xref: /openbsd-src/sys/net/route.c (revision 7350f337b9e3eb4461d99580e625c7ef148d107c)
1 /*	$OpenBSD: route.c,v 1.386 2019/06/21 17:11:42 mpi Exp $	*/
2 /*	$NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1980, 1986, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)route.c	8.2 (Berkeley) 11/15/93
62  */
63 
64 /*
65  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
66  *
67  * NRL grants permission for redistribution and use in source and binary
68  * forms, with or without modification, of the software and documentation
69  * created at NRL provided that the following conditions are met:
70  *
71  * 1. Redistributions of source code must retain the above copyright
72  *    notice, this list of conditions and the following disclaimer.
73  * 2. Redistributions in binary form must reproduce the above copyright
74  *    notice, this list of conditions and the following disclaimer in the
75  *    documentation and/or other materials provided with the distribution.
76  * 3. All advertising materials mentioning features or use of this software
77  *    must display the following acknowledgements:
78  *	This product includes software developed by the University of
79  *	California, Berkeley and its contributors.
80  *	This product includes software developed at the Information
81  *	Technology Division, US Naval Research Laboratory.
82  * 4. Neither the name of the NRL nor the names of its contributors
83  *    may be used to endorse or promote products derived from this software
84  *    without specific prior written permission.
85  *
86  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
87  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
88  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
89  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
90  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
91  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
92  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
93  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
94  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
95  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
96  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
97  *
98  * The views and conclusions contained in the software and documentation
99  * are those of the authors and should not be interpreted as representing
100  * official policies, either expressed or implied, of the US Naval
101  * Research Laboratory (NRL).
102  */
103 
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/mbuf.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/timeout.h>
110 #include <sys/domain.h>
111 #include <sys/protosw.h>
112 #include <sys/ioctl.h>
113 #include <sys/kernel.h>
114 #include <sys/queue.h>
115 #include <sys/pool.h>
116 #include <sys/atomic.h>
117 
118 #include <net/if.h>
119 #include <net/if_var.h>
120 #include <net/if_dl.h>
121 #include <net/route.h>
122 
123 #include <netinet/in.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/in_var.h>
126 
127 #ifdef INET6
128 #include <netinet/ip6.h>
129 #include <netinet6/ip6_var.h>
130 #include <netinet6/in6_var.h>
131 #endif
132 
133 #ifdef MPLS
134 #include <netmpls/mpls.h>
135 #endif
136 
137 #ifdef BFD
138 #include <net/bfd.h>
139 #endif
140 
141 #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
142 
143 /* Give some jitter to hash, to avoid synchronization between routers. */
144 static uint32_t		rt_hashjitter;
145 
146 extern unsigned int	rtmap_limit;
147 
148 struct cpumem *		rtcounters;
149 int			rttrash;	/* routes not in table but not freed */
150 int			ifatrash;	/* ifas not in ifp list but not free */
151 
152 struct pool		rtentry_pool;	/* pool for rtentry structures */
153 struct pool		rttimer_pool;	/* pool for rttimer structures */
154 
155 void	rt_timer_init(void);
156 int	rt_setgwroute(struct rtentry *, u_int);
157 void	rt_putgwroute(struct rtentry *);
158 int	rtflushclone1(struct rtentry *, void *, u_int);
159 int	rtflushclone(struct ifnet *ifp, struct rtentry *, unsigned int);
160 int	rt_ifa_purge_walker(struct rtentry *, void *, unsigned int);
161 struct rtentry *rt_match(struct sockaddr *, uint32_t *, int, unsigned int);
162 int	rt_clone(struct rtentry **, struct sockaddr *, unsigned int);
163 struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *);
164 static int rt_copysa(struct sockaddr *, struct sockaddr *, struct sockaddr **);
165 
166 #ifdef DDB
167 void	db_print_sa(struct sockaddr *);
168 void	db_print_ifa(struct ifaddr *);
169 int	db_show_rtentry(struct rtentry *, void *, unsigned int);
170 #endif
171 
172 #define	LABELID_MAX	50000
173 
174 struct rt_label {
175 	TAILQ_ENTRY(rt_label)	rtl_entry;
176 	char			rtl_name[RTLABEL_LEN];
177 	u_int16_t		rtl_id;
178 	int			rtl_ref;
179 };
180 
181 TAILQ_HEAD(rt_labels, rt_label)	rt_labels = TAILQ_HEAD_INITIALIZER(rt_labels);
182 
183 void
184 route_init(void)
185 {
186 	rtcounters = counters_alloc(rts_ncounters);
187 
188 	pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_SOFTNET, 0,
189 	    "rtentry", NULL);
190 
191 	while (rt_hashjitter == 0)
192 		rt_hashjitter = arc4random();
193 
194 #ifdef BFD
195 	bfdinit();
196 #endif
197 }
198 
199 /*
200  * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise.
201  */
202 int
203 rtisvalid(struct rtentry *rt)
204 {
205 	if (rt == NULL)
206 		return (0);
207 
208 	if (!ISSET(rt->rt_flags, RTF_UP))
209 		return (0);
210 
211 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
212 		KASSERT(rt->rt_gwroute != NULL);
213 		KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY));
214 		if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP))
215 			return (0);
216 	}
217 
218 	return (1);
219 }
220 
221 /*
222  * Do the actual lookup for rtalloc(9), do not use directly!
223  *
224  * Return the best matching entry for the destination ``dst''.
225  *
226  * "RT_RESOLVE" means that a corresponding L2 entry should
227  *   be added to the routing table and resolved (via ARP or
228  *   NDP), if it does not exist.
229  */
230 struct rtentry *
231 rt_match(struct sockaddr *dst, uint32_t *src, int flags, unsigned int tableid)
232 {
233 	struct rtentry		*rt = NULL;
234 
235 	rt = rtable_match(tableid, dst, src);
236 	if (rt == NULL) {
237 		rtstat_inc(rts_unreach);
238 		return (NULL);
239 	}
240 
241 	if (ISSET(rt->rt_flags, RTF_CLONING) && ISSET(flags, RT_RESOLVE))
242 		rt_clone(&rt, dst, tableid);
243 
244 	rt->rt_use++;
245 	return (rt);
246 }
247 
248 int
249 rt_clone(struct rtentry **rtp, struct sockaddr *dst, unsigned int rtableid)
250 {
251 	struct rt_addrinfo	 info;
252 	struct rtentry		*rt = *rtp;
253 	int			 error = 0;
254 
255 	memset(&info, 0, sizeof(info));
256 	info.rti_info[RTAX_DST] = dst;
257 
258 	/*
259 	 * The priority of cloned route should be different
260 	 * to avoid conflict with /32 cloning routes.
261 	 *
262 	 * It should also be higher to let the ARP layer find
263 	 * cloned routes instead of the cloning one.
264 	 */
265 	KERNEL_LOCK();
266 	error = rtrequest(RTM_RESOLVE, &info, rt->rt_priority - 1, &rt,
267 	    rtableid);
268 	KERNEL_UNLOCK();
269 	if (error) {
270 		rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, error, rtableid);
271 	} else {
272 		/* Inform listeners of the new route */
273 		rtm_send(rt, RTM_ADD, 0, rtableid);
274 		rtfree(*rtp);
275 		*rtp = rt;
276 	}
277 	return (error);
278 }
279 
280 /*
281  * Originated from bridge_hash() in if_bridge.c
282  */
283 #define mix(a, b, c) do {						\
284 	a -= b; a -= c; a ^= (c >> 13);					\
285 	b -= c; b -= a; b ^= (a << 8);					\
286 	c -= a; c -= b; c ^= (b >> 13);					\
287 	a -= b; a -= c; a ^= (c >> 12);					\
288 	b -= c; b -= a; b ^= (a << 16);					\
289 	c -= a; c -= b; c ^= (b >> 5);					\
290 	a -= b; a -= c; a ^= (c >> 3);					\
291 	b -= c; b -= a; b ^= (a << 10);					\
292 	c -= a; c -= b; c ^= (b >> 15);					\
293 } while (0)
294 
295 int
296 rt_hash(struct rtentry *rt, struct sockaddr *dst, uint32_t *src)
297 {
298 	uint32_t a, b, c;
299 
300 	if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH))
301 		return (-1);
302 
303 	a = b = 0x9e3779b9;
304 	c = rt_hashjitter;
305 
306 	switch (dst->sa_family) {
307 	case AF_INET:
308 	    {
309 		struct sockaddr_in *sin;
310 
311 		if (!ipmultipath)
312 			return (-1);
313 
314 		sin = satosin(dst);
315 		a += sin->sin_addr.s_addr;
316 		b += (src != NULL) ? src[0] : 0;
317 		mix(a, b, c);
318 		break;
319 	    }
320 #ifdef INET6
321 	case AF_INET6:
322 	    {
323 		struct sockaddr_in6 *sin6;
324 
325 		if (!ip6_multipath)
326 			return (-1);
327 
328 		sin6 = satosin6(dst);
329 		a += sin6->sin6_addr.s6_addr32[0];
330 		b += sin6->sin6_addr.s6_addr32[2];
331 		c += (src != NULL) ? src[0] : 0;
332 		mix(a, b, c);
333 		a += sin6->sin6_addr.s6_addr32[1];
334 		b += sin6->sin6_addr.s6_addr32[3];
335 		c += (src != NULL) ? src[1] : 0;
336 		mix(a, b, c);
337 		a += sin6->sin6_addr.s6_addr32[2];
338 		b += sin6->sin6_addr.s6_addr32[1];
339 		c += (src != NULL) ? src[2] : 0;
340 		mix(a, b, c);
341 		a += sin6->sin6_addr.s6_addr32[3];
342 		b += sin6->sin6_addr.s6_addr32[0];
343 		c += (src != NULL) ? src[3] : 0;
344 		mix(a, b, c);
345 		break;
346 	    }
347 #endif /* INET6 */
348 	}
349 
350 	return (c & 0xffff);
351 }
352 
353 /*
354  * Allocate a route, potentially using multipath to select the peer.
355  */
356 struct rtentry *
357 rtalloc_mpath(struct sockaddr *dst, uint32_t *src, unsigned int rtableid)
358 {
359 	return (rt_match(dst, src, RT_RESOLVE, rtableid));
360 }
361 
362 /*
363  * Look in the routing table for the best matching entry for
364  * ``dst''.
365  *
366  * If a route with a gateway is found and its next hop is no
367  * longer valid, try to cache it.
368  */
369 struct rtentry *
370 rtalloc(struct sockaddr *dst, int flags, unsigned int rtableid)
371 {
372 	return (rt_match(dst, NULL, flags, rtableid));
373 }
374 
375 /*
376  * Cache the route entry corresponding to a reachable next hop in
377  * the gateway entry ``rt''.
378  */
379 int
380 rt_setgwroute(struct rtentry *rt, u_int rtableid)
381 {
382 	struct rtentry *prt, *nhrt;
383 	unsigned int rdomain = rtable_l2(rtableid);
384 	int error;
385 
386 	NET_ASSERT_LOCKED();
387 
388 	KASSERT(ISSET(rt->rt_flags, RTF_GATEWAY));
389 
390 	/* If we cannot find a valid next hop bail. */
391 	nhrt = rt_match(rt->rt_gateway, NULL, RT_RESOLVE, rdomain);
392 	if (nhrt == NULL)
393 		return (ENOENT);
394 
395 	/* Next hop entry must be on the same interface. */
396 	if (nhrt->rt_ifidx != rt->rt_ifidx) {
397 		struct sockaddr_in6	sa_mask;
398 
399 		if (!ISSET(nhrt->rt_flags, RTF_LLINFO) ||
400 		    !ISSET(nhrt->rt_flags, RTF_CLONED)) {
401 			rtfree(nhrt);
402 			return (EHOSTUNREACH);
403 		}
404 
405 		/*
406 		 * We found a L2 entry, so we might have multiple
407 		 * RTF_CLONING routes for the same subnet.  Query
408 		 * the first route of the multipath chain and iterate
409 		 * until we find the correct one.
410 		 */
411 		prt = rtable_lookup(rdomain, rt_key(nhrt->rt_parent),
412 		    rt_plen2mask(nhrt->rt_parent, &sa_mask), NULL, RTP_ANY);
413 		rtfree(nhrt);
414 
415 		while (prt != NULL && prt->rt_ifidx != rt->rt_ifidx)
416 			prt = rtable_iterate(prt);
417 
418 		/* We found nothing or a non-cloning MPATH route. */
419 		if (prt == NULL || !ISSET(prt->rt_flags, RTF_CLONING)) {
420 			rtfree(prt);
421 			return (EHOSTUNREACH);
422 		}
423 
424 		error = rt_clone(&prt, rt->rt_gateway, rdomain);
425 		if (error) {
426 			rtfree(prt);
427 			return (error);
428 		}
429 		nhrt = prt;
430 	}
431 
432 	/*
433 	 * Next hop must be reachable, this also prevents rtentry
434 	 * loops for example when rt->rt_gwroute points to rt.
435 	 */
436 	if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) {
437 		rtfree(nhrt);
438 		return (ENETUNREACH);
439 	}
440 
441 	/* Next hop is valid so remove possible old cache. */
442 	rt_putgwroute(rt);
443 	KASSERT(rt->rt_gwroute == NULL);
444 
445 	/*
446 	 * If the MTU of next hop is 0, this will reset the MTU of the
447 	 * route to run PMTUD again from scratch.
448 	 */
449 	if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu))
450 		rt->rt_mtu = nhrt->rt_mtu;
451 
452 	/*
453 	 * To avoid reference counting problems when writting link-layer
454 	 * addresses in an outgoing packet, we ensure that the lifetime
455 	 * of a cached entry is greater that the bigger lifetime of the
456 	 * gateway entries it is pointed by.
457 	 */
458 	nhrt->rt_flags |= RTF_CACHED;
459 	nhrt->rt_cachecnt++;
460 
461 	rt->rt_gwroute = nhrt;
462 
463 	return (0);
464 }
465 
466 /*
467  * Invalidate the cached route entry of the gateway entry ``rt''.
468  */
469 void
470 rt_putgwroute(struct rtentry *rt)
471 {
472 	struct rtentry *nhrt = rt->rt_gwroute;
473 
474 	NET_ASSERT_LOCKED();
475 
476 	if (!ISSET(rt->rt_flags, RTF_GATEWAY) || nhrt == NULL)
477 		return;
478 
479 	KASSERT(ISSET(nhrt->rt_flags, RTF_CACHED));
480 	KASSERT(nhrt->rt_cachecnt > 0);
481 
482 	--nhrt->rt_cachecnt;
483 	if (nhrt->rt_cachecnt == 0)
484 		nhrt->rt_flags &= ~RTF_CACHED;
485 
486 	rtfree(rt->rt_gwroute);
487 	rt->rt_gwroute = NULL;
488 }
489 
490 void
491 rtref(struct rtentry *rt)
492 {
493 	atomic_inc_int(&rt->rt_refcnt);
494 }
495 
496 void
497 rtfree(struct rtentry *rt)
498 {
499 	int		 refcnt;
500 
501 	if (rt == NULL)
502 		return;
503 
504 	refcnt = (int)atomic_dec_int_nv(&rt->rt_refcnt);
505 	if (refcnt <= 0) {
506 		KASSERT(!ISSET(rt->rt_flags, RTF_UP));
507 		KASSERT(!RT_ROOT(rt));
508 		atomic_dec_int(&rttrash);
509 		if (refcnt < 0) {
510 			printf("rtfree: %p not freed (neg refs)\n", rt);
511 			return;
512 		}
513 
514 		KERNEL_LOCK();
515 		rt_timer_remove_all(rt);
516 		ifafree(rt->rt_ifa);
517 		rtlabel_unref(rt->rt_labelid);
518 #ifdef MPLS
519 		rt_mpls_clear(rt);
520 #endif
521 		free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len));
522 		free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len);
523 		KERNEL_UNLOCK();
524 
525 		pool_put(&rtentry_pool, rt);
526 	}
527 }
528 
529 void
530 ifafree(struct ifaddr *ifa)
531 {
532 	if (ifa == NULL)
533 		panic("ifafree");
534 	if (ifa->ifa_refcnt == 0) {
535 		ifatrash--;
536 		free(ifa, M_IFADDR, 0);
537 	} else
538 		ifa->ifa_refcnt--;
539 }
540 
541 /*
542  * Force a routing table entry to the specified
543  * destination to go through the given gateway.
544  * Normally called as a result of a routing redirect
545  * message from the network layer.
546  */
547 void
548 rtredirect(struct sockaddr *dst, struct sockaddr *gateway,
549     struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain)
550 {
551 	struct rtentry		*rt;
552 	int			 error = 0;
553 	enum rtstat_counters	 stat = rts_ncounters;
554 	struct rt_addrinfo	 info;
555 	struct ifaddr		*ifa;
556 	unsigned int		 ifidx = 0;
557 	int			 flags = RTF_GATEWAY|RTF_HOST;
558 	uint8_t			 prio = RTP_NONE;
559 
560 	NET_ASSERT_LOCKED();
561 
562 	/* verify the gateway is directly reachable */
563 	rt = rtalloc(gateway, 0, rdomain);
564 	if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY)) {
565 		rtfree(rt);
566 		error = ENETUNREACH;
567 		goto out;
568 	}
569 	ifidx = rt->rt_ifidx;
570 	ifa = rt->rt_ifa;
571 	rtfree(rt);
572 	rt = NULL;
573 
574 	rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY);
575 	/*
576 	 * If the redirect isn't from our current router for this dst,
577 	 * it's either old or wrong.  If it redirects us to ourselves,
578 	 * we have a routing loop, perhaps as a result of an interface
579 	 * going down recently.
580 	 */
581 #define	equal(a1, a2) \
582 	((a1)->sa_len == (a2)->sa_len && \
583 	 bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
584 	if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa))
585 		error = EINVAL;
586 	else if (ifa_ifwithaddr(gateway, rdomain) != NULL ||
587 	    (gateway->sa_family = AF_INET &&
588 	    in_broadcast(satosin(gateway)->sin_addr, rdomain)))
589 		error = EHOSTUNREACH;
590 	if (error)
591 		goto done;
592 	/*
593 	 * Create a new entry if we just got back a wildcard entry
594 	 * or the lookup failed.  This is necessary for hosts
595 	 * which use routing redirects generated by smart gateways
596 	 * to dynamically build the routing tables.
597 	 */
598 	if (rt == NULL)
599 		goto create;
600 	/*
601 	 * Don't listen to the redirect if it's
602 	 * for a route to an interface.
603 	 */
604 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
605 		if (!ISSET(rt->rt_flags, RTF_HOST)) {
606 			/*
607 			 * Changing from route to net => route to host.
608 			 * Create new route, rather than smashing route to net.
609 			 */
610 create:
611 			rtfree(rt);
612 			flags |= RTF_DYNAMIC;
613 			bzero(&info, sizeof(info));
614 			info.rti_info[RTAX_DST] = dst;
615 			info.rti_info[RTAX_GATEWAY] = gateway;
616 			info.rti_ifa = ifa;
617 			info.rti_flags = flags;
618 			rt = NULL;
619 			error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt,
620 			    rdomain);
621 			if (error == 0) {
622 				flags = rt->rt_flags;
623 				prio = rt->rt_priority;
624 			}
625 			stat = rts_dynamic;
626 		} else {
627 			/*
628 			 * Smash the current notion of the gateway to
629 			 * this destination.  Should check about netmask!!!
630 			 */
631 			rt->rt_flags |= RTF_MODIFIED;
632 			flags |= RTF_MODIFIED;
633 			prio = rt->rt_priority;
634 			stat = rts_newgateway;
635 			rt_setgate(rt, gateway, rdomain);
636 		}
637 	} else
638 		error = EHOSTUNREACH;
639 done:
640 	if (rt) {
641 		if (rtp && !error)
642 			*rtp = rt;
643 		else
644 			rtfree(rt);
645 	}
646 out:
647 	if (error)
648 		rtstat_inc(rts_badredirect);
649 	else if (stat != rts_ncounters)
650 		rtstat_inc(stat);
651 	bzero((caddr_t)&info, sizeof(info));
652 	info.rti_info[RTAX_DST] = dst;
653 	info.rti_info[RTAX_GATEWAY] = gateway;
654 	info.rti_info[RTAX_AUTHOR] = src;
655 	rtm_miss(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain);
656 }
657 
658 /*
659  * Delete a route and generate a message
660  */
661 int
662 rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid)
663 {
664 	int			error;
665 	struct rt_addrinfo	info;
666 	struct sockaddr_in6	sa_mask;
667 
668 	KASSERT(rt->rt_ifidx == ifp->if_index);
669 
670 	/*
671 	 * Request the new route so that the entry is not actually
672 	 * deleted.  That will allow the information being reported to
673 	 * be accurate (and consistent with route_output()).
674 	 */
675 	memset(&info, 0, sizeof(info));
676 	info.rti_info[RTAX_DST] = rt_key(rt);
677 	info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
678 	if (!ISSET(rt->rt_flags, RTF_HOST))
679 		info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask);
680 	error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid);
681 	rtm_send(rt, RTM_DELETE, error, tableid);
682 	if (error == 0)
683 		rtfree(rt);
684 	return (error);
685 }
686 
687 static inline int
688 rtequal(struct rtentry *a, struct rtentry *b)
689 {
690 	if (a == b)
691 		return 1;
692 
693 	if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 &&
694 	    rt_plen(a) == rt_plen(b))
695 		return 1;
696 	else
697 		return 0;
698 }
699 
700 int
701 rtflushclone1(struct rtentry *rt, void *arg, u_int id)
702 {
703 	struct rtentry *cloningrt = arg;
704 	struct ifnet *ifp;
705 
706 	if (!ISSET(rt->rt_flags, RTF_CLONED))
707 		return 0;
708 
709 	/* Cached route must stay alive as long as their parent are alive. */
710 	if (ISSET(rt->rt_flags, RTF_CACHED) && (rt->rt_parent != cloningrt))
711 		return 0;
712 
713 	if (!rtequal(rt->rt_parent, cloningrt))
714 		return 0;
715 	/*
716 	 * This happens when an interface with a RTF_CLONING route is
717 	 * being detached.  In this case it's safe to bail because all
718 	 * the routes are being purged by rt_ifa_purge().
719 	 */
720 	ifp = if_get(rt->rt_ifidx);
721 	if (ifp == NULL)
722 	        return 0;
723 
724 	if_put(ifp);
725 	return EEXIST;
726 }
727 
728 int
729 rtflushclone(struct ifnet *ifp, struct rtentry *parent, unsigned int rtableid)
730 {
731 	struct rtentry *rt = NULL;
732 	int error;
733 
734 #ifdef DIAGNOSTIC
735 	if (!parent || (parent->rt_flags & RTF_CLONING) == 0)
736 		panic("rtflushclone: called with a non-cloning route");
737 #endif
738 
739 	do {
740 		error = rtable_walk(rtableid, rt_key(parent)->sa_family, &rt,
741 		    rtflushclone1, parent);
742 		if (rt != NULL && error == EEXIST) {
743 			error = rtdeletemsg(rt, ifp, rtableid);
744 			if (error == 0)
745 				error = EAGAIN;
746 		}
747 		rtfree(rt);
748 		rt = NULL;
749 	} while (error == EAGAIN);
750 
751 	return error;
752 
753 }
754 
755 int
756 rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp,
757     struct rtentry **ret_nrt, u_int tableid)
758 {
759 	struct rtentry	*rt;
760 	int		 error;
761 
762 	NET_ASSERT_LOCKED();
763 
764 	if (!rtable_exists(tableid))
765 		return (EAFNOSUPPORT);
766 	rt = rtable_lookup(tableid, info->rti_info[RTAX_DST],
767 	    info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio);
768 	if (rt == NULL)
769 		return (ESRCH);
770 
771 	/* Make sure that's the route the caller want to delete. */
772 	if (ifp != NULL && ifp->if_index != rt->rt_ifidx) {
773 		rtfree(rt);
774 		return (ESRCH);
775 	}
776 
777 #ifdef BFD
778 	if (ISSET(rt->rt_flags, RTF_BFD))
779 		bfdclear(rt);
780 #endif
781 
782 	error = rtable_delete(tableid, info->rti_info[RTAX_DST],
783 	    info->rti_info[RTAX_NETMASK], rt);
784 	if (error != 0) {
785 		rtfree(rt);
786 		return (ESRCH);
787 	}
788 
789 	/* Release next hop cache before flushing cloned entries. */
790 	rt_putgwroute(rt);
791 
792 	/* Clean up any cloned children. */
793 	if (ISSET(rt->rt_flags, RTF_CLONING))
794 		rtflushclone(ifp, rt, tableid);
795 
796 	rtfree(rt->rt_parent);
797 	rt->rt_parent = NULL;
798 
799 	rt->rt_flags &= ~RTF_UP;
800 
801 	KASSERT(ifp->if_index == rt->rt_ifidx);
802 	ifp->if_rtrequest(ifp, RTM_DELETE, rt);
803 
804 	atomic_inc_int(&rttrash);
805 
806 	if (ret_nrt != NULL)
807 		*ret_nrt = rt;
808 	else
809 		rtfree(rt);
810 
811 	return (0);
812 }
813 
814 int
815 rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio,
816     struct rtentry **ret_nrt, u_int tableid)
817 {
818 	struct ifnet		*ifp;
819 	struct rtentry		*rt, *crt;
820 	struct ifaddr		*ifa;
821 	struct sockaddr		*ndst;
822 	struct sockaddr_rtlabel	*sa_rl, sa_rl2;
823 	struct sockaddr_dl	 sa_dl = { sizeof(sa_dl), AF_LINK };
824 	int			 error;
825 
826 	NET_ASSERT_LOCKED();
827 
828 	if (!rtable_exists(tableid))
829 		return (EAFNOSUPPORT);
830 	if (info->rti_flags & RTF_HOST)
831 		info->rti_info[RTAX_NETMASK] = NULL;
832 	switch (req) {
833 	case RTM_DELETE:
834 		return (EINVAL);
835 
836 	case RTM_RESOLVE:
837 		if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
838 			return (EINVAL);
839 		if ((rt->rt_flags & RTF_CLONING) == 0)
840 			return (EINVAL);
841 		KASSERT(rt->rt_ifa->ifa_ifp != NULL);
842 		info->rti_ifa = rt->rt_ifa;
843 		info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST);
844 		info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC);
845 		info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl);
846 		info->rti_info[RTAX_LABEL] =
847 		    rtlabel_id2sa(rt->rt_labelid, &sa_rl2);
848 		/* FALLTHROUGH */
849 
850 	case RTM_ADD:
851 		if (info->rti_ifa == NULL)
852 			return (EINVAL);
853 		ifa = info->rti_ifa;
854 		ifp = ifa->ifa_ifp;
855 		if (prio == 0)
856 			prio = ifp->if_priority + RTP_STATIC;
857 
858 		error = rt_copysa(info->rti_info[RTAX_DST],
859 		    info->rti_info[RTAX_NETMASK], &ndst);
860 		if (error)
861 			return (error);
862 
863 		rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO);
864 		if (rt == NULL) {
865 			free(ndst, M_RTABLE, ndst->sa_len);
866 			return (ENOBUFS);
867 		}
868 
869 		rt->rt_refcnt = 1;
870 		rt->rt_flags = info->rti_flags | RTF_UP;
871 		rt->rt_priority = prio;	/* init routing priority */
872 		LIST_INIT(&rt->rt_timer);
873 
874 		/* Check the link state if the table supports it. */
875 		if (rtable_mpath_capable(tableid, ndst->sa_family) &&
876 		    !ISSET(rt->rt_flags, RTF_LOCAL) &&
877 		    (!LINK_STATE_IS_UP(ifp->if_link_state) ||
878 		    !ISSET(ifp->if_flags, IFF_UP))) {
879 			rt->rt_flags &= ~RTF_UP;
880 			rt->rt_priority |= RTP_DOWN;
881 		}
882 
883 		if (info->rti_info[RTAX_LABEL] != NULL) {
884 			sa_rl = (struct sockaddr_rtlabel *)
885 			    info->rti_info[RTAX_LABEL];
886 			rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label);
887 		}
888 
889 #ifdef MPLS
890 		/* We have to allocate additional space for MPLS infos */
891 		if (info->rti_flags & RTF_MPLS &&
892 		    (info->rti_info[RTAX_SRC] != NULL ||
893 		    info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) {
894 			error = rt_mpls_set(rt, info->rti_info[RTAX_SRC],
895 			    info->rti_mpls);
896 			if (error) {
897 				free(ndst, M_RTABLE, ndst->sa_len);
898 				pool_put(&rtentry_pool, rt);
899 				return (error);
900 			}
901 		} else
902 			rt_mpls_clear(rt);
903 #endif
904 
905 		ifa->ifa_refcnt++;
906 		rt->rt_ifa = ifa;
907 		rt->rt_ifidx = ifp->if_index;
908 		/*
909 		 * Copy metrics and a back pointer from the cloned
910 		 * route's parent.
911 		 */
912 		if (ISSET(rt->rt_flags, RTF_CLONED)) {
913 			rtref(*ret_nrt);
914 			rt->rt_parent = *ret_nrt;
915 			rt->rt_rmx = (*ret_nrt)->rt_rmx;
916 		}
917 
918 		/*
919 		 * We must set rt->rt_gateway before adding ``rt'' to
920 		 * the routing table because the radix MPATH code use
921 		 * it to (re)order routes.
922 		 */
923 		if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY],
924 		    tableid))) {
925 			ifafree(ifa);
926 			rtfree(rt->rt_parent);
927 			rt_putgwroute(rt);
928 			free(rt->rt_gateway, M_RTABLE, 0);
929 			free(ndst, M_RTABLE, ndst->sa_len);
930 			pool_put(&rtentry_pool, rt);
931 			return (error);
932 		}
933 
934 		error = rtable_insert(tableid, ndst,
935 		    info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY],
936 		    rt->rt_priority, rt);
937 		if (error != 0 &&
938 		    (crt = rtable_match(tableid, ndst, NULL)) != NULL) {
939 			/* overwrite cloned route */
940 			if (ISSET(crt->rt_flags, RTF_CLONED)) {
941 				struct ifnet *cifp;
942 
943 				cifp = if_get(crt->rt_ifidx);
944 				KASSERT(cifp != NULL);
945 				rtdeletemsg(crt, cifp, tableid);
946 				if_put(cifp);
947 
948 				error = rtable_insert(tableid, ndst,
949 				    info->rti_info[RTAX_NETMASK],
950 				    info->rti_info[RTAX_GATEWAY],
951 				    rt->rt_priority, rt);
952 			}
953 			rtfree(crt);
954 		}
955 		if (error != 0) {
956 			ifafree(ifa);
957 			rtfree(rt->rt_parent);
958 			rt_putgwroute(rt);
959 			free(rt->rt_gateway, M_RTABLE, 0);
960 			free(ndst, M_RTABLE, ndst->sa_len);
961 			pool_put(&rtentry_pool, rt);
962 			return (EEXIST);
963 		}
964 		ifp->if_rtrequest(ifp, req, rt);
965 
966 		if_group_routechange(info->rti_info[RTAX_DST],
967 			info->rti_info[RTAX_NETMASK]);
968 
969 		if (ret_nrt != NULL)
970 			*ret_nrt = rt;
971 		else
972 			rtfree(rt);
973 		break;
974 	}
975 
976 	return (0);
977 }
978 
979 int
980 rt_setgate(struct rtentry *rt, struct sockaddr *gate, u_int rtableid)
981 {
982 	int glen = ROUNDUP(gate->sa_len);
983 	struct sockaddr *sa;
984 
985 	if (rt->rt_gateway == NULL || glen != ROUNDUP(rt->rt_gateway->sa_len)) {
986 		sa = malloc(glen, M_RTABLE, M_NOWAIT);
987 		if (sa == NULL)
988 			return (ENOBUFS);
989 		if (rt->rt_gateway != NULL) {
990 			free(rt->rt_gateway, M_RTABLE,
991 			    ROUNDUP(rt->rt_gateway->sa_len));
992 		}
993 		rt->rt_gateway = sa;
994 	}
995 	memmove(rt->rt_gateway, gate, glen);
996 
997 	if (ISSET(rt->rt_flags, RTF_GATEWAY))
998 		return (rt_setgwroute(rt, rtableid));
999 
1000 	return (0);
1001 }
1002 
1003 /*
1004  * Return the route entry containing the next hop link-layer
1005  * address corresponding to ``rt''.
1006  */
1007 struct rtentry *
1008 rt_getll(struct rtentry *rt)
1009 {
1010 	if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
1011 		KASSERT(rt->rt_gwroute != NULL);
1012 		return (rt->rt_gwroute);
1013 	}
1014 
1015 	return (rt);
1016 }
1017 
1018 void
1019 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst,
1020     struct sockaddr *netmask)
1021 {
1022 	u_char	*cp1 = (u_char *)src;
1023 	u_char	*cp2 = (u_char *)dst;
1024 	u_char	*cp3 = (u_char *)netmask;
1025 	u_char	*cplim = cp2 + *cp3;
1026 	u_char	*cplim2 = cp2 + *cp1;
1027 
1028 	*cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
1029 	cp3 += 2;
1030 	if (cplim > cplim2)
1031 		cplim = cplim2;
1032 	while (cp2 < cplim)
1033 		*cp2++ = *cp1++ & *cp3++;
1034 	if (cp2 < cplim2)
1035 		bzero(cp2, cplim2 - cp2);
1036 }
1037 
1038 /*
1039  * allocate new sockaddr structure based on the user supplied src and mask
1040  * that is useable for the routing table.
1041  */
1042 static int
1043 rt_copysa(struct sockaddr *src, struct sockaddr *mask, struct sockaddr **dst)
1044 {
1045 	static const u_char maskarray[] = {
1046 	    0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
1047 	struct sockaddr *ndst;
1048 	struct domain *dp;
1049 	u_char *csrc, *cdst;
1050 	int i, plen;
1051 
1052 	for (i = 0; (dp = domains[i]) != NULL; i++) {
1053 		if (dp->dom_rtoffset == 0)
1054 			continue;
1055 		if (src->sa_family == dp->dom_family)
1056 			break;
1057 	}
1058 	if (dp == NULL)
1059 		return (EAFNOSUPPORT);
1060 
1061 	if (src->sa_len < dp->dom_sasize)
1062 		return (EINVAL);
1063 
1064 	plen = rtable_satoplen(src->sa_family, mask);
1065 	if (plen == -1)
1066 		return (EINVAL);
1067 
1068 	ndst = malloc(dp->dom_sasize, M_RTABLE, M_NOWAIT|M_ZERO);
1069 	if (ndst == NULL)
1070 		return (ENOBUFS);
1071 
1072 	ndst->sa_family = src->sa_family;
1073 	ndst->sa_len = dp->dom_sasize;
1074 
1075 	csrc = (u_char *)src + dp->dom_rtoffset;
1076 	cdst = (u_char *)ndst + dp->dom_rtoffset;
1077 
1078 	memcpy(cdst, csrc, plen / 8);
1079 	if (plen % 8 != 0)
1080 		cdst[plen / 8] = csrc[plen / 8] & maskarray[plen % 8];
1081 
1082 	*dst = ndst;
1083 	return (0);
1084 }
1085 
1086 int
1087 rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst,
1088     unsigned int rdomain)
1089 {
1090 	struct ifnet		*ifp = ifa->ifa_ifp;
1091 	struct rtentry		*rt;
1092 	struct sockaddr_rtlabel	 sa_rl;
1093 	struct rt_addrinfo	 info;
1094 	uint8_t			 prio = ifp->if_priority + RTP_STATIC;
1095 	int			 error;
1096 
1097 	memset(&info, 0, sizeof(info));
1098 	info.rti_ifa = ifa;
1099 	info.rti_flags = flags;
1100 	info.rti_info[RTAX_DST] = dst;
1101 	if (flags & RTF_LLINFO)
1102 		info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl);
1103 	else
1104 		info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1105 
1106 	KASSERT(rdomain == rtable_l2(rdomain));
1107 	if (rdomain == rtable_l2(ifp->if_rtlabelid)) {
1108 		info.rti_info[RTAX_LABEL] =
1109 		    rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
1110 	}
1111 
1112 #ifdef MPLS
1113 	if ((flags & RTF_MPLS) == RTF_MPLS)
1114 		info.rti_mpls = MPLS_OP_POP;
1115 #endif /* MPLS */
1116 
1117 	if ((flags & RTF_HOST) == 0)
1118 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1119 
1120 	if (flags & (RTF_LOCAL|RTF_BROADCAST))
1121 		prio = RTP_LOCAL;
1122 
1123 	if (flags & RTF_CONNECTED)
1124 		prio = ifp->if_priority + RTP_CONNECTED;
1125 
1126 	error = rtrequest(RTM_ADD, &info, prio, &rt, rdomain);
1127 	if (error == 0) {
1128 		/*
1129 		 * A local route is created for every address configured
1130 		 * on an interface, so use this information to notify
1131 		 * userland that a new address has been added.
1132 		 */
1133 		if (flags & RTF_LOCAL)
1134 			rtm_addr(RTM_NEWADDR, ifa);
1135 		rtm_send(rt, RTM_ADD, 0, rdomain);
1136 		rtfree(rt);
1137 	}
1138 	return (error);
1139 }
1140 
1141 int
1142 rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst,
1143     unsigned int rdomain)
1144 {
1145 	struct ifnet		*ifp = ifa->ifa_ifp;
1146 	struct rtentry		*rt;
1147 	struct mbuf		*m = NULL;
1148 	struct sockaddr		*deldst;
1149 	struct rt_addrinfo	 info;
1150 	struct sockaddr_rtlabel	 sa_rl;
1151 	uint8_t			 prio = ifp->if_priority + RTP_STATIC;
1152 	int			 error;
1153 
1154 	if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
1155 		m = m_get(M_DONTWAIT, MT_SONAME);
1156 		if (m == NULL)
1157 			return (ENOBUFS);
1158 		deldst = mtod(m, struct sockaddr *);
1159 		rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
1160 		dst = deldst;
1161 	}
1162 
1163 	memset(&info, 0, sizeof(info));
1164 	info.rti_ifa = ifa;
1165 	info.rti_flags = flags;
1166 	info.rti_info[RTAX_DST] = dst;
1167 	if ((flags & RTF_LLINFO) == 0)
1168 		info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1169 
1170 	if (rdomain == rtable_l2(ifp->if_rtlabelid)) {
1171 		info.rti_info[RTAX_LABEL] =
1172 		    rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
1173 	}
1174 
1175 	if ((flags & RTF_HOST) == 0)
1176 		info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1177 
1178 	if (flags & (RTF_LOCAL|RTF_BROADCAST))
1179 		prio = RTP_LOCAL;
1180 
1181 	if (flags & RTF_CONNECTED)
1182 		prio = ifp->if_priority + RTP_CONNECTED;
1183 
1184 	error = rtrequest_delete(&info, prio, ifp, &rt, rdomain);
1185 	if (error == 0) {
1186 		rtm_send(rt, RTM_DELETE, 0, rdomain);
1187 		if (flags & RTF_LOCAL)
1188 			rtm_addr(RTM_DELADDR, ifa);
1189 		rtfree(rt);
1190 	}
1191 	m_free(m);
1192 
1193 	return (error);
1194 }
1195 
1196 /*
1197  * Add ifa's address as a local rtentry.
1198  */
1199 int
1200 rt_ifa_addlocal(struct ifaddr *ifa)
1201 {
1202 	struct ifnet *ifp = ifa->ifa_ifp;
1203 	struct rtentry *rt;
1204 	u_int flags = RTF_HOST|RTF_LOCAL;
1205 	int error = 0;
1206 
1207 	/*
1208 	 * If the configured address correspond to the magical "any"
1209 	 * address do not add a local route entry because that might
1210 	 * corrupt the routing tree which uses this value for the
1211 	 * default routes.
1212 	 */
1213 	switch (ifa->ifa_addr->sa_family) {
1214 	case AF_INET:
1215 		if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
1216 			return (0);
1217 		break;
1218 #ifdef INET6
1219 	case AF_INET6:
1220 		if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
1221 		    &in6addr_any))
1222 			return (0);
1223 		break;
1224 #endif
1225 	default:
1226 		break;
1227 	}
1228 
1229 	if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
1230 		flags |= RTF_LLINFO;
1231 
1232 	/* If there is no local entry, allocate one. */
1233 	rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain);
1234 	if (rt == NULL || ISSET(rt->rt_flags, flags) != flags) {
1235 		error = rt_ifa_add(ifa, flags | RTF_MPATH, ifa->ifa_addr,
1236 		    ifp->if_rdomain);
1237 	}
1238 	rtfree(rt);
1239 
1240 	return (error);
1241 }
1242 
1243 /*
1244  * Remove local rtentry of ifa's addresss if it exists.
1245  */
1246 int
1247 rt_ifa_dellocal(struct ifaddr *ifa)
1248 {
1249 	struct ifnet *ifp = ifa->ifa_ifp;
1250 	struct rtentry *rt;
1251 	u_int flags = RTF_HOST|RTF_LOCAL;
1252 	int error = 0;
1253 
1254 	/*
1255 	 * We do not add local routes for such address, so do not bother
1256 	 * removing them.
1257 	 */
1258 	switch (ifa->ifa_addr->sa_family) {
1259 	case AF_INET:
1260 		if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
1261 			return (0);
1262 		break;
1263 #ifdef INET6
1264 	case AF_INET6:
1265 		if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
1266 		    &in6addr_any))
1267 			return (0);
1268 		break;
1269 #endif
1270 	default:
1271 		break;
1272 	}
1273 
1274 	if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
1275 		flags |= RTF_LLINFO;
1276 
1277 	/*
1278 	 * Before deleting, check if a corresponding local host
1279 	 * route surely exists.  With this check, we can avoid to
1280 	 * delete an interface direct route whose destination is same
1281 	 * as the address being removed.  This can happen when removing
1282 	 * a subnet-router anycast address on an interface attached
1283 	 * to a shared medium.
1284 	 */
1285 	rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain);
1286 	if (rt != NULL && ISSET(rt->rt_flags, flags) == flags) {
1287 		error = rt_ifa_del(ifa, flags, ifa->ifa_addr,
1288 		    ifp->if_rdomain);
1289 	}
1290 	rtfree(rt);
1291 
1292 	return (error);
1293 }
1294 
1295 /*
1296  * Remove all addresses attached to ``ifa''.
1297  */
1298 int
1299 rt_ifa_purge(struct ifaddr *ifa)
1300 {
1301 	struct ifnet		*ifp = ifa->ifa_ifp;
1302 	struct rtentry		*rt = NULL;
1303 	unsigned int		 rtableid;
1304 	int			 error, af = ifa->ifa_addr->sa_family;
1305 
1306 	KASSERT(ifp != NULL);
1307 
1308 	for (rtableid = 0; rtableid < rtmap_limit; rtableid++) {
1309 		/* skip rtables that are not in the rdomain of the ifp */
1310 		if (rtable_l2(rtableid) != ifp->if_rdomain)
1311 			continue;
1312 
1313 		do {
1314 			error = rtable_walk(rtableid, af, &rt,
1315 			    rt_ifa_purge_walker, ifa);
1316 			if (rt != NULL && error == EEXIST) {
1317 				error = rtdeletemsg(rt, ifp, rtableid);
1318 				if (error == 0)
1319 					error = EAGAIN;
1320 			}
1321 			rtfree(rt);
1322 			rt = NULL;
1323 		} while (error == EAGAIN);
1324 
1325 		if (error == EAFNOSUPPORT)
1326 			error = 0;
1327 
1328 		if (error)
1329 			break;
1330 	}
1331 
1332 	return error;
1333 }
1334 
1335 int
1336 rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid)
1337 {
1338 	struct ifaddr		*ifa = vifa;
1339 
1340 	if (rt->rt_ifa == ifa)
1341 		return EEXIST;
1342 
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Route timer routines.  These routes allow functions to be called
1348  * for various routes at any time.  This is useful in supporting
1349  * path MTU discovery and redirect route deletion.
1350  *
1351  * This is similar to some BSDI internal functions, but it provides
1352  * for multiple queues for efficiency's sake...
1353  */
1354 
1355 LIST_HEAD(, rttimer_queue)	rttimer_queue_head;
1356 static int			rt_init_done = 0;
1357 
1358 #define RTTIMER_CALLOUT(r)	{					\
1359 	if (r->rtt_func != NULL) {					\
1360 		(*r->rtt_func)(r->rtt_rt, r);				\
1361 	} else {							\
1362 		struct ifnet *ifp;					\
1363 									\
1364 		ifp = if_get(r->rtt_rt->rt_ifidx);			\
1365 		if (ifp != NULL) 					\
1366 			rtdeletemsg(r->rtt_rt, ifp, r->rtt_tableid);	\
1367 		if_put(ifp);						\
1368 	}								\
1369 }
1370 
1371 /*
1372  * Some subtle order problems with domain initialization mean that
1373  * we cannot count on this being run from rt_init before various
1374  * protocol initializations are done.  Therefore, we make sure
1375  * that this is run when the first queue is added...
1376  */
1377 
1378 void
1379 rt_timer_init(void)
1380 {
1381 	static struct timeout	rt_timer_timeout;
1382 
1383 	if (rt_init_done)
1384 		panic("rt_timer_init: already initialized");
1385 
1386 	pool_init(&rttimer_pool, sizeof(struct rttimer), 0, IPL_SOFTNET, 0,
1387 	    "rttmr", NULL);
1388 
1389 	LIST_INIT(&rttimer_queue_head);
1390 	timeout_set_proc(&rt_timer_timeout, rt_timer_timer, &rt_timer_timeout);
1391 	timeout_add_sec(&rt_timer_timeout, 1);
1392 	rt_init_done = 1;
1393 }
1394 
1395 struct rttimer_queue *
1396 rt_timer_queue_create(u_int timeout)
1397 {
1398 	struct rttimer_queue	*rtq;
1399 
1400 	if (rt_init_done == 0)
1401 		rt_timer_init();
1402 
1403 	if ((rtq = malloc(sizeof(*rtq), M_RTABLE, M_NOWAIT|M_ZERO)) == NULL)
1404 		return (NULL);
1405 
1406 	rtq->rtq_timeout = timeout;
1407 	rtq->rtq_count = 0;
1408 	TAILQ_INIT(&rtq->rtq_head);
1409 	LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link);
1410 
1411 	return (rtq);
1412 }
1413 
1414 void
1415 rt_timer_queue_change(struct rttimer_queue *rtq, long timeout)
1416 {
1417 	rtq->rtq_timeout = timeout;
1418 }
1419 
1420 void
1421 rt_timer_queue_destroy(struct rttimer_queue *rtq)
1422 {
1423 	struct rttimer	*r;
1424 
1425 	NET_ASSERT_LOCKED();
1426 
1427 	while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
1428 		LIST_REMOVE(r, rtt_link);
1429 		TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1430 		RTTIMER_CALLOUT(r);
1431 		pool_put(&rttimer_pool, r);
1432 		if (rtq->rtq_count > 0)
1433 			rtq->rtq_count--;
1434 		else
1435 			printf("rt_timer_queue_destroy: rtq_count reached 0\n");
1436 	}
1437 
1438 	LIST_REMOVE(rtq, rtq_link);
1439 	free(rtq, M_RTABLE, sizeof(*rtq));
1440 }
1441 
1442 unsigned long
1443 rt_timer_queue_count(struct rttimer_queue *rtq)
1444 {
1445 	return (rtq->rtq_count);
1446 }
1447 
1448 void
1449 rt_timer_remove_all(struct rtentry *rt)
1450 {
1451 	struct rttimer	*r;
1452 
1453 	while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
1454 		LIST_REMOVE(r, rtt_link);
1455 		TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1456 		if (r->rtt_queue->rtq_count > 0)
1457 			r->rtt_queue->rtq_count--;
1458 		else
1459 			printf("rt_timer_remove_all: rtq_count reached 0\n");
1460 		pool_put(&rttimer_pool, r);
1461 	}
1462 }
1463 
1464 int
1465 rt_timer_add(struct rtentry *rt, void (*func)(struct rtentry *,
1466     struct rttimer *), struct rttimer_queue *queue, u_int rtableid)
1467 {
1468 	struct rttimer	*r;
1469 	long		 current_time;
1470 
1471 	current_time = time_uptime;
1472 	rt->rt_expire = time_uptime + queue->rtq_timeout;
1473 
1474 	/*
1475 	 * If there's already a timer with this action, destroy it before
1476 	 * we add a new one.
1477 	 */
1478 	LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
1479 		if (r->rtt_func == func) {
1480 			LIST_REMOVE(r, rtt_link);
1481 			TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1482 			if (r->rtt_queue->rtq_count > 0)
1483 				r->rtt_queue->rtq_count--;
1484 			else
1485 				printf("rt_timer_add: rtq_count reached 0\n");
1486 			pool_put(&rttimer_pool, r);
1487 			break;  /* only one per list, so we can quit... */
1488 		}
1489 	}
1490 
1491 	r = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO);
1492 	if (r == NULL)
1493 		return (ENOBUFS);
1494 
1495 	r->rtt_rt = rt;
1496 	r->rtt_time = current_time;
1497 	r->rtt_func = func;
1498 	r->rtt_queue = queue;
1499 	r->rtt_tableid = rtableid;
1500 	LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link);
1501 	TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next);
1502 	r->rtt_queue->rtq_count++;
1503 
1504 	return (0);
1505 }
1506 
1507 void
1508 rt_timer_timer(void *arg)
1509 {
1510 	struct timeout		*to = (struct timeout *)arg;
1511 	struct rttimer_queue	*rtq;
1512 	struct rttimer		*r;
1513 	long			 current_time;
1514 
1515 	current_time = time_uptime;
1516 
1517 	NET_LOCK();
1518 	LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) {
1519 		while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL &&
1520 		    (r->rtt_time + rtq->rtq_timeout) < current_time) {
1521 			LIST_REMOVE(r, rtt_link);
1522 			TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1523 			RTTIMER_CALLOUT(r);
1524 			pool_put(&rttimer_pool, r);
1525 			if (rtq->rtq_count > 0)
1526 				rtq->rtq_count--;
1527 			else
1528 				printf("rt_timer_timer: rtq_count reached 0\n");
1529 		}
1530 	}
1531 	NET_UNLOCK();
1532 
1533 	timeout_add_sec(to, 1);
1534 }
1535 
1536 #ifdef MPLS
1537 int
1538 rt_mpls_set(struct rtentry *rt, struct sockaddr *src, uint8_t op)
1539 {
1540 	struct sockaddr_mpls	*psa_mpls = (struct sockaddr_mpls *)src;
1541 	struct rt_mpls		*rt_mpls;
1542 
1543 	if (psa_mpls == NULL && op != MPLS_OP_POP)
1544 		return (EOPNOTSUPP);
1545 	if (psa_mpls != NULL && psa_mpls->smpls_len != sizeof(*psa_mpls))
1546 		return (EINVAL);
1547 	if (psa_mpls != NULL && psa_mpls->smpls_family != AF_MPLS)
1548 		return (EAFNOSUPPORT);
1549 
1550 	rt->rt_llinfo = malloc(sizeof(struct rt_mpls), M_TEMP, M_NOWAIT|M_ZERO);
1551 	if (rt->rt_llinfo == NULL)
1552 		return (ENOMEM);
1553 
1554 	rt_mpls = (struct rt_mpls *)rt->rt_llinfo;
1555 	if (psa_mpls != NULL)
1556 		rt_mpls->mpls_label = psa_mpls->smpls_label;
1557 	rt_mpls->mpls_operation = op;
1558 	/* XXX: set experimental bits */
1559 	rt->rt_flags |= RTF_MPLS;
1560 
1561 	return (0);
1562 }
1563 
1564 void
1565 rt_mpls_clear(struct rtentry *rt)
1566 {
1567 	if (rt->rt_llinfo != NULL && rt->rt_flags & RTF_MPLS) {
1568 		free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls));
1569 		rt->rt_llinfo = NULL;
1570 	}
1571 	rt->rt_flags &= ~RTF_MPLS;
1572 }
1573 #endif
1574 
1575 u_int16_t
1576 rtlabel_name2id(char *name)
1577 {
1578 	struct rt_label		*label, *p;
1579 	u_int16_t		 new_id = 1;
1580 
1581 	if (!name[0])
1582 		return (0);
1583 
1584 	TAILQ_FOREACH(label, &rt_labels, rtl_entry)
1585 		if (strcmp(name, label->rtl_name) == 0) {
1586 			label->rtl_ref++;
1587 			return (label->rtl_id);
1588 		}
1589 
1590 	/*
1591 	 * to avoid fragmentation, we do a linear search from the beginning
1592 	 * and take the first free slot we find. if there is none or the list
1593 	 * is empty, append a new entry at the end.
1594 	 */
1595 	TAILQ_FOREACH(p, &rt_labels, rtl_entry) {
1596 		if (p->rtl_id != new_id)
1597 			break;
1598 		new_id = p->rtl_id + 1;
1599 	}
1600 	if (new_id > LABELID_MAX)
1601 		return (0);
1602 
1603 	label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO);
1604 	if (label == NULL)
1605 		return (0);
1606 	strlcpy(label->rtl_name, name, sizeof(label->rtl_name));
1607 	label->rtl_id = new_id;
1608 	label->rtl_ref++;
1609 
1610 	if (p != NULL)	/* insert new entry before p */
1611 		TAILQ_INSERT_BEFORE(p, label, rtl_entry);
1612 	else		/* either list empty or no free slot in between */
1613 		TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry);
1614 
1615 	return (label->rtl_id);
1616 }
1617 
1618 const char *
1619 rtlabel_id2name(u_int16_t id)
1620 {
1621 	struct rt_label	*label;
1622 
1623 	TAILQ_FOREACH(label, &rt_labels, rtl_entry)
1624 		if (label->rtl_id == id)
1625 			return (label->rtl_name);
1626 
1627 	return (NULL);
1628 }
1629 
1630 struct sockaddr *
1631 rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl)
1632 {
1633 	const char	*label;
1634 
1635 	if (labelid == 0 || (label = rtlabel_id2name(labelid)) == NULL)
1636 		return (NULL);
1637 
1638 	bzero(sa_rl, sizeof(*sa_rl));
1639 	sa_rl->sr_len = sizeof(*sa_rl);
1640 	sa_rl->sr_family = AF_UNSPEC;
1641 	strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label));
1642 
1643 	return ((struct sockaddr *)sa_rl);
1644 }
1645 
1646 void
1647 rtlabel_unref(u_int16_t id)
1648 {
1649 	struct rt_label	*p, *next;
1650 
1651 	if (id == 0)
1652 		return;
1653 
1654 	TAILQ_FOREACH_SAFE(p, &rt_labels, rtl_entry, next) {
1655 		if (id == p->rtl_id) {
1656 			if (--p->rtl_ref == 0) {
1657 				TAILQ_REMOVE(&rt_labels, p, rtl_entry);
1658 				free(p, M_RTABLE, sizeof(*p));
1659 			}
1660 			break;
1661 		}
1662 	}
1663 }
1664 
1665 int
1666 rt_if_track(struct ifnet *ifp)
1667 {
1668 	unsigned int rtableid;
1669 	struct rtentry *rt = NULL;
1670 	int i, error;
1671 
1672 	for (rtableid = 0; rtableid < rtmap_limit; rtableid++) {
1673 		/* skip rtables that are not in the rdomain of the ifp */
1674 		if (rtable_l2(rtableid) != ifp->if_rdomain)
1675 			continue;
1676 		for (i = 1; i <= AF_MAX; i++) {
1677 			if (!rtable_mpath_capable(rtableid, i))
1678 				continue;
1679 
1680 			do {
1681 				error = rtable_walk(rtableid, i, &rt,
1682 				    rt_if_linkstate_change, ifp);
1683 				if (rt != NULL && error == EEXIST) {
1684 					error = rtdeletemsg(rt, ifp, rtableid);
1685 					if (error == 0)
1686 						error = EAGAIN;
1687 				}
1688 				rtfree(rt);
1689 				rt = NULL;
1690 			} while (error == EAGAIN);
1691 
1692 			if (error == EAFNOSUPPORT)
1693 				error = 0;
1694 
1695 			if (error)
1696 				break;
1697 		}
1698 	}
1699 
1700 	return (error);
1701 }
1702 
1703 int
1704 rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id)
1705 {
1706 	struct ifnet *ifp = arg;
1707 	struct sockaddr_in6 sa_mask;
1708 	int error;
1709 
1710 	if (rt->rt_ifidx != ifp->if_index)
1711 		return (0);
1712 
1713 	/* Local routes are always usable. */
1714 	if (rt->rt_flags & RTF_LOCAL) {
1715 		rt->rt_flags |= RTF_UP;
1716 		return (0);
1717 	}
1718 
1719 	if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) {
1720 		if (ISSET(rt->rt_flags, RTF_UP))
1721 			return (0);
1722 
1723 		/* bring route up */
1724 		rt->rt_flags |= RTF_UP;
1725 		error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt),
1726 		    rt->rt_priority & RTP_MASK, rt);
1727 	} else {
1728 		/*
1729 		 * Remove redirected and cloned routes (mainly ARP)
1730 		 * from down interfaces so we have a chance to get
1731 		 * new routes from a better source.
1732 		 */
1733 		if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) &&
1734 		    !ISSET(rt->rt_flags, RTF_CACHED|RTF_BFD)) {
1735 			return (EEXIST);
1736 		}
1737 
1738 		if (!ISSET(rt->rt_flags, RTF_UP))
1739 			return (0);
1740 
1741 		/* take route down */
1742 		rt->rt_flags &= ~RTF_UP;
1743 		error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt),
1744 		    rt->rt_priority | RTP_DOWN, rt);
1745 	}
1746 	if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask));
1747 
1748 	return (error);
1749 }
1750 
1751 struct sockaddr *
1752 rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask)
1753 {
1754 	struct sockaddr_in	*sin = (struct sockaddr_in *)sa_mask;
1755 #ifdef INET6
1756 	struct sockaddr_in6	*sin6 = (struct sockaddr_in6 *)sa_mask;
1757 #endif
1758 
1759 	KASSERT(plen >= 0 || plen == -1);
1760 
1761 	if (plen == -1)
1762 		return (NULL);
1763 
1764 	memset(sa_mask, 0, sizeof(*sa_mask));
1765 
1766 	switch (af) {
1767 	case AF_INET:
1768 		sin->sin_family = AF_INET;
1769 		sin->sin_len = sizeof(struct sockaddr_in);
1770 		in_prefixlen2mask(&sin->sin_addr, plen);
1771 		break;
1772 #ifdef INET6
1773 	case AF_INET6:
1774 		sin6->sin6_family = AF_INET6;
1775 		sin6->sin6_len = sizeof(struct sockaddr_in6);
1776 		in6_prefixlen2mask(&sin6->sin6_addr, plen);
1777 		break;
1778 #endif /* INET6 */
1779 	default:
1780 		return (NULL);
1781 	}
1782 
1783 	return ((struct sockaddr *)sa_mask);
1784 }
1785 
1786 struct sockaddr *
1787 rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask)
1788 {
1789 	return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask));
1790 }
1791 
1792 #ifdef DDB
1793 #include <machine/db_machdep.h>
1794 #include <ddb/db_output.h>
1795 
1796 void
1797 db_print_sa(struct sockaddr *sa)
1798 {
1799 	int len;
1800 	u_char *p;
1801 
1802 	if (sa == NULL) {
1803 		db_printf("[NULL]");
1804 		return;
1805 	}
1806 
1807 	p = (u_char *)sa;
1808 	len = sa->sa_len;
1809 	db_printf("[");
1810 	while (len > 0) {
1811 		db_printf("%d", *p);
1812 		p++;
1813 		len--;
1814 		if (len)
1815 			db_printf(",");
1816 	}
1817 	db_printf("]\n");
1818 }
1819 
1820 void
1821 db_print_ifa(struct ifaddr *ifa)
1822 {
1823 	if (ifa == NULL)
1824 		return;
1825 	db_printf("  ifa_addr=");
1826 	db_print_sa(ifa->ifa_addr);
1827 	db_printf("  ifa_dsta=");
1828 	db_print_sa(ifa->ifa_dstaddr);
1829 	db_printf("  ifa_mask=");
1830 	db_print_sa(ifa->ifa_netmask);
1831 	db_printf("  flags=0x%x, refcnt=%d, metric=%d\n",
1832 	    ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric);
1833 }
1834 
1835 /*
1836  * Function to pass to rtalble_walk().
1837  * Return non-zero error to abort walk.
1838  */
1839 int
1840 db_show_rtentry(struct rtentry *rt, void *w, unsigned int id)
1841 {
1842 	db_printf("rtentry=%p", rt);
1843 
1844 	db_printf(" flags=0x%x refcnt=%d use=%llu expire=%lld rtableid=%u\n",
1845 	    rt->rt_flags, rt->rt_refcnt, rt->rt_use, rt->rt_expire, id);
1846 
1847 	db_printf(" key="); db_print_sa(rt_key(rt));
1848 	db_printf(" plen=%d", rt_plen(rt));
1849 	db_printf(" gw="); db_print_sa(rt->rt_gateway);
1850 	db_printf(" ifidx=%u ", rt->rt_ifidx);
1851 	db_printf(" ifa=%p\n", rt->rt_ifa);
1852 	db_print_ifa(rt->rt_ifa);
1853 
1854 	db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo);
1855 	return (0);
1856 }
1857 
1858 /*
1859  * Function to print all the route trees.
1860  * Use this from ddb:  "call db_show_arptab"
1861  */
1862 int
1863 db_show_arptab(void)
1864 {
1865 	db_printf("Route tree for AF_INET\n");
1866 	rtable_walk(0, AF_INET, NULL, db_show_rtentry, NULL);
1867 	return (0);
1868 }
1869 #endif /* DDB */
1870