1 /* $OpenBSD: route.c,v 1.406 2022/04/20 17:58:22 bluhm Exp $ */ 2 /* $NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1980, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)route.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 /* 65 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 66 * 67 * NRL grants permission for redistribution and use in source and binary 68 * forms, with or without modification, of the software and documentation 69 * created at NRL provided that the following conditions are met: 70 * 71 * 1. Redistributions of source code must retain the above copyright 72 * notice, this list of conditions and the following disclaimer. 73 * 2. Redistributions in binary form must reproduce the above copyright 74 * notice, this list of conditions and the following disclaimer in the 75 * documentation and/or other materials provided with the distribution. 76 * 3. All advertising materials mentioning features or use of this software 77 * must display the following acknowledgements: 78 * This product includes software developed by the University of 79 * California, Berkeley and its contributors. 80 * This product includes software developed at the Information 81 * Technology Division, US Naval Research Laboratory. 82 * 4. Neither the name of the NRL nor the names of its contributors 83 * may be used to endorse or promote products derived from this software 84 * without specific prior written permission. 85 * 86 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS 87 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 88 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 89 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR 90 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 91 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 92 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 93 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 94 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 95 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 96 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 97 * 98 * The views and conclusions contained in the software and documentation 99 * are those of the authors and should not be interpreted as representing 100 * official policies, either expressed or implied, of the US Naval 101 * Research Laboratory (NRL). 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/mbuf.h> 107 #include <sys/socket.h> 108 #include <sys/socketvar.h> 109 #include <sys/timeout.h> 110 #include <sys/domain.h> 111 #include <sys/ioctl.h> 112 #include <sys/kernel.h> 113 #include <sys/queue.h> 114 #include <sys/pool.h> 115 #include <sys/atomic.h> 116 117 #include <net/if.h> 118 #include <net/if_var.h> 119 #include <net/if_dl.h> 120 #include <net/route.h> 121 122 #include <netinet/in.h> 123 #include <netinet/ip_var.h> 124 #include <netinet/in_var.h> 125 126 #ifdef INET6 127 #include <netinet/ip6.h> 128 #include <netinet6/ip6_var.h> 129 #include <netinet6/in6_var.h> 130 #endif 131 132 #ifdef MPLS 133 #include <netmpls/mpls.h> 134 #endif 135 136 #ifdef BFD 137 #include <net/bfd.h> 138 #endif 139 140 #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) 141 142 /* Give some jitter to hash, to avoid synchronization between routers. */ 143 static uint32_t rt_hashjitter; 144 145 extern unsigned int rtmap_limit; 146 147 struct cpumem * rtcounters; 148 int rttrash; /* routes not in table but not freed */ 149 int ifatrash; /* ifas not in ifp list but not free */ 150 151 struct pool rtentry_pool; /* pool for rtentry structures */ 152 struct pool rttimer_pool; /* pool for rttimer structures */ 153 struct pool rttimer_queue_pool; /* pool for rttimer_queue structures */ 154 155 int rt_setgwroute(struct rtentry *, u_int); 156 void rt_putgwroute(struct rtentry *); 157 int rtflushclone1(struct rtentry *, void *, u_int); 158 int rtflushclone(struct rtentry *, unsigned int); 159 int rt_ifa_purge_walker(struct rtentry *, void *, unsigned int); 160 struct rtentry *rt_match(struct sockaddr *, uint32_t *, int, unsigned int); 161 int rt_clone(struct rtentry **, struct sockaddr *, unsigned int); 162 struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *); 163 static int rt_copysa(struct sockaddr *, struct sockaddr *, struct sockaddr **); 164 165 #ifdef DDB 166 void db_print_sa(struct sockaddr *); 167 void db_print_ifa(struct ifaddr *); 168 int db_show_rtentry(struct rtentry *, void *, unsigned int); 169 #endif 170 171 #define LABELID_MAX 50000 172 173 struct rt_label { 174 TAILQ_ENTRY(rt_label) rtl_entry; 175 char rtl_name[RTLABEL_LEN]; 176 u_int16_t rtl_id; 177 int rtl_ref; 178 }; 179 180 TAILQ_HEAD(rt_labels, rt_label) rt_labels = TAILQ_HEAD_INITIALIZER(rt_labels); 181 182 void 183 route_init(void) 184 { 185 rtcounters = counters_alloc(rts_ncounters); 186 187 pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_MPFLOOR, 0, 188 "rtentry", NULL); 189 190 while (rt_hashjitter == 0) 191 rt_hashjitter = arc4random(); 192 193 #ifdef BFD 194 bfdinit(); 195 #endif 196 } 197 198 /* 199 * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise. 200 */ 201 int 202 rtisvalid(struct rtentry *rt) 203 { 204 if (rt == NULL) 205 return (0); 206 207 if (!ISSET(rt->rt_flags, RTF_UP)) 208 return (0); 209 210 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 211 KASSERT(rt->rt_gwroute != NULL); 212 KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY)); 213 if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP)) 214 return (0); 215 } 216 217 return (1); 218 } 219 220 /* 221 * Do the actual lookup for rtalloc(9), do not use directly! 222 * 223 * Return the best matching entry for the destination ``dst''. 224 * 225 * "RT_RESOLVE" means that a corresponding L2 entry should 226 * be added to the routing table and resolved (via ARP or 227 * NDP), if it does not exist. 228 */ 229 struct rtentry * 230 rt_match(struct sockaddr *dst, uint32_t *src, int flags, unsigned int tableid) 231 { 232 struct rtentry *rt = NULL; 233 234 rt = rtable_match(tableid, dst, src); 235 if (rt == NULL) { 236 rtstat_inc(rts_unreach); 237 return (NULL); 238 } 239 240 if (ISSET(rt->rt_flags, RTF_CLONING) && ISSET(flags, RT_RESOLVE)) 241 rt_clone(&rt, dst, tableid); 242 243 rt->rt_use++; 244 return (rt); 245 } 246 247 int 248 rt_clone(struct rtentry **rtp, struct sockaddr *dst, unsigned int rtableid) 249 { 250 struct rt_addrinfo info; 251 struct rtentry *rt = *rtp; 252 int error = 0; 253 254 memset(&info, 0, sizeof(info)); 255 info.rti_info[RTAX_DST] = dst; 256 257 /* 258 * The priority of cloned route should be different 259 * to avoid conflict with /32 cloning routes. 260 * 261 * It should also be higher to let the ARP layer find 262 * cloned routes instead of the cloning one. 263 */ 264 KERNEL_LOCK(); 265 error = rtrequest(RTM_RESOLVE, &info, rt->rt_priority - 1, &rt, 266 rtableid); 267 KERNEL_UNLOCK(); 268 if (error) { 269 rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, error, rtableid); 270 } else { 271 /* Inform listeners of the new route */ 272 rtm_send(rt, RTM_ADD, 0, rtableid); 273 rtfree(*rtp); 274 *rtp = rt; 275 } 276 return (error); 277 } 278 279 /* 280 * Originated from bridge_hash() in if_bridge.c 281 */ 282 #define mix(a, b, c) do { \ 283 a -= b; a -= c; a ^= (c >> 13); \ 284 b -= c; b -= a; b ^= (a << 8); \ 285 c -= a; c -= b; c ^= (b >> 13); \ 286 a -= b; a -= c; a ^= (c >> 12); \ 287 b -= c; b -= a; b ^= (a << 16); \ 288 c -= a; c -= b; c ^= (b >> 5); \ 289 a -= b; a -= c; a ^= (c >> 3); \ 290 b -= c; b -= a; b ^= (a << 10); \ 291 c -= a; c -= b; c ^= (b >> 15); \ 292 } while (0) 293 294 int 295 rt_hash(struct rtentry *rt, struct sockaddr *dst, uint32_t *src) 296 { 297 uint32_t a, b, c; 298 299 if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH)) 300 return (-1); 301 302 a = b = 0x9e3779b9; 303 c = rt_hashjitter; 304 305 switch (dst->sa_family) { 306 case AF_INET: 307 { 308 struct sockaddr_in *sin; 309 310 if (!ipmultipath) 311 return (-1); 312 313 sin = satosin(dst); 314 a += sin->sin_addr.s_addr; 315 b += src[0]; 316 mix(a, b, c); 317 break; 318 } 319 #ifdef INET6 320 case AF_INET6: 321 { 322 struct sockaddr_in6 *sin6; 323 324 if (!ip6_multipath) 325 return (-1); 326 327 sin6 = satosin6(dst); 328 a += sin6->sin6_addr.s6_addr32[0]; 329 b += sin6->sin6_addr.s6_addr32[2]; 330 c += src[0]; 331 mix(a, b, c); 332 a += sin6->sin6_addr.s6_addr32[1]; 333 b += sin6->sin6_addr.s6_addr32[3]; 334 c += src[1]; 335 mix(a, b, c); 336 a += sin6->sin6_addr.s6_addr32[2]; 337 b += sin6->sin6_addr.s6_addr32[1]; 338 c += src[2]; 339 mix(a, b, c); 340 a += sin6->sin6_addr.s6_addr32[3]; 341 b += sin6->sin6_addr.s6_addr32[0]; 342 c += src[3]; 343 mix(a, b, c); 344 break; 345 } 346 #endif /* INET6 */ 347 } 348 349 return (c & 0xffff); 350 } 351 352 /* 353 * Allocate a route, potentially using multipath to select the peer. 354 */ 355 struct rtentry * 356 rtalloc_mpath(struct sockaddr *dst, uint32_t *src, unsigned int rtableid) 357 { 358 return (rt_match(dst, src, RT_RESOLVE, rtableid)); 359 } 360 361 /* 362 * Look in the routing table for the best matching entry for 363 * ``dst''. 364 * 365 * If a route with a gateway is found and its next hop is no 366 * longer valid, try to cache it. 367 */ 368 struct rtentry * 369 rtalloc(struct sockaddr *dst, int flags, unsigned int rtableid) 370 { 371 return (rt_match(dst, NULL, flags, rtableid)); 372 } 373 374 /* 375 * Cache the route entry corresponding to a reachable next hop in 376 * the gateway entry ``rt''. 377 */ 378 int 379 rt_setgwroute(struct rtentry *rt, u_int rtableid) 380 { 381 struct rtentry *prt, *nhrt; 382 unsigned int rdomain = rtable_l2(rtableid); 383 int error; 384 385 NET_ASSERT_LOCKED(); 386 387 KASSERT(ISSET(rt->rt_flags, RTF_GATEWAY)); 388 389 /* If we cannot find a valid next hop bail. */ 390 nhrt = rt_match(rt->rt_gateway, NULL, RT_RESOLVE, rdomain); 391 if (nhrt == NULL) 392 return (ENOENT); 393 394 /* Next hop entry must be on the same interface. */ 395 if (nhrt->rt_ifidx != rt->rt_ifidx) { 396 struct sockaddr_in6 sa_mask; 397 398 if (!ISSET(nhrt->rt_flags, RTF_LLINFO) || 399 !ISSET(nhrt->rt_flags, RTF_CLONED)) { 400 rtfree(nhrt); 401 return (EHOSTUNREACH); 402 } 403 404 /* 405 * We found a L2 entry, so we might have multiple 406 * RTF_CLONING routes for the same subnet. Query 407 * the first route of the multipath chain and iterate 408 * until we find the correct one. 409 */ 410 prt = rtable_lookup(rdomain, rt_key(nhrt->rt_parent), 411 rt_plen2mask(nhrt->rt_parent, &sa_mask), NULL, RTP_ANY); 412 rtfree(nhrt); 413 414 while (prt != NULL && prt->rt_ifidx != rt->rt_ifidx) 415 prt = rtable_iterate(prt); 416 417 /* We found nothing or a non-cloning MPATH route. */ 418 if (prt == NULL || !ISSET(prt->rt_flags, RTF_CLONING)) { 419 rtfree(prt); 420 return (EHOSTUNREACH); 421 } 422 423 error = rt_clone(&prt, rt->rt_gateway, rdomain); 424 if (error) { 425 rtfree(prt); 426 return (error); 427 } 428 nhrt = prt; 429 } 430 431 /* 432 * Next hop must be reachable, this also prevents rtentry 433 * loops for example when rt->rt_gwroute points to rt. 434 */ 435 if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) { 436 rtfree(nhrt); 437 return (ENETUNREACH); 438 } 439 440 /* Next hop is valid so remove possible old cache. */ 441 rt_putgwroute(rt); 442 KASSERT(rt->rt_gwroute == NULL); 443 444 /* 445 * If the MTU of next hop is 0, this will reset the MTU of the 446 * route to run PMTUD again from scratch. 447 */ 448 if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu)) 449 rt->rt_mtu = nhrt->rt_mtu; 450 451 /* 452 * To avoid reference counting problems when writing link-layer 453 * addresses in an outgoing packet, we ensure that the lifetime 454 * of a cached entry is greater than the bigger lifetime of the 455 * gateway entries it is pointed by. 456 */ 457 nhrt->rt_flags |= RTF_CACHED; 458 nhrt->rt_cachecnt++; 459 460 rt->rt_gwroute = nhrt; 461 462 return (0); 463 } 464 465 /* 466 * Invalidate the cached route entry of the gateway entry ``rt''. 467 */ 468 void 469 rt_putgwroute(struct rtentry *rt) 470 { 471 struct rtentry *nhrt = rt->rt_gwroute; 472 473 NET_ASSERT_LOCKED(); 474 475 if (!ISSET(rt->rt_flags, RTF_GATEWAY) || nhrt == NULL) 476 return; 477 478 KASSERT(ISSET(nhrt->rt_flags, RTF_CACHED)); 479 KASSERT(nhrt->rt_cachecnt > 0); 480 481 --nhrt->rt_cachecnt; 482 if (nhrt->rt_cachecnt == 0) 483 nhrt->rt_flags &= ~RTF_CACHED; 484 485 rtfree(rt->rt_gwroute); 486 rt->rt_gwroute = NULL; 487 } 488 489 void 490 rtref(struct rtentry *rt) 491 { 492 atomic_inc_int(&rt->rt_refcnt); 493 } 494 495 void 496 rtfree(struct rtentry *rt) 497 { 498 int refcnt; 499 500 if (rt == NULL) 501 return; 502 503 refcnt = (int)atomic_dec_int_nv(&rt->rt_refcnt); 504 if (refcnt <= 0) { 505 KASSERT(!ISSET(rt->rt_flags, RTF_UP)); 506 KASSERT(!RT_ROOT(rt)); 507 atomic_dec_int(&rttrash); 508 if (refcnt < 0) { 509 printf("rtfree: %p not freed (neg refs)\n", rt); 510 return; 511 } 512 513 KERNEL_LOCK(); 514 rt_timer_remove_all(rt); 515 ifafree(rt->rt_ifa); 516 rtlabel_unref(rt->rt_labelid); 517 #ifdef MPLS 518 rt_mpls_clear(rt); 519 #endif 520 free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len)); 521 free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len); 522 KERNEL_UNLOCK(); 523 524 pool_put(&rtentry_pool, rt); 525 } 526 } 527 528 void 529 ifafree(struct ifaddr *ifa) 530 { 531 if (ifa == NULL) 532 panic("ifafree"); 533 if (ifa->ifa_refcnt == 0) { 534 ifatrash--; 535 free(ifa, M_IFADDR, 0); 536 } else 537 ifa->ifa_refcnt--; 538 } 539 540 /* 541 * Force a routing table entry to the specified 542 * destination to go through the given gateway. 543 * Normally called as a result of a routing redirect 544 * message from the network layer. 545 */ 546 void 547 rtredirect(struct sockaddr *dst, struct sockaddr *gateway, 548 struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain) 549 { 550 struct rtentry *rt; 551 int error = 0; 552 enum rtstat_counters stat = rts_ncounters; 553 struct rt_addrinfo info; 554 struct ifaddr *ifa; 555 unsigned int ifidx = 0; 556 int flags = RTF_GATEWAY|RTF_HOST; 557 uint8_t prio = RTP_NONE; 558 559 NET_ASSERT_LOCKED(); 560 561 /* verify the gateway is directly reachable */ 562 rt = rtalloc(gateway, 0, rdomain); 563 if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY)) { 564 rtfree(rt); 565 error = ENETUNREACH; 566 goto out; 567 } 568 ifidx = rt->rt_ifidx; 569 ifa = rt->rt_ifa; 570 rtfree(rt); 571 rt = NULL; 572 573 rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY); 574 /* 575 * If the redirect isn't from our current router for this dst, 576 * it's either old or wrong. If it redirects us to ourselves, 577 * we have a routing loop, perhaps as a result of an interface 578 * going down recently. 579 */ 580 #define equal(a1, a2) \ 581 ((a1)->sa_len == (a2)->sa_len && \ 582 bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) 583 if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa)) 584 error = EINVAL; 585 else if (ifa_ifwithaddr(gateway, rdomain) != NULL || 586 (gateway->sa_family == AF_INET && 587 in_broadcast(satosin(gateway)->sin_addr, rdomain))) 588 error = EHOSTUNREACH; 589 if (error) 590 goto done; 591 /* 592 * Create a new entry if we just got back a wildcard entry 593 * or the lookup failed. This is necessary for hosts 594 * which use routing redirects generated by smart gateways 595 * to dynamically build the routing tables. 596 */ 597 if (rt == NULL) 598 goto create; 599 /* 600 * Don't listen to the redirect if it's 601 * for a route to an interface. 602 */ 603 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 604 if (!ISSET(rt->rt_flags, RTF_HOST)) { 605 /* 606 * Changing from route to net => route to host. 607 * Create new route, rather than smashing route to net. 608 */ 609 create: 610 rtfree(rt); 611 flags |= RTF_DYNAMIC; 612 bzero(&info, sizeof(info)); 613 info.rti_info[RTAX_DST] = dst; 614 info.rti_info[RTAX_GATEWAY] = gateway; 615 info.rti_ifa = ifa; 616 info.rti_flags = flags; 617 rt = NULL; 618 error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt, 619 rdomain); 620 if (error == 0) { 621 flags = rt->rt_flags; 622 prio = rt->rt_priority; 623 } 624 stat = rts_dynamic; 625 } else { 626 /* 627 * Smash the current notion of the gateway to 628 * this destination. Should check about netmask!!! 629 */ 630 rt->rt_flags |= RTF_MODIFIED; 631 flags |= RTF_MODIFIED; 632 prio = rt->rt_priority; 633 stat = rts_newgateway; 634 rt_setgate(rt, gateway, rdomain); 635 } 636 } else 637 error = EHOSTUNREACH; 638 done: 639 if (rt) { 640 if (rtp && !error) 641 *rtp = rt; 642 else 643 rtfree(rt); 644 } 645 out: 646 if (error) 647 rtstat_inc(rts_badredirect); 648 else if (stat != rts_ncounters) 649 rtstat_inc(stat); 650 bzero((caddr_t)&info, sizeof(info)); 651 info.rti_info[RTAX_DST] = dst; 652 info.rti_info[RTAX_GATEWAY] = gateway; 653 info.rti_info[RTAX_AUTHOR] = src; 654 rtm_miss(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain); 655 } 656 657 /* 658 * Delete a route and generate a message 659 */ 660 int 661 rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid) 662 { 663 int error; 664 struct rt_addrinfo info; 665 struct sockaddr_rtlabel sa_rl; 666 struct sockaddr_in6 sa_mask; 667 668 KASSERT(rt->rt_ifidx == ifp->if_index); 669 670 /* 671 * Request the new route so that the entry is not actually 672 * deleted. That will allow the information being reported to 673 * be accurate (and consistent with route_output()). 674 */ 675 memset(&info, 0, sizeof(info)); 676 info.rti_info[RTAX_DST] = rt_key(rt); 677 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 678 if (!ISSET(rt->rt_flags, RTF_HOST)) 679 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 680 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 681 info.rti_flags = rt->rt_flags; 682 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 683 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 684 error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid); 685 rtm_miss(RTM_DELETE, &info, info.rti_flags, rt->rt_priority, 686 rt->rt_ifidx, error, tableid); 687 if (error == 0) 688 rtfree(rt); 689 return (error); 690 } 691 692 static inline int 693 rtequal(struct rtentry *a, struct rtentry *b) 694 { 695 if (a == b) 696 return 1; 697 698 if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 && 699 rt_plen(a) == rt_plen(b)) 700 return 1; 701 else 702 return 0; 703 } 704 705 int 706 rtflushclone1(struct rtentry *rt, void *arg, u_int id) 707 { 708 struct rtentry *cloningrt = arg; 709 struct ifnet *ifp; 710 711 if (!ISSET(rt->rt_flags, RTF_CLONED)) 712 return 0; 713 714 /* Cached route must stay alive as long as their parent are alive. */ 715 if (ISSET(rt->rt_flags, RTF_CACHED) && (rt->rt_parent != cloningrt)) 716 return 0; 717 718 if (!rtequal(rt->rt_parent, cloningrt)) 719 return 0; 720 /* 721 * This happens when an interface with a RTF_CLONING route is 722 * being detached. In this case it's safe to bail because all 723 * the routes are being purged by rt_ifa_purge(). 724 */ 725 ifp = if_get(rt->rt_ifidx); 726 if (ifp == NULL) 727 return 0; 728 729 if_put(ifp); 730 return EEXIST; 731 } 732 733 int 734 rtflushclone(struct rtentry *parent, unsigned int rtableid) 735 { 736 struct rtentry *rt = NULL; 737 struct ifnet *ifp; 738 int error; 739 740 #ifdef DIAGNOSTIC 741 if (!parent || (parent->rt_flags & RTF_CLONING) == 0) 742 panic("rtflushclone: called with a non-cloning route"); 743 #endif 744 745 do { 746 error = rtable_walk(rtableid, rt_key(parent)->sa_family, &rt, 747 rtflushclone1, parent); 748 if (rt != NULL && error == EEXIST) { 749 ifp = if_get(rt->rt_ifidx); 750 if (ifp == NULL) { 751 error = EAGAIN; 752 } else { 753 error = rtdeletemsg(rt, ifp, rtableid); 754 if (error == 0) 755 error = EAGAIN; 756 if_put(ifp); 757 } 758 } 759 rtfree(rt); 760 rt = NULL; 761 } while (error == EAGAIN); 762 763 return error; 764 765 } 766 767 int 768 rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp, 769 struct rtentry **ret_nrt, u_int tableid) 770 { 771 struct rtentry *rt; 772 int error; 773 774 NET_ASSERT_LOCKED(); 775 776 if (!rtable_exists(tableid)) 777 return (EAFNOSUPPORT); 778 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 779 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio); 780 if (rt == NULL) 781 return (ESRCH); 782 783 /* Make sure that's the route the caller want to delete. */ 784 if (ifp != NULL && ifp->if_index != rt->rt_ifidx) { 785 rtfree(rt); 786 return (ESRCH); 787 } 788 789 #ifdef BFD 790 if (ISSET(rt->rt_flags, RTF_BFD)) 791 bfdclear(rt); 792 #endif 793 794 error = rtable_delete(tableid, info->rti_info[RTAX_DST], 795 info->rti_info[RTAX_NETMASK], rt); 796 if (error != 0) { 797 rtfree(rt); 798 return (ESRCH); 799 } 800 801 /* Release next hop cache before flushing cloned entries. */ 802 rt_putgwroute(rt); 803 804 /* Clean up any cloned children. */ 805 if (ISSET(rt->rt_flags, RTF_CLONING)) 806 rtflushclone(rt, tableid); 807 808 rtfree(rt->rt_parent); 809 rt->rt_parent = NULL; 810 811 rt->rt_flags &= ~RTF_UP; 812 813 KASSERT(ifp->if_index == rt->rt_ifidx); 814 ifp->if_rtrequest(ifp, RTM_DELETE, rt); 815 816 atomic_inc_int(&rttrash); 817 818 if (ret_nrt != NULL) 819 *ret_nrt = rt; 820 else 821 rtfree(rt); 822 823 return (0); 824 } 825 826 int 827 rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio, 828 struct rtentry **ret_nrt, u_int tableid) 829 { 830 struct ifnet *ifp; 831 struct rtentry *rt, *crt; 832 struct ifaddr *ifa; 833 struct sockaddr *ndst; 834 struct sockaddr_rtlabel *sa_rl, sa_rl2; 835 struct sockaddr_dl sa_dl = { sizeof(sa_dl), AF_LINK }; 836 int error; 837 838 NET_ASSERT_LOCKED(); 839 840 if (!rtable_exists(tableid)) 841 return (EAFNOSUPPORT); 842 if (info->rti_flags & RTF_HOST) 843 info->rti_info[RTAX_NETMASK] = NULL; 844 switch (req) { 845 case RTM_DELETE: 846 return (EINVAL); 847 848 case RTM_RESOLVE: 849 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL) 850 return (EINVAL); 851 if ((rt->rt_flags & RTF_CLONING) == 0) 852 return (EINVAL); 853 KASSERT(rt->rt_ifa->ifa_ifp != NULL); 854 info->rti_ifa = rt->rt_ifa; 855 info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST); 856 info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC); 857 info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl); 858 info->rti_info[RTAX_LABEL] = 859 rtlabel_id2sa(rt->rt_labelid, &sa_rl2); 860 /* FALLTHROUGH */ 861 862 case RTM_ADD: 863 if (info->rti_ifa == NULL) 864 return (EINVAL); 865 ifa = info->rti_ifa; 866 ifp = ifa->ifa_ifp; 867 if (prio == 0) 868 prio = ifp->if_priority + RTP_STATIC; 869 870 error = rt_copysa(info->rti_info[RTAX_DST], 871 info->rti_info[RTAX_NETMASK], &ndst); 872 if (error) 873 return (error); 874 875 rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO); 876 if (rt == NULL) { 877 free(ndst, M_RTABLE, ndst->sa_len); 878 return (ENOBUFS); 879 } 880 881 rt->rt_refcnt = 1; 882 rt->rt_flags = info->rti_flags | RTF_UP; 883 rt->rt_priority = prio; /* init routing priority */ 884 LIST_INIT(&rt->rt_timer); 885 886 /* Check the link state if the table supports it. */ 887 if (rtable_mpath_capable(tableid, ndst->sa_family) && 888 !ISSET(rt->rt_flags, RTF_LOCAL) && 889 (!LINK_STATE_IS_UP(ifp->if_link_state) || 890 !ISSET(ifp->if_flags, IFF_UP))) { 891 rt->rt_flags &= ~RTF_UP; 892 rt->rt_priority |= RTP_DOWN; 893 } 894 895 if (info->rti_info[RTAX_LABEL] != NULL) { 896 sa_rl = (struct sockaddr_rtlabel *) 897 info->rti_info[RTAX_LABEL]; 898 rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label); 899 } 900 901 #ifdef MPLS 902 /* We have to allocate additional space for MPLS infos */ 903 if (info->rti_flags & RTF_MPLS && 904 (info->rti_info[RTAX_SRC] != NULL || 905 info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) { 906 error = rt_mpls_set(rt, info->rti_info[RTAX_SRC], 907 info->rti_mpls); 908 if (error) { 909 free(ndst, M_RTABLE, ndst->sa_len); 910 pool_put(&rtentry_pool, rt); 911 return (error); 912 } 913 } else 914 rt_mpls_clear(rt); 915 #endif 916 917 ifa->ifa_refcnt++; 918 rt->rt_ifa = ifa; 919 rt->rt_ifidx = ifp->if_index; 920 /* 921 * Copy metrics and a back pointer from the cloned 922 * route's parent. 923 */ 924 if (ISSET(rt->rt_flags, RTF_CLONED)) { 925 rtref(*ret_nrt); 926 rt->rt_parent = *ret_nrt; 927 rt->rt_rmx = (*ret_nrt)->rt_rmx; 928 } 929 930 /* 931 * We must set rt->rt_gateway before adding ``rt'' to 932 * the routing table because the radix MPATH code use 933 * it to (re)order routes. 934 */ 935 if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY], 936 tableid))) { 937 ifafree(ifa); 938 rtfree(rt->rt_parent); 939 rt_putgwroute(rt); 940 free(rt->rt_gateway, M_RTABLE, 941 ROUNDUP(rt->rt_gateway->sa_len)); 942 free(ndst, M_RTABLE, ndst->sa_len); 943 pool_put(&rtentry_pool, rt); 944 return (error); 945 } 946 947 error = rtable_insert(tableid, ndst, 948 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 949 rt->rt_priority, rt); 950 if (error != 0 && 951 (crt = rtable_match(tableid, ndst, NULL)) != NULL) { 952 /* overwrite cloned route */ 953 if (ISSET(crt->rt_flags, RTF_CLONED) && 954 !ISSET(crt->rt_flags, RTF_CACHED)) { 955 struct ifnet *cifp; 956 957 cifp = if_get(crt->rt_ifidx); 958 KASSERT(cifp != NULL); 959 rtdeletemsg(crt, cifp, tableid); 960 if_put(cifp); 961 962 error = rtable_insert(tableid, ndst, 963 info->rti_info[RTAX_NETMASK], 964 info->rti_info[RTAX_GATEWAY], 965 rt->rt_priority, rt); 966 } 967 rtfree(crt); 968 } 969 if (error != 0) { 970 ifafree(ifa); 971 rtfree(rt->rt_parent); 972 rt_putgwroute(rt); 973 free(rt->rt_gateway, M_RTABLE, 974 ROUNDUP(rt->rt_gateway->sa_len)); 975 free(ndst, M_RTABLE, ndst->sa_len); 976 pool_put(&rtentry_pool, rt); 977 return (EEXIST); 978 } 979 ifp->if_rtrequest(ifp, req, rt); 980 981 if_group_routechange(info->rti_info[RTAX_DST], 982 info->rti_info[RTAX_NETMASK]); 983 984 if (ret_nrt != NULL) 985 *ret_nrt = rt; 986 else 987 rtfree(rt); 988 break; 989 } 990 991 return (0); 992 } 993 994 int 995 rt_setgate(struct rtentry *rt, struct sockaddr *gate, u_int rtableid) 996 { 997 int glen = ROUNDUP(gate->sa_len); 998 struct sockaddr *sa; 999 1000 if (rt->rt_gateway == NULL || glen != ROUNDUP(rt->rt_gateway->sa_len)) { 1001 sa = malloc(glen, M_RTABLE, M_NOWAIT); 1002 if (sa == NULL) 1003 return (ENOBUFS); 1004 if (rt->rt_gateway != NULL) { 1005 free(rt->rt_gateway, M_RTABLE, 1006 ROUNDUP(rt->rt_gateway->sa_len)); 1007 } 1008 rt->rt_gateway = sa; 1009 } 1010 memmove(rt->rt_gateway, gate, glen); 1011 1012 if (ISSET(rt->rt_flags, RTF_GATEWAY)) 1013 return (rt_setgwroute(rt, rtableid)); 1014 1015 return (0); 1016 } 1017 1018 /* 1019 * Return the route entry containing the next hop link-layer 1020 * address corresponding to ``rt''. 1021 */ 1022 struct rtentry * 1023 rt_getll(struct rtentry *rt) 1024 { 1025 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 1026 KASSERT(rt->rt_gwroute != NULL); 1027 return (rt->rt_gwroute); 1028 } 1029 1030 return (rt); 1031 } 1032 1033 void 1034 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, 1035 struct sockaddr *netmask) 1036 { 1037 u_char *cp1 = (u_char *)src; 1038 u_char *cp2 = (u_char *)dst; 1039 u_char *cp3 = (u_char *)netmask; 1040 u_char *cplim = cp2 + *cp3; 1041 u_char *cplim2 = cp2 + *cp1; 1042 1043 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ 1044 cp3 += 2; 1045 if (cplim > cplim2) 1046 cplim = cplim2; 1047 while (cp2 < cplim) 1048 *cp2++ = *cp1++ & *cp3++; 1049 if (cp2 < cplim2) 1050 bzero(cp2, cplim2 - cp2); 1051 } 1052 1053 /* 1054 * allocate new sockaddr structure based on the user supplied src and mask 1055 * that is useable for the routing table. 1056 */ 1057 static int 1058 rt_copysa(struct sockaddr *src, struct sockaddr *mask, struct sockaddr **dst) 1059 { 1060 static const u_char maskarray[] = { 1061 0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe }; 1062 struct sockaddr *ndst; 1063 const struct domain *dp; 1064 u_char *csrc, *cdst; 1065 int i, plen; 1066 1067 for (i = 0; (dp = domains[i]) != NULL; i++) { 1068 if (dp->dom_rtoffset == 0) 1069 continue; 1070 if (src->sa_family == dp->dom_family) 1071 break; 1072 } 1073 if (dp == NULL) 1074 return (EAFNOSUPPORT); 1075 1076 if (src->sa_len < dp->dom_sasize) 1077 return (EINVAL); 1078 1079 plen = rtable_satoplen(src->sa_family, mask); 1080 if (plen == -1) 1081 return (EINVAL); 1082 1083 ndst = malloc(dp->dom_sasize, M_RTABLE, M_NOWAIT|M_ZERO); 1084 if (ndst == NULL) 1085 return (ENOBUFS); 1086 1087 ndst->sa_family = src->sa_family; 1088 ndst->sa_len = dp->dom_sasize; 1089 1090 csrc = (u_char *)src + dp->dom_rtoffset; 1091 cdst = (u_char *)ndst + dp->dom_rtoffset; 1092 1093 memcpy(cdst, csrc, plen / 8); 1094 if (plen % 8 != 0) 1095 cdst[plen / 8] = csrc[plen / 8] & maskarray[plen % 8]; 1096 1097 *dst = ndst; 1098 return (0); 1099 } 1100 1101 int 1102 rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst, 1103 unsigned int rdomain) 1104 { 1105 struct ifnet *ifp = ifa->ifa_ifp; 1106 struct rtentry *rt; 1107 struct sockaddr_rtlabel sa_rl; 1108 struct rt_addrinfo info; 1109 uint8_t prio = ifp->if_priority + RTP_STATIC; 1110 int error; 1111 1112 KASSERT(rdomain == rtable_l2(rdomain)); 1113 1114 memset(&info, 0, sizeof(info)); 1115 info.rti_ifa = ifa; 1116 info.rti_flags = flags; 1117 info.rti_info[RTAX_DST] = dst; 1118 if (flags & RTF_LLINFO) 1119 info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl); 1120 else 1121 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 1122 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); 1123 1124 #ifdef MPLS 1125 if ((flags & RTF_MPLS) == RTF_MPLS) 1126 info.rti_mpls = MPLS_OP_POP; 1127 #endif /* MPLS */ 1128 1129 if ((flags & RTF_HOST) == 0) 1130 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1131 1132 if (flags & (RTF_LOCAL|RTF_BROADCAST)) 1133 prio = RTP_LOCAL; 1134 1135 if (flags & RTF_CONNECTED) 1136 prio = ifp->if_priority + RTP_CONNECTED; 1137 1138 error = rtrequest(RTM_ADD, &info, prio, &rt, rdomain); 1139 if (error == 0) { 1140 /* 1141 * A local route is created for every address configured 1142 * on an interface, so use this information to notify 1143 * userland that a new address has been added. 1144 */ 1145 if (flags & RTF_LOCAL) 1146 rtm_addr(RTM_NEWADDR, ifa); 1147 rtm_send(rt, RTM_ADD, 0, rdomain); 1148 rtfree(rt); 1149 } 1150 return (error); 1151 } 1152 1153 int 1154 rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst, 1155 unsigned int rdomain) 1156 { 1157 struct ifnet *ifp = ifa->ifa_ifp; 1158 struct rtentry *rt; 1159 struct mbuf *m = NULL; 1160 struct sockaddr *deldst; 1161 struct rt_addrinfo info; 1162 struct sockaddr_rtlabel sa_rl; 1163 uint8_t prio = ifp->if_priority + RTP_STATIC; 1164 int error; 1165 1166 KASSERT(rdomain == rtable_l2(rdomain)); 1167 1168 if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) { 1169 m = m_get(M_DONTWAIT, MT_SONAME); 1170 if (m == NULL) 1171 return (ENOBUFS); 1172 deldst = mtod(m, struct sockaddr *); 1173 rt_maskedcopy(dst, deldst, ifa->ifa_netmask); 1174 dst = deldst; 1175 } 1176 1177 memset(&info, 0, sizeof(info)); 1178 info.rti_ifa = ifa; 1179 info.rti_flags = flags; 1180 info.rti_info[RTAX_DST] = dst; 1181 if ((flags & RTF_LLINFO) == 0) 1182 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 1183 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); 1184 1185 if ((flags & RTF_HOST) == 0) 1186 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1187 1188 if (flags & (RTF_LOCAL|RTF_BROADCAST)) 1189 prio = RTP_LOCAL; 1190 1191 if (flags & RTF_CONNECTED) 1192 prio = ifp->if_priority + RTP_CONNECTED; 1193 1194 rtable_clearsource(rdomain, ifa->ifa_addr); 1195 error = rtrequest_delete(&info, prio, ifp, &rt, rdomain); 1196 if (error == 0) { 1197 rtm_send(rt, RTM_DELETE, 0, rdomain); 1198 if (flags & RTF_LOCAL) 1199 rtm_addr(RTM_DELADDR, ifa); 1200 rtfree(rt); 1201 } 1202 m_free(m); 1203 1204 return (error); 1205 } 1206 1207 /* 1208 * Add ifa's address as a local rtentry. 1209 */ 1210 int 1211 rt_ifa_addlocal(struct ifaddr *ifa) 1212 { 1213 struct ifnet *ifp = ifa->ifa_ifp; 1214 struct rtentry *rt; 1215 u_int flags = RTF_HOST|RTF_LOCAL; 1216 int error = 0; 1217 1218 /* 1219 * If the configured address correspond to the magical "any" 1220 * address do not add a local route entry because that might 1221 * corrupt the routing tree which uses this value for the 1222 * default routes. 1223 */ 1224 switch (ifa->ifa_addr->sa_family) { 1225 case AF_INET: 1226 if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) 1227 return (0); 1228 break; 1229 #ifdef INET6 1230 case AF_INET6: 1231 if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, 1232 &in6addr_any)) 1233 return (0); 1234 break; 1235 #endif 1236 default: 1237 break; 1238 } 1239 1240 if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) 1241 flags |= RTF_LLINFO; 1242 1243 /* If there is no local entry, allocate one. */ 1244 rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain); 1245 if (rt == NULL || ISSET(rt->rt_flags, flags) != flags) { 1246 error = rt_ifa_add(ifa, flags | RTF_MPATH, ifa->ifa_addr, 1247 ifp->if_rdomain); 1248 } 1249 rtfree(rt); 1250 1251 return (error); 1252 } 1253 1254 /* 1255 * Remove local rtentry of ifa's address if it exists. 1256 */ 1257 int 1258 rt_ifa_dellocal(struct ifaddr *ifa) 1259 { 1260 struct ifnet *ifp = ifa->ifa_ifp; 1261 struct rtentry *rt; 1262 u_int flags = RTF_HOST|RTF_LOCAL; 1263 int error = 0; 1264 1265 /* 1266 * We do not add local routes for such address, so do not bother 1267 * removing them. 1268 */ 1269 switch (ifa->ifa_addr->sa_family) { 1270 case AF_INET: 1271 if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) 1272 return (0); 1273 break; 1274 #ifdef INET6 1275 case AF_INET6: 1276 if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, 1277 &in6addr_any)) 1278 return (0); 1279 break; 1280 #endif 1281 default: 1282 break; 1283 } 1284 1285 if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) 1286 flags |= RTF_LLINFO; 1287 1288 /* 1289 * Before deleting, check if a corresponding local host 1290 * route surely exists. With this check, we can avoid to 1291 * delete an interface direct route whose destination is same 1292 * as the address being removed. This can happen when removing 1293 * a subnet-router anycast address on an interface attached 1294 * to a shared medium. 1295 */ 1296 rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain); 1297 if (rt != NULL && ISSET(rt->rt_flags, flags) == flags) { 1298 error = rt_ifa_del(ifa, flags, ifa->ifa_addr, 1299 ifp->if_rdomain); 1300 } 1301 rtfree(rt); 1302 1303 return (error); 1304 } 1305 1306 /* 1307 * Remove all addresses attached to ``ifa''. 1308 */ 1309 void 1310 rt_ifa_purge(struct ifaddr *ifa) 1311 { 1312 struct ifnet *ifp = ifa->ifa_ifp; 1313 struct rtentry *rt = NULL; 1314 unsigned int rtableid; 1315 int error, af = ifa->ifa_addr->sa_family; 1316 1317 KASSERT(ifp != NULL); 1318 1319 for (rtableid = 0; rtableid < rtmap_limit; rtableid++) { 1320 /* skip rtables that are not in the rdomain of the ifp */ 1321 if (rtable_l2(rtableid) != ifp->if_rdomain) 1322 continue; 1323 1324 do { 1325 error = rtable_walk(rtableid, af, &rt, 1326 rt_ifa_purge_walker, ifa); 1327 if (rt != NULL && error == EEXIST) { 1328 error = rtdeletemsg(rt, ifp, rtableid); 1329 if (error == 0) 1330 error = EAGAIN; 1331 } 1332 rtfree(rt); 1333 rt = NULL; 1334 } while (error == EAGAIN); 1335 1336 if (error == EAFNOSUPPORT) 1337 error = 0; 1338 1339 if (error) 1340 break; 1341 } 1342 } 1343 1344 int 1345 rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid) 1346 { 1347 struct ifaddr *ifa = vifa; 1348 1349 if (rt->rt_ifa == ifa) 1350 return EEXIST; 1351 1352 return 0; 1353 } 1354 1355 /* 1356 * Route timer routines. These routes allow functions to be called 1357 * for various routes at any time. This is useful in supporting 1358 * path MTU discovery and redirect route deletion. 1359 * 1360 * This is similar to some BSDI internal functions, but it provides 1361 * for multiple queues for efficiency's sake... 1362 */ 1363 1364 LIST_HEAD(, rttimer_queue) rttimer_queue_head; 1365 1366 #define RTTIMER_CALLOUT(r) { \ 1367 if (r->rtt_func != NULL) { \ 1368 (*r->rtt_func)(r->rtt_rt, r); \ 1369 } else { \ 1370 struct ifnet *ifp; \ 1371 \ 1372 ifp = if_get(r->rtt_rt->rt_ifidx); \ 1373 if (ifp != NULL) \ 1374 rtdeletemsg(r->rtt_rt, ifp, r->rtt_tableid); \ 1375 if_put(ifp); \ 1376 } \ 1377 } 1378 1379 /* 1380 * Some subtle order problems with domain initialization mean that 1381 * we cannot count on this being run from rt_init before various 1382 * protocol initializations are done. Therefore, we make sure 1383 * that this is run when the first queue is added... 1384 */ 1385 1386 void 1387 rt_timer_init(void) 1388 { 1389 static struct timeout rt_timer_timeout; 1390 1391 pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 1392 IPL_MPFLOOR, 0, "rttmr", NULL); 1393 pool_init(&rttimer_queue_pool, sizeof(struct rttimer_queue), 0, 1394 IPL_MPFLOOR, 0, "rttmrq", NULL); 1395 1396 LIST_INIT(&rttimer_queue_head); 1397 timeout_set_proc(&rt_timer_timeout, rt_timer_timer, &rt_timer_timeout); 1398 timeout_add_sec(&rt_timer_timeout, 1); 1399 } 1400 1401 struct rttimer_queue * 1402 rt_timer_queue_create(int timeout) 1403 { 1404 struct rttimer_queue *rtq; 1405 1406 rtq = pool_get(&rttimer_queue_pool, PR_WAITOK | PR_ZERO); 1407 1408 rtq->rtq_timeout = timeout; 1409 rtq->rtq_count = 0; 1410 TAILQ_INIT(&rtq->rtq_head); 1411 LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link); 1412 1413 return (rtq); 1414 } 1415 1416 void 1417 rt_timer_queue_change(struct rttimer_queue *rtq, int timeout) 1418 { 1419 rtq->rtq_timeout = timeout; 1420 } 1421 1422 void 1423 rt_timer_queue_destroy(struct rttimer_queue *rtq) 1424 { 1425 struct rttimer *r; 1426 1427 NET_ASSERT_LOCKED(); 1428 1429 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) { 1430 LIST_REMOVE(r, rtt_link); 1431 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); 1432 RTTIMER_CALLOUT(r); 1433 pool_put(&rttimer_pool, r); 1434 if (rtq->rtq_count > 0) 1435 rtq->rtq_count--; 1436 else 1437 printf("rt_timer_queue_destroy: rtq_count reached 0\n"); 1438 } 1439 1440 LIST_REMOVE(rtq, rtq_link); 1441 pool_put(&rttimer_queue_pool, rtq); 1442 } 1443 1444 unsigned long 1445 rt_timer_queue_count(struct rttimer_queue *rtq) 1446 { 1447 return (rtq->rtq_count); 1448 } 1449 1450 void 1451 rt_timer_remove_all(struct rtentry *rt) 1452 { 1453 struct rttimer *r; 1454 1455 while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) { 1456 LIST_REMOVE(r, rtt_link); 1457 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); 1458 if (r->rtt_queue->rtq_count > 0) 1459 r->rtt_queue->rtq_count--; 1460 else 1461 printf("rt_timer_remove_all: rtq_count reached 0\n"); 1462 pool_put(&rttimer_pool, r); 1463 } 1464 } 1465 1466 int 1467 rt_timer_add(struct rtentry *rt, void (*func)(struct rtentry *, 1468 struct rttimer *), struct rttimer_queue *queue, u_int rtableid) 1469 { 1470 struct rttimer *r; 1471 time_t current_time; 1472 1473 current_time = getuptime(); 1474 rt->rt_expire = current_time + queue->rtq_timeout; 1475 1476 /* 1477 * If there's already a timer with this action, destroy it before 1478 * we add a new one. 1479 */ 1480 LIST_FOREACH(r, &rt->rt_timer, rtt_link) { 1481 if (r->rtt_func == func) { 1482 LIST_REMOVE(r, rtt_link); 1483 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); 1484 if (r->rtt_queue->rtq_count > 0) 1485 r->rtt_queue->rtq_count--; 1486 else 1487 printf("rt_timer_add: rtq_count reached 0\n"); 1488 pool_put(&rttimer_pool, r); 1489 break; /* only one per list, so we can quit... */ 1490 } 1491 } 1492 1493 r = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO); 1494 if (r == NULL) 1495 return (ENOBUFS); 1496 1497 r->rtt_rt = rt; 1498 r->rtt_time = current_time; 1499 r->rtt_func = func; 1500 r->rtt_queue = queue; 1501 r->rtt_tableid = rtableid; 1502 LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link); 1503 TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next); 1504 r->rtt_queue->rtq_count++; 1505 1506 return (0); 1507 } 1508 1509 void 1510 rt_timer_timer(void *arg) 1511 { 1512 struct timeout *to = (struct timeout *)arg; 1513 struct rttimer_queue *rtq; 1514 struct rttimer *r; 1515 time_t current_time; 1516 1517 current_time = getuptime(); 1518 1519 NET_LOCK(); 1520 LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) { 1521 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL && 1522 (r->rtt_time + rtq->rtq_timeout) < current_time) { 1523 LIST_REMOVE(r, rtt_link); 1524 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); 1525 RTTIMER_CALLOUT(r); 1526 pool_put(&rttimer_pool, r); 1527 if (rtq->rtq_count > 0) 1528 rtq->rtq_count--; 1529 else 1530 printf("rt_timer_timer: rtq_count reached 0\n"); 1531 } 1532 } 1533 NET_UNLOCK(); 1534 1535 timeout_add_sec(to, 1); 1536 } 1537 1538 #ifdef MPLS 1539 int 1540 rt_mpls_set(struct rtentry *rt, struct sockaddr *src, uint8_t op) 1541 { 1542 struct sockaddr_mpls *psa_mpls = (struct sockaddr_mpls *)src; 1543 struct rt_mpls *rt_mpls; 1544 1545 if (psa_mpls == NULL && op != MPLS_OP_POP) 1546 return (EOPNOTSUPP); 1547 if (psa_mpls != NULL && psa_mpls->smpls_len != sizeof(*psa_mpls)) 1548 return (EINVAL); 1549 if (psa_mpls != NULL && psa_mpls->smpls_family != AF_MPLS) 1550 return (EAFNOSUPPORT); 1551 1552 rt->rt_llinfo = malloc(sizeof(struct rt_mpls), M_TEMP, M_NOWAIT|M_ZERO); 1553 if (rt->rt_llinfo == NULL) 1554 return (ENOMEM); 1555 1556 rt_mpls = (struct rt_mpls *)rt->rt_llinfo; 1557 if (psa_mpls != NULL) 1558 rt_mpls->mpls_label = psa_mpls->smpls_label; 1559 rt_mpls->mpls_operation = op; 1560 /* XXX: set experimental bits */ 1561 rt->rt_flags |= RTF_MPLS; 1562 1563 return (0); 1564 } 1565 1566 void 1567 rt_mpls_clear(struct rtentry *rt) 1568 { 1569 if (rt->rt_llinfo != NULL && rt->rt_flags & RTF_MPLS) { 1570 free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls)); 1571 rt->rt_llinfo = NULL; 1572 } 1573 rt->rt_flags &= ~RTF_MPLS; 1574 } 1575 #endif 1576 1577 u_int16_t 1578 rtlabel_name2id(char *name) 1579 { 1580 struct rt_label *label, *p; 1581 u_int16_t new_id = 1; 1582 1583 if (!name[0]) 1584 return (0); 1585 1586 TAILQ_FOREACH(label, &rt_labels, rtl_entry) 1587 if (strcmp(name, label->rtl_name) == 0) { 1588 label->rtl_ref++; 1589 return (label->rtl_id); 1590 } 1591 1592 /* 1593 * to avoid fragmentation, we do a linear search from the beginning 1594 * and take the first free slot we find. if there is none or the list 1595 * is empty, append a new entry at the end. 1596 */ 1597 TAILQ_FOREACH(p, &rt_labels, rtl_entry) { 1598 if (p->rtl_id != new_id) 1599 break; 1600 new_id = p->rtl_id + 1; 1601 } 1602 if (new_id > LABELID_MAX) 1603 return (0); 1604 1605 label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO); 1606 if (label == NULL) 1607 return (0); 1608 strlcpy(label->rtl_name, name, sizeof(label->rtl_name)); 1609 label->rtl_id = new_id; 1610 label->rtl_ref++; 1611 1612 if (p != NULL) /* insert new entry before p */ 1613 TAILQ_INSERT_BEFORE(p, label, rtl_entry); 1614 else /* either list empty or no free slot in between */ 1615 TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry); 1616 1617 return (label->rtl_id); 1618 } 1619 1620 const char * 1621 rtlabel_id2name(u_int16_t id) 1622 { 1623 struct rt_label *label; 1624 1625 TAILQ_FOREACH(label, &rt_labels, rtl_entry) 1626 if (label->rtl_id == id) 1627 return (label->rtl_name); 1628 1629 return (NULL); 1630 } 1631 1632 struct sockaddr * 1633 rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl) 1634 { 1635 const char *label; 1636 1637 if (labelid == 0 || (label = rtlabel_id2name(labelid)) == NULL) 1638 return (NULL); 1639 1640 bzero(sa_rl, sizeof(*sa_rl)); 1641 sa_rl->sr_len = sizeof(*sa_rl); 1642 sa_rl->sr_family = AF_UNSPEC; 1643 strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label)); 1644 1645 return ((struct sockaddr *)sa_rl); 1646 } 1647 1648 void 1649 rtlabel_unref(u_int16_t id) 1650 { 1651 struct rt_label *p, *next; 1652 1653 if (id == 0) 1654 return; 1655 1656 TAILQ_FOREACH_SAFE(p, &rt_labels, rtl_entry, next) { 1657 if (id == p->rtl_id) { 1658 if (--p->rtl_ref == 0) { 1659 TAILQ_REMOVE(&rt_labels, p, rtl_entry); 1660 free(p, M_RTABLE, sizeof(*p)); 1661 } 1662 break; 1663 } 1664 } 1665 } 1666 1667 int 1668 rt_if_track(struct ifnet *ifp) 1669 { 1670 unsigned int rtableid; 1671 struct rtentry *rt = NULL; 1672 int i, error = 0; 1673 1674 for (rtableid = 0; rtableid < rtmap_limit; rtableid++) { 1675 /* skip rtables that are not in the rdomain of the ifp */ 1676 if (rtable_l2(rtableid) != ifp->if_rdomain) 1677 continue; 1678 for (i = 1; i <= AF_MAX; i++) { 1679 if (!rtable_mpath_capable(rtableid, i)) 1680 continue; 1681 1682 do { 1683 error = rtable_walk(rtableid, i, &rt, 1684 rt_if_linkstate_change, ifp); 1685 if (rt != NULL && error == EEXIST) { 1686 error = rtdeletemsg(rt, ifp, rtableid); 1687 if (error == 0) 1688 error = EAGAIN; 1689 } 1690 rtfree(rt); 1691 rt = NULL; 1692 } while (error == EAGAIN); 1693 1694 if (error == EAFNOSUPPORT) 1695 error = 0; 1696 1697 if (error) 1698 break; 1699 } 1700 } 1701 1702 return (error); 1703 } 1704 1705 int 1706 rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id) 1707 { 1708 struct ifnet *ifp = arg; 1709 struct sockaddr_in6 sa_mask; 1710 int error; 1711 1712 if (rt->rt_ifidx != ifp->if_index) 1713 return (0); 1714 1715 /* Local routes are always usable. */ 1716 if (rt->rt_flags & RTF_LOCAL) { 1717 rt->rt_flags |= RTF_UP; 1718 return (0); 1719 } 1720 1721 if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) { 1722 if (ISSET(rt->rt_flags, RTF_UP)) 1723 return (0); 1724 1725 /* bring route up */ 1726 rt->rt_flags |= RTF_UP; 1727 error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt), 1728 rt->rt_priority & RTP_MASK, rt); 1729 } else { 1730 /* 1731 * Remove redirected and cloned routes (mainly ARP) 1732 * from down interfaces so we have a chance to get 1733 * new routes from a better source. 1734 */ 1735 if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) && 1736 !ISSET(rt->rt_flags, RTF_CACHED|RTF_BFD)) { 1737 return (EEXIST); 1738 } 1739 1740 if (!ISSET(rt->rt_flags, RTF_UP)) 1741 return (0); 1742 1743 /* take route down */ 1744 rt->rt_flags &= ~RTF_UP; 1745 error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt), 1746 rt->rt_priority | RTP_DOWN, rt); 1747 } 1748 if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask)); 1749 1750 return (error); 1751 } 1752 1753 struct sockaddr * 1754 rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask) 1755 { 1756 struct sockaddr_in *sin = (struct sockaddr_in *)sa_mask; 1757 #ifdef INET6 1758 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa_mask; 1759 #endif 1760 1761 KASSERT(plen >= 0 || plen == -1); 1762 1763 if (plen == -1) 1764 return (NULL); 1765 1766 memset(sa_mask, 0, sizeof(*sa_mask)); 1767 1768 switch (af) { 1769 case AF_INET: 1770 sin->sin_family = AF_INET; 1771 sin->sin_len = sizeof(struct sockaddr_in); 1772 in_prefixlen2mask(&sin->sin_addr, plen); 1773 break; 1774 #ifdef INET6 1775 case AF_INET6: 1776 sin6->sin6_family = AF_INET6; 1777 sin6->sin6_len = sizeof(struct sockaddr_in6); 1778 in6_prefixlen2mask(&sin6->sin6_addr, plen); 1779 break; 1780 #endif /* INET6 */ 1781 default: 1782 return (NULL); 1783 } 1784 1785 return ((struct sockaddr *)sa_mask); 1786 } 1787 1788 struct sockaddr * 1789 rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask) 1790 { 1791 return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask)); 1792 } 1793 1794 #ifdef DDB 1795 #include <machine/db_machdep.h> 1796 #include <ddb/db_output.h> 1797 1798 void 1799 db_print_sa(struct sockaddr *sa) 1800 { 1801 int len; 1802 u_char *p; 1803 1804 if (sa == NULL) { 1805 db_printf("[NULL]"); 1806 return; 1807 } 1808 1809 p = (u_char *)sa; 1810 len = sa->sa_len; 1811 db_printf("["); 1812 while (len > 0) { 1813 db_printf("%d", *p); 1814 p++; 1815 len--; 1816 if (len) 1817 db_printf(","); 1818 } 1819 db_printf("]\n"); 1820 } 1821 1822 void 1823 db_print_ifa(struct ifaddr *ifa) 1824 { 1825 if (ifa == NULL) 1826 return; 1827 db_printf(" ifa_addr="); 1828 db_print_sa(ifa->ifa_addr); 1829 db_printf(" ifa_dsta="); 1830 db_print_sa(ifa->ifa_dstaddr); 1831 db_printf(" ifa_mask="); 1832 db_print_sa(ifa->ifa_netmask); 1833 db_printf(" flags=0x%x, refcnt=%d, metric=%d\n", 1834 ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric); 1835 } 1836 1837 /* 1838 * Function to pass to rtable_walk(). 1839 * Return non-zero error to abort walk. 1840 */ 1841 int 1842 db_show_rtentry(struct rtentry *rt, void *w, unsigned int id) 1843 { 1844 db_printf("rtentry=%p", rt); 1845 1846 db_printf(" flags=0x%x refcnt=%d use=%llu expire=%lld rtableid=%u\n", 1847 rt->rt_flags, rt->rt_refcnt, rt->rt_use, rt->rt_expire, id); 1848 1849 db_printf(" key="); db_print_sa(rt_key(rt)); 1850 db_printf(" plen=%d", rt_plen(rt)); 1851 db_printf(" gw="); db_print_sa(rt->rt_gateway); 1852 db_printf(" ifidx=%u ", rt->rt_ifidx); 1853 db_printf(" ifa=%p\n", rt->rt_ifa); 1854 db_print_ifa(rt->rt_ifa); 1855 1856 db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo); 1857 return (0); 1858 } 1859 1860 /* 1861 * Function to print all the route trees. 1862 * Use this from ddb: "call db_show_arptab" 1863 */ 1864 int 1865 db_show_arptab(void) 1866 { 1867 db_printf("Route tree for AF_INET\n"); 1868 rtable_walk(0, AF_INET, NULL, db_show_rtentry, NULL); 1869 return (0); 1870 } 1871 #endif /* DDB */ 1872