaddr_in6);
1801 		in6_prefixlen2mask(&sin6->sin6_addr, plen);
1802 		break;
1803 #endif /* INET6 */
1804 	default:
1805 		return (NULL);
1806 	}
1807 
1808 	return ((struct sockaddr *)sa_mask);
1809 }
1810 
1811 struct sockaddr *
1812 rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask)
1813 {
1814 #ifndef ART
1815 	return (rt_mask(rt));
1816 #else
1817 	return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask));
1818 #endif /* ART */
1819 }
1820 
1821 #ifdef DDB
1822 #include <machine/db_machdep.h>
1823 #include <ddb/db_output.h>
1824 
1825 void
1826 db_print_sa(struct sockaddr *sa)
1827 {
1828 	int len;
1829 	u_char *p;
1830 
1831 	if (sa == NULL) {
1832 		db_printf("[NULL]");
1833 		return;
1834 	}
1835 
1836 	p = (u_char *)sa;
1837 	len = sa->sa_len;
1838 	db_printf("[");
1839 	while (len > 0) {
1840 		db_printf("%d", *p);
1841 		p++;
1842 		len--;
1843 		if (len)
1844 			db_printf(",");
1845 	}
1846 	db_printf("]\n");
1847 }
1848 
1849 void
1850 db_print_ifa(struct ifaddr *ifa)
1851 {
1852 	if (ifa == NULL)
1853 		return;
1854 	db_printf("  ifa_addr=");
1855 	db_print_sa(ifa->ifa_addr);
1856 	db_printf("  ifa_dsta=");
1857 	db_print_sa(ifa->ifa_dstaddr);
1858 	db_printf("  ifa_mask=");
1859 	db_print_sa(ifa->ifa_netmask);
1860 	db_printf("  flags=0x%x, refcnt=%d, metric=%d\n",
1861 	    ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric);
1862 }
1863 
1864 /*
1865  * Function to pass to rtalble_walk().
1866  * Return non-zero error to abort walk.
1867  */
1868 int
1869 db_show_rtentry(struct rtentry *rt, void *w, unsigned int id)
1870 {
1871 	db_printf("rtentry=%p", rt);
1872 
1873 	db_printf(" flags=0x%x refcnt=%d use=%llu expire=%lld rtableid=%u\n",
1874 	    rt->rt_flags, rt->rt_refcnt, rt->rt_use, rt->rt_expire, id);
1875 
1876 	db_printf(" key="); db_print_sa(rt_key(rt));
1877 	db_printf(" plen=%d", rt_plen(rt));
1878 	db_printf(" gw="); db_print_sa(rt->rt_gateway);
1879 	db_printf(" ifidx=%u ", rt->rt_ifidx);
1880 	db_printf(" ifa=%p\n", rt->rt_ifa);
1881 	db_print_ifa(rt->rt_ifa);
1882 
1883 	db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo);
1884 	return (0);
1885 }
1886 
1887 /*
1888  * Function to print all the route trees.
1889  * Use this from ddb:  "call db_show_arptab"
1890  */
1891 int
1892 db_show_arptab(void)
1893 {
1894 	db_printf("Route tree for AF_INET\n");
1895 	rtable_walk(0, AF_INET, db_show_rtentry, NULL);
1896 	return (0);
1897 }
1898 #endif /* DDB */
1899