1 /* $OpenBSD: route.c,v 1.313 2016/07/22 11:03:30 mpi Exp $ */ 2 /* $NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1980, 1986, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)route.c 8.2 (Berkeley) 11/15/93 62 */ 63 64 /* 65 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 66 * 67 * NRL grants permission for redistribution and use in source and binary 68 * forms, with or without modification, of the software and documentation 69 * created at NRL provided that the following conditions are met: 70 * 71 * 1. Redistributions of source code must retain the above copyright 72 * notice, this list of conditions and the following disclaimer. 73 * 2. Redistributions in binary form must reproduce the above copyright 74 * notice, this list of conditions and the following disclaimer in the 75 * documentation and/or other materials provided with the distribution. 76 * 3. All advertising materials mentioning features or use of this software 77 * must display the following acknowledgements: 78 * This product includes software developed by the University of 79 * California, Berkeley and its contributors. 80 * This product includes software developed at the Information 81 * Technology Division, US Naval Research Laboratory. 82 * 4. Neither the name of the NRL nor the names of its contributors 83 * may be used to endorse or promote products derived from this software 84 * without specific prior written permission. 85 * 86 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS 87 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 88 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 89 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR 90 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 91 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 92 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 93 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 94 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 95 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 96 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 97 * 98 * The views and conclusions contained in the software and documentation 99 * are those of the authors and should not be interpreted as representing 100 * official policies, either expressed or implied, of the US Naval 101 * Research Laboratory (NRL). 102 */ 103 104 #include <sys/param.h> 105 #include <sys/systm.h> 106 #include <sys/mbuf.h> 107 #include <sys/socket.h> 108 #include <sys/socketvar.h> 109 #include <sys/timeout.h> 110 #include <sys/domain.h> 111 #include <sys/protosw.h> 112 #include <sys/ioctl.h> 113 #include <sys/kernel.h> 114 #include <sys/queue.h> 115 #include <sys/pool.h> 116 #include <sys/atomic.h> 117 118 #include <net/if.h> 119 #include <net/if_var.h> 120 #include <net/if_dl.h> 121 #include <net/route.h> 122 123 #include <netinet/in.h> 124 #include <netinet/ip_var.h> 125 #include <netinet/in_var.h> 126 127 #ifdef INET6 128 #include <netinet/ip6.h> 129 #include <netinet6/ip6_var.h> 130 #include <netinet6/in6_var.h> 131 #endif 132 133 #ifdef MPLS 134 #include <netmpls/mpls.h> 135 #endif 136 137 #ifdef IPSEC 138 #include <netinet/ip_ipsp.h> 139 #include <net/if_enc.h> 140 #endif 141 142 #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) 143 144 /* Give some jitter to hash, to avoid synchronization between routers. */ 145 static uint32_t rt_hashjitter; 146 147 extern unsigned int rtmap_limit; 148 149 struct rtstat rtstat; 150 int rttrash; /* routes not in table but not freed */ 151 152 struct pool rtentry_pool; /* pool for rtentry structures */ 153 struct pool rttimer_pool; /* pool for rttimer structures */ 154 155 void rt_timer_init(void); 156 void rt_setgwroute(struct rtentry *, u_int); 157 int rtflushclone1(struct rtentry *, void *, u_int); 158 void rtflushclone(unsigned int, struct rtentry *); 159 int rt_if_remove_rtdelete(struct rtentry *, void *, u_int); 160 struct rtentry *rt_match(struct sockaddr *, uint32_t *, int, unsigned int); 161 struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *); 162 163 struct ifaddr *ifa_ifwithroute(int, struct sockaddr *, struct sockaddr *, 164 u_int); 165 int rtrequest_delete(struct rt_addrinfo *, u_int8_t, struct ifnet *, 166 struct rtentry **, u_int); 167 168 #ifdef DDB 169 void db_print_sa(struct sockaddr *); 170 void db_print_ifa(struct ifaddr *); 171 int db_show_rtentry(struct rtentry *, void *, unsigned int); 172 #endif 173 174 #define LABELID_MAX 50000 175 176 struct rt_label { 177 TAILQ_ENTRY(rt_label) rtl_entry; 178 char rtl_name[RTLABEL_LEN]; 179 u_int16_t rtl_id; 180 int rtl_ref; 181 }; 182 183 TAILQ_HEAD(rt_labels, rt_label) rt_labels = TAILQ_HEAD_INITIALIZER(rt_labels); 184 185 void 186 route_init(void) 187 { 188 pool_init(&rtentry_pool, sizeof(struct rtentry), 0, 0, 0, "rtentry", 189 NULL); 190 191 while (rt_hashjitter == 0) 192 rt_hashjitter = arc4random(); 193 194 if (rtable_add(0) != 0) 195 panic("route_init rtable_add"); 196 } 197 198 /* 199 * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise. 200 */ 201 int 202 rtisvalid(struct rtentry *rt) 203 { 204 if (rt == NULL) 205 return (0); 206 207 #ifdef DIAGNOSTIC 208 if (ISSET(rt->rt_flags, RTF_GATEWAY) && (rt->rt_gwroute != NULL) && 209 ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY)) 210 panic("next hop must be directly reachable"); 211 #endif 212 213 if ((rt->rt_flags & RTF_UP) == 0) 214 return (0); 215 216 /* Routes attached to stale ifas should be freed. */ 217 if (rt->rt_ifa == NULL || rt->rt_ifa->ifa_ifp == NULL) 218 return (0); 219 220 if (ISSET(rt->rt_flags, RTF_GATEWAY) && !rtisvalid(rt->rt_gwroute)) 221 return (0); 222 223 return (1); 224 } 225 226 /* 227 * Do the actual lookup for rtalloc(9), do not use directly! 228 * 229 * Return the best matching entry for the destination ``dst''. 230 * 231 * "RT_RESOLVE" means that a corresponding L2 entry should 232 * be added to the routing table and resolved (via ARP or 233 * NDP), if it does not exist. 234 */ 235 struct rtentry * 236 rt_match(struct sockaddr *dst, uint32_t *src, int flags, unsigned int tableid) 237 { 238 struct rtentry *rt0, *rt = NULL; 239 struct rt_addrinfo info; 240 int s, error = 0; 241 242 bzero(&info, sizeof(info)); 243 info.rti_info[RTAX_DST] = dst; 244 245 s = splsoftnet(); 246 rt = rtable_match(tableid, dst, src); 247 if (rt != NULL) { 248 if ((rt->rt_flags & RTF_CLONING) && ISSET(flags, RT_RESOLVE)) { 249 rt0 = rt; 250 KERNEL_LOCK(); 251 error = rtrequest(RTM_RESOLVE, &info, RTP_DEFAULT, 252 &rt, tableid); 253 if (error) { 254 rt_missmsg(RTM_MISS, &info, 0, RTP_NONE, 0, 255 error, tableid); 256 } else { 257 /* Inform listeners of the new route */ 258 rt_sendmsg(rt, RTM_ADD, tableid); 259 rtfree(rt0); 260 } 261 KERNEL_UNLOCK(); 262 } 263 rt->rt_use++; 264 } else 265 rtstat.rts_unreach++; 266 splx(s); 267 return (rt); 268 } 269 270 struct rtentry *_rtalloc(struct sockaddr *, uint32_t *, int, unsigned int); 271 272 #ifndef SMALL_KERNEL 273 /* 274 * Originated from bridge_hash() in if_bridge.c 275 */ 276 #define mix(a, b, c) do { \ 277 a -= b; a -= c; a ^= (c >> 13); \ 278 b -= c; b -= a; b ^= (a << 8); \ 279 c -= a; c -= b; c ^= (b >> 13); \ 280 a -= b; a -= c; a ^= (c >> 12); \ 281 b -= c; b -= a; b ^= (a << 16); \ 282 c -= a; c -= b; c ^= (b >> 5); \ 283 a -= b; a -= c; a ^= (c >> 3); \ 284 b -= c; b -= a; b ^= (a << 10); \ 285 c -= a; c -= b; c ^= (b >> 15); \ 286 } while (0) 287 288 int 289 rt_hash(struct rtentry *rt, struct sockaddr *dst, uint32_t *src) 290 { 291 uint32_t a, b, c; 292 293 if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH)) 294 return (-1); 295 296 a = b = 0x9e3779b9; 297 c = rt_hashjitter; 298 299 switch (dst->sa_family) { 300 case AF_INET: 301 { 302 struct sockaddr_in *sin; 303 304 if (!ipmultipath) 305 return (-1); 306 307 sin = satosin(dst); 308 a += sin->sin_addr.s_addr; 309 b += (src != NULL) ? src[0] : 0; 310 mix(a, b, c); 311 break; 312 } 313 #ifdef INET6 314 case AF_INET6: 315 { 316 struct sockaddr_in6 *sin6; 317 318 if (!ip6_multipath) 319 return (-1); 320 321 sin6 = satosin6(dst); 322 a += sin6->sin6_addr.s6_addr32[0]; 323 b += sin6->sin6_addr.s6_addr32[2]; 324 c += (src != NULL) ? src[0] : 0; 325 mix(a, b, c); 326 a += sin6->sin6_addr.s6_addr32[1]; 327 b += sin6->sin6_addr.s6_addr32[3]; 328 c += (src != NULL) ? src[1] : 0; 329 mix(a, b, c); 330 a += sin6->sin6_addr.s6_addr32[2]; 331 b += sin6->sin6_addr.s6_addr32[1]; 332 c += (src != NULL) ? src[2] : 0; 333 mix(a, b, c); 334 a += sin6->sin6_addr.s6_addr32[3]; 335 b += sin6->sin6_addr.s6_addr32[0]; 336 c += (src != NULL) ? src[3] : 0; 337 mix(a, b, c); 338 break; 339 } 340 #endif /* INET6 */ 341 } 342 343 return (c & 0xffff); 344 } 345 346 /* 347 * Allocate a route, potentially using multipath to select the peer. 348 */ 349 struct rtentry * 350 rtalloc_mpath(struct sockaddr *dst, uint32_t *src, unsigned int rtableid) 351 { 352 return (_rtalloc(dst, src, RT_RESOLVE, rtableid)); 353 } 354 #endif /* SMALL_KERNEL */ 355 356 struct rtentry * 357 rtalloc(struct sockaddr *dst, int flags, unsigned int rtableid) 358 { 359 return (_rtalloc(dst, NULL, flags, rtableid)); 360 } 361 362 /* 363 * Look in the routing table for the best matching entry for 364 * ``dst''. 365 * 366 * If a route with a gateway is found and its next hop is no 367 * longer valid, try to cache it. 368 */ 369 struct rtentry * 370 _rtalloc(struct sockaddr *dst, uint32_t *src, int flags, unsigned int rtableid) 371 { 372 struct rtentry *rt; 373 374 rt = rt_match(dst, src, flags, rtableid); 375 376 /* No match or route to host? We're done. */ 377 if (rt == NULL || !ISSET(rt->rt_flags, RTF_GATEWAY)) 378 return (rt); 379 380 /* Nothing to do if the next hop is valid. */ 381 if (rtisvalid(rt->rt_gwroute)) 382 return (rt); 383 384 rt_setgwroute(rt, rtableid); 385 386 return (rt); 387 } 388 389 void 390 rt_setgwroute(struct rtentry *rt, u_int rtableid) 391 { 392 struct rtentry *nhrt; 393 394 rtfree(rt->rt_gwroute); 395 rt->rt_gwroute = NULL; 396 397 /* 398 * If we cannot find a valid next hop, return the route 399 * with a gateway. 400 * 401 * XXX Some dragons hiding in the tree certainly depends on 402 * this behavior. But it is safe since rt_checkgate() wont 403 * allow us to us this route later on. 404 */ 405 nhrt = rt_match(rt->rt_gateway, NULL, RT_RESOLVE, rtable_l2(rtableid)); 406 if (nhrt == NULL) 407 return; 408 409 /* 410 * Next hop must be reachable, this also prevents rtentry 411 * loops for example when rt->rt_gwroute points to rt. 412 */ 413 if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) { 414 rtfree(nhrt); 415 return; 416 } 417 418 /* Next hop entry must be UP and on the same interface. */ 419 if (!ISSET(nhrt->rt_flags, RTF_UP) || nhrt->rt_ifidx != rt->rt_ifidx) { 420 rtfree(nhrt); 421 return; 422 } 423 424 /* 425 * If the MTU of next hop is 0, this will reset the MTU of the 426 * route to run PMTUD again from scratch. 427 */ 428 if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu)) 429 rt->rt_mtu = nhrt->rt_mtu; 430 431 /* 432 * Do not return the cached next-hop route, rt_checkgate() will 433 * do the magic for us. 434 */ 435 rt->rt_gwroute = nhrt; 436 } 437 438 void 439 rtref(struct rtentry *rt) 440 { 441 atomic_inc_int(&rt->rt_refcnt); 442 } 443 444 void 445 rtfree(struct rtentry *rt) 446 { 447 int refcnt; 448 449 if (rt == NULL) 450 return; 451 452 refcnt = (int)atomic_dec_int_nv(&rt->rt_refcnt); 453 if (refcnt <= 0) { 454 KASSERT(!ISSET(rt->rt_flags, RTF_UP)); 455 KASSERT(!RT_ROOT(rt)); 456 atomic_dec_int(&rttrash); 457 if (refcnt < 0) { 458 printf("rtfree: %p not freed (neg refs)\n", rt); 459 return; 460 } 461 462 KERNEL_LOCK(); 463 rt_timer_remove_all(rt); 464 ifafree(rt->rt_ifa); 465 rtlabel_unref(rt->rt_labelid); 466 #ifdef MPLS 467 if (rt->rt_flags & RTF_MPLS) 468 free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls)); 469 #endif 470 free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len)); 471 free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len); 472 KERNEL_UNLOCK(); 473 474 pool_put(&rtentry_pool, rt); 475 } 476 } 477 478 void 479 rt_sendmsg(struct rtentry *rt, int cmd, u_int rtableid) 480 { 481 struct rt_addrinfo info; 482 struct ifnet *ifp; 483 struct sockaddr_rtlabel sa_rl; 484 struct sockaddr_in6 sa_mask; 485 486 memset(&info, 0, sizeof(info)); 487 info.rti_info[RTAX_DST] = rt_key(rt); 488 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 489 if (!ISSET(rt->rt_flags, RTF_HOST)) 490 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 491 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 492 ifp = if_get(rt->rt_ifidx); 493 if (ifp != NULL) { 494 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 495 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 496 } 497 498 rt_missmsg(cmd, &info, rt->rt_flags, rt->rt_priority, rt->rt_ifidx, 0, 499 rtableid); 500 if_put(ifp); 501 } 502 503 void 504 ifafree(struct ifaddr *ifa) 505 { 506 if (ifa == NULL) 507 panic("ifafree"); 508 if (ifa->ifa_refcnt == 0) 509 free(ifa, M_IFADDR, 0); 510 else 511 ifa->ifa_refcnt--; 512 } 513 514 /* 515 * Force a routing table entry to the specified 516 * destination to go through the given gateway. 517 * Normally called as a result of a routing redirect 518 * message from the network layer. 519 * 520 * N.B.: must be called at splsoftnet 521 */ 522 void 523 rtredirect(struct sockaddr *dst, struct sockaddr *gateway, 524 struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain) 525 { 526 struct rtentry *rt; 527 int error = 0; 528 u_int32_t *stat = NULL; 529 struct rt_addrinfo info; 530 struct ifaddr *ifa; 531 unsigned int ifidx = 0; 532 int flags = RTF_GATEWAY|RTF_HOST; 533 uint8_t prio = RTP_NONE; 534 535 splsoftassert(IPL_SOFTNET); 536 537 /* verify the gateway is directly reachable */ 538 if ((ifa = ifa_ifwithnet(gateway, rdomain)) == NULL) { 539 error = ENETUNREACH; 540 goto out; 541 } 542 ifidx = ifa->ifa_ifp->if_index; 543 rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY); 544 /* 545 * If the redirect isn't from our current router for this dst, 546 * it's either old or wrong. If it redirects us to ourselves, 547 * we have a routing loop, perhaps as a result of an interface 548 * going down recently. 549 */ 550 #define equal(a1, a2) \ 551 ((a1)->sa_len == (a2)->sa_len && \ 552 bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) 553 if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa)) 554 error = EINVAL; 555 else if (ifa_ifwithaddr(gateway, rdomain) != NULL || 556 (gateway->sa_family = AF_INET && 557 in_broadcast(satosin(gateway)->sin_addr, rdomain))) 558 error = EHOSTUNREACH; 559 if (error) 560 goto done; 561 /* 562 * Create a new entry if we just got back a wildcard entry 563 * or the lookup failed. This is necessary for hosts 564 * which use routing redirects generated by smart gateways 565 * to dynamically build the routing tables. 566 */ 567 if (rt == NULL) 568 goto create; 569 /* 570 * Don't listen to the redirect if it's 571 * for a route to an interface. 572 */ 573 if (ISSET(rt->rt_flags, RTF_GATEWAY)) { 574 if (!ISSET(rt->rt_flags, RTF_HOST)) { 575 /* 576 * Changing from route to net => route to host. 577 * Create new route, rather than smashing route to net. 578 */ 579 create: 580 rtfree(rt); 581 flags |= RTF_DYNAMIC; 582 bzero(&info, sizeof(info)); 583 info.rti_info[RTAX_DST] = dst; 584 info.rti_info[RTAX_GATEWAY] = gateway; 585 info.rti_ifa = ifa; 586 info.rti_flags = flags; 587 rt = NULL; 588 error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt, 589 rdomain); 590 if (error == 0) { 591 flags = rt->rt_flags; 592 prio = rt->rt_priority; 593 } 594 stat = &rtstat.rts_dynamic; 595 } else { 596 /* 597 * Smash the current notion of the gateway to 598 * this destination. Should check about netmask!!! 599 */ 600 rt->rt_flags |= RTF_MODIFIED; 601 flags |= RTF_MODIFIED; 602 prio = rt->rt_priority; 603 stat = &rtstat.rts_newgateway; 604 rt_setgate(rt, gateway, rdomain); 605 } 606 } else 607 error = EHOSTUNREACH; 608 done: 609 if (rt) { 610 if (rtp && !error) 611 *rtp = rt; 612 else 613 rtfree(rt); 614 } 615 out: 616 if (error) 617 rtstat.rts_badredirect++; 618 else if (stat != NULL) 619 (*stat)++; 620 bzero((caddr_t)&info, sizeof(info)); 621 info.rti_info[RTAX_DST] = dst; 622 info.rti_info[RTAX_GATEWAY] = gateway; 623 info.rti_info[RTAX_AUTHOR] = src; 624 rt_missmsg(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain); 625 } 626 627 /* 628 * Delete a route and generate a message 629 */ 630 int 631 rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid) 632 { 633 int error; 634 struct rt_addrinfo info; 635 unsigned int ifidx; 636 struct sockaddr_in6 sa_mask; 637 638 KASSERT(rt->rt_ifidx == ifp->if_index); 639 640 /* 641 * Request the new route so that the entry is not actually 642 * deleted. That will allow the information being reported to 643 * be accurate (and consistent with route_output()). 644 */ 645 bzero((caddr_t)&info, sizeof(info)); 646 info.rti_info[RTAX_DST] = rt_key(rt); 647 if (!ISSET(rt->rt_flags, RTF_HOST)) 648 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 649 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 650 info.rti_flags = rt->rt_flags; 651 ifidx = rt->rt_ifidx; 652 error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid); 653 rt_missmsg(RTM_DELETE, &info, info.rti_flags, rt->rt_priority, ifidx, 654 error, tableid); 655 if (error == 0) 656 rtfree(rt); 657 return (error); 658 } 659 660 static inline int 661 rtequal(struct rtentry *a, struct rtentry *b) 662 { 663 if (a == b) 664 return 1; 665 666 if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 && 667 rt_plen(a) == rt_plen(b)) 668 return 1; 669 else 670 return 0; 671 } 672 673 int 674 rtflushclone1(struct rtentry *rt, void *arg, u_int id) 675 { 676 struct rtentry *parent = arg; 677 struct ifnet *ifp; 678 int error; 679 680 ifp = if_get(rt->rt_ifidx); 681 682 /* 683 * This happens when an interface with a RTF_CLONING route is 684 * being detached. In this case it's safe to bail because all 685 * the routes are being purged by rt_if_remove(). 686 */ 687 if (ifp == NULL) 688 return 0; 689 690 if (ISSET(rt->rt_flags, RTF_CLONED) && rtequal(rt->rt_parent, parent)) { 691 error = rtdeletemsg(rt, ifp, id); 692 if (error == 0) 693 error = EAGAIN; 694 } else 695 error = 0; 696 697 if_put(ifp); 698 return error; 699 } 700 701 void 702 rtflushclone(unsigned int rtableid, struct rtentry *parent) 703 { 704 705 #ifdef DIAGNOSTIC 706 if (!parent || (parent->rt_flags & RTF_CLONING) == 0) 707 panic("rtflushclone: called with a non-cloning route"); 708 #endif 709 rtable_walk(rtableid, rt_key(parent)->sa_family, rtflushclone1, parent); 710 } 711 712 int 713 rtioctl(u_long req, caddr_t data, struct proc *p) 714 { 715 return (EOPNOTSUPP); 716 } 717 718 struct ifaddr * 719 ifa_ifwithroute(int flags, struct sockaddr *dst, struct sockaddr *gateway, 720 u_int rtableid) 721 { 722 struct ifaddr *ifa; 723 724 if ((flags & RTF_GATEWAY) == 0) { 725 /* 726 * If we are adding a route to an interface, 727 * and the interface is a pt to pt link 728 * we should search for the destination 729 * as our clue to the interface. Otherwise 730 * we can use the local address. 731 */ 732 ifa = NULL; 733 if (flags & RTF_HOST) 734 ifa = ifa_ifwithdstaddr(dst, rtableid); 735 if (ifa == NULL) 736 ifa = ifa_ifwithaddr(gateway, rtableid); 737 } else { 738 /* 739 * If we are adding a route to a remote net 740 * or host, the gateway may still be on the 741 * other end of a pt to pt link. 742 */ 743 ifa = ifa_ifwithdstaddr(gateway, rtableid); 744 } 745 if (ifa == NULL) { 746 if (gateway->sa_family == AF_LINK) { 747 struct sockaddr_dl *sdl = satosdl(gateway); 748 struct ifnet *ifp = if_get(sdl->sdl_index); 749 750 if (ifp != NULL) 751 ifa = ifaof_ifpforaddr(dst, ifp); 752 if_put(ifp); 753 } else { 754 ifa = ifa_ifwithnet(gateway, rtableid); 755 } 756 } 757 if (ifa == NULL) { 758 struct rtentry *rt = rtalloc(gateway, 0, rtableid); 759 /* The gateway must be local if the same address family. */ 760 if (!rtisvalid(rt) || ((rt->rt_flags & RTF_GATEWAY) && 761 rt_key(rt)->sa_family == dst->sa_family)) { 762 rtfree(rt); 763 return (NULL); 764 } 765 ifa = rt->rt_ifa; 766 rtfree(rt); 767 } 768 if (ifa->ifa_addr->sa_family != dst->sa_family) { 769 struct ifaddr *oifa = ifa; 770 ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); 771 if (ifa == NULL) 772 ifa = oifa; 773 } 774 return (ifa); 775 } 776 777 int 778 rt_getifa(struct rt_addrinfo *info, u_int rtid) 779 { 780 struct ifnet *ifp = NULL; 781 782 /* 783 * ifp may be specified by sockaddr_dl when protocol address 784 * is ambiguous 785 */ 786 if (info->rti_info[RTAX_IFP] != NULL) { 787 struct sockaddr_dl *sdl; 788 789 sdl = satosdl(info->rti_info[RTAX_IFP]); 790 ifp = if_get(sdl->sdl_index); 791 } 792 793 #ifdef IPSEC 794 /* 795 * If the destination is a PF_KEY address, we'll look 796 * for the existence of a encap interface number or address 797 * in the options list of the gateway. By default, we'll return 798 * enc0. 799 */ 800 if (info->rti_info[RTAX_DST] && 801 info->rti_info[RTAX_DST]->sa_family == PF_KEY) 802 info->rti_ifa = enc_getifa(rtid, 0); 803 #endif 804 805 if (info->rti_ifa == NULL && info->rti_info[RTAX_IFA] != NULL) 806 info->rti_ifa = ifa_ifwithaddr(info->rti_info[RTAX_IFA], rtid); 807 808 if (info->rti_ifa == NULL) { 809 struct sockaddr *sa; 810 811 if ((sa = info->rti_info[RTAX_IFA]) == NULL) 812 if ((sa = info->rti_info[RTAX_GATEWAY]) == NULL) 813 sa = info->rti_info[RTAX_DST]; 814 815 if (sa != NULL && ifp != NULL) 816 info->rti_ifa = ifaof_ifpforaddr(sa, ifp); 817 else if (info->rti_info[RTAX_DST] != NULL && 818 info->rti_info[RTAX_GATEWAY] != NULL) 819 info->rti_ifa = ifa_ifwithroute(info->rti_flags, 820 info->rti_info[RTAX_DST], 821 info->rti_info[RTAX_GATEWAY], 822 rtid); 823 else if (sa != NULL) 824 info->rti_ifa = ifa_ifwithroute(info->rti_flags, 825 sa, sa, rtid); 826 } 827 828 if_put(ifp); 829 830 if (info->rti_ifa == NULL) 831 return (ENETUNREACH); 832 833 return (0); 834 } 835 836 int 837 rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp, 838 struct rtentry **ret_nrt, u_int tableid) 839 { 840 struct rtentry *rt; 841 int error; 842 843 splsoftassert(IPL_SOFTNET); 844 845 if (!rtable_exists(tableid)) 846 return (EAFNOSUPPORT); 847 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 848 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio); 849 if (rt == NULL) 850 return (ESRCH); 851 852 /* Make sure that's the route the caller want to delete. */ 853 if (ifp != NULL && ifp->if_index != rt->rt_ifidx) { 854 rtfree(rt); 855 return (ESRCH); 856 } 857 858 #ifndef SMALL_KERNEL 859 /* 860 * If we got multipath routes, we require users to specify 861 * a matching gateway. 862 */ 863 if ((rt->rt_flags & RTF_MPATH) && 864 info->rti_info[RTAX_GATEWAY] == NULL) { 865 rtfree(rt); 866 return (ESRCH); 867 } 868 #endif 869 870 /* 871 * Since RTP_LOCAL cannot be set by userland, make 872 * sure that local routes are only modified by the 873 * kernel. 874 */ 875 if ((rt->rt_flags & (RTF_LOCAL|RTF_BROADCAST)) && 876 prio != RTP_LOCAL) { 877 rtfree(rt); 878 return (EINVAL); 879 } 880 881 error = rtable_delete(tableid, info->rti_info[RTAX_DST], 882 info->rti_info[RTAX_NETMASK], rt); 883 if (error != 0) { 884 rtfree(rt); 885 return (ESRCH); 886 } 887 888 /* clean up any cloned children */ 889 if ((rt->rt_flags & RTF_CLONING) != 0) 890 rtflushclone(tableid, rt); 891 892 rtfree(rt->rt_gwroute); 893 rt->rt_gwroute = NULL; 894 895 rtfree(rt->rt_parent); 896 rt->rt_parent = NULL; 897 898 rt->rt_flags &= ~RTF_UP; 899 900 if (ifp == NULL) { 901 ifp = if_get(rt->rt_ifidx); 902 KASSERT(ifp != NULL); 903 ifp->if_rtrequest(ifp, RTM_DELETE, rt); 904 if_put(ifp); 905 } else { 906 KASSERT(ifp->if_index == rt->rt_ifidx); 907 ifp->if_rtrequest(ifp, RTM_DELETE, rt); 908 } 909 910 atomic_inc_int(&rttrash); 911 912 if (ret_nrt != NULL) 913 *ret_nrt = rt; 914 else 915 rtfree(rt); 916 917 return (0); 918 } 919 920 int 921 rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio, 922 struct rtentry **ret_nrt, u_int tableid) 923 { 924 struct ifnet *ifp; 925 struct rtentry *rt, *crt; 926 struct ifaddr *ifa; 927 struct sockaddr *ndst; 928 struct sockaddr_rtlabel *sa_rl, sa_rl2; 929 struct sockaddr_dl sa_dl = { sizeof(sa_dl), AF_LINK }; 930 int dlen, error; 931 #ifdef MPLS 932 struct sockaddr_mpls *sa_mpls; 933 #endif 934 935 splsoftassert(IPL_SOFTNET); 936 937 if (!rtable_exists(tableid)) 938 return (EAFNOSUPPORT); 939 if (info->rti_flags & RTF_HOST) 940 info->rti_info[RTAX_NETMASK] = NULL; 941 switch (req) { 942 case RTM_DELETE: 943 error = rtrequest_delete(info, prio, NULL, ret_nrt, tableid); 944 if (error) 945 return (error); 946 break; 947 948 case RTM_RESOLVE: 949 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL) 950 return (EINVAL); 951 if ((rt->rt_flags & RTF_CLONING) == 0) 952 return (EINVAL); 953 if (rt->rt_ifa->ifa_ifp) { 954 info->rti_ifa = rt->rt_ifa; 955 } else { 956 /* 957 * The address of the cloning route is not longer 958 * configured on an interface, but its descriptor 959 * is still there because of reference counting. 960 * 961 * Try to find a similar active address and use 962 * it for the cloned route. The cloning route 963 * will get the new address and interface later. 964 */ 965 info->rti_ifa = NULL; 966 info->rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 967 } 968 969 info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST); 970 info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC); 971 info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl); 972 info->rti_info[RTAX_LABEL] = 973 rtlabel_id2sa(rt->rt_labelid, &sa_rl2); 974 /* FALLTHROUGH */ 975 976 case RTM_ADD: 977 if (info->rti_ifa == NULL && (error = rt_getifa(info, tableid))) 978 return (error); 979 ifa = info->rti_ifa; 980 ifp = ifa->ifa_ifp; 981 if (prio == 0) 982 prio = ifp->if_priority + RTP_STATIC; 983 984 dlen = info->rti_info[RTAX_DST]->sa_len; 985 ndst = malloc(dlen, M_RTABLE, M_NOWAIT); 986 if (ndst == NULL) 987 return (ENOBUFS); 988 989 if (info->rti_info[RTAX_NETMASK] != NULL) 990 rt_maskedcopy(info->rti_info[RTAX_DST], ndst, 991 info->rti_info[RTAX_NETMASK]); 992 else 993 memcpy(ndst, info->rti_info[RTAX_DST], dlen); 994 995 rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO); 996 if (rt == NULL) { 997 free(ndst, M_RTABLE, dlen); 998 return (ENOBUFS); 999 } 1000 1001 rt->rt_refcnt = 1; 1002 rt->rt_flags = info->rti_flags | RTF_UP; 1003 rt->rt_priority = prio; /* init routing priority */ 1004 LIST_INIT(&rt->rt_timer); 1005 1006 #ifndef SMALL_KERNEL 1007 /* Check the link state if the table supports it. */ 1008 if (rtable_mpath_capable(tableid, ndst->sa_family) && 1009 !ISSET(rt->rt_flags, RTF_LOCAL) && 1010 (!LINK_STATE_IS_UP(ifp->if_link_state) || 1011 !ISSET(ifp->if_flags, IFF_UP))) { 1012 rt->rt_flags &= ~RTF_UP; 1013 rt->rt_priority |= RTP_DOWN; 1014 } 1015 #endif 1016 1017 if (info->rti_info[RTAX_LABEL] != NULL) { 1018 sa_rl = (struct sockaddr_rtlabel *) 1019 info->rti_info[RTAX_LABEL]; 1020 rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label); 1021 } 1022 1023 #ifdef MPLS 1024 /* We have to allocate additional space for MPLS infos */ 1025 if (info->rti_flags & RTF_MPLS && 1026 (info->rti_info[RTAX_SRC] != NULL || 1027 info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) { 1028 struct rt_mpls *rt_mpls; 1029 1030 sa_mpls = (struct sockaddr_mpls *) 1031 info->rti_info[RTAX_SRC]; 1032 1033 rt->rt_llinfo = malloc(sizeof(struct rt_mpls), 1034 M_TEMP, M_NOWAIT|M_ZERO); 1035 1036 if (rt->rt_llinfo == NULL) { 1037 free(ndst, M_RTABLE, dlen); 1038 pool_put(&rtentry_pool, rt); 1039 return (ENOMEM); 1040 } 1041 1042 rt_mpls = (struct rt_mpls *)rt->rt_llinfo; 1043 1044 if (sa_mpls != NULL) 1045 rt_mpls->mpls_label = sa_mpls->smpls_label; 1046 1047 rt_mpls->mpls_operation = info->rti_mpls; 1048 1049 /* XXX: set experimental bits */ 1050 1051 rt->rt_flags |= RTF_MPLS; 1052 } else 1053 rt->rt_flags &= ~RTF_MPLS; 1054 #endif 1055 1056 ifa->ifa_refcnt++; 1057 rt->rt_ifa = ifa; 1058 rt->rt_ifidx = ifp->if_index; 1059 if (rt->rt_flags & RTF_CLONED) { 1060 /* 1061 * If the ifa of the cloning route was stale, a 1062 * successful lookup for an ifa with the same address 1063 * has been made. Use this ifa also for the cloning 1064 * route. 1065 */ 1066 if ((*ret_nrt)->rt_ifa->ifa_ifp == NULL) { 1067 struct ifnet *ifp0; 1068 1069 printf("%s RTM_RESOLVE: wrong ifa (%p) was (%p)" 1070 "\n", __func__, ifa, (*ret_nrt)->rt_ifa); 1071 1072 ifp0 = if_get((*ret_nrt)->rt_ifidx); 1073 KASSERT(ifp0 != NULL); 1074 ifp0->if_rtrequest(ifp0, RTM_DELETE, *ret_nrt); 1075 ifafree((*ret_nrt)->rt_ifa); 1076 if_put(ifp0); 1077 1078 ifa->ifa_refcnt++; 1079 (*ret_nrt)->rt_ifa = ifa; 1080 (*ret_nrt)->rt_ifidx = ifp->if_index; 1081 ifp->if_rtrequest(ifp, RTM_ADD, *ret_nrt); 1082 } 1083 /* 1084 * Copy both metrics and a back pointer to the cloned 1085 * route's parent. 1086 */ 1087 rt->rt_rmx = (*ret_nrt)->rt_rmx; /* copy metrics */ 1088 rt->rt_priority = (*ret_nrt)->rt_priority; 1089 rt->rt_parent = *ret_nrt; /* Back ptr. to parent. */ 1090 rtref(rt->rt_parent); 1091 } 1092 1093 /* 1094 * We must set rt->rt_gateway before adding ``rt'' to 1095 * the routing table because the radix MPATH code use 1096 * it to (re)order routes. 1097 */ 1098 if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY], 1099 tableid))) { 1100 ifafree(ifa); 1101 rtfree(rt->rt_parent); 1102 rtfree(rt->rt_gwroute); 1103 free(rt->rt_gateway, M_RTABLE, 0); 1104 free(ndst, M_RTABLE, dlen); 1105 pool_put(&rtentry_pool, rt); 1106 return (error); 1107 } 1108 1109 error = rtable_insert(tableid, ndst, 1110 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 1111 rt->rt_priority, rt); 1112 if (error != 0 && (crt = rtalloc(ndst, 0, tableid)) != NULL) { 1113 /* overwrite cloned route */ 1114 if (ISSET(crt->rt_flags, RTF_CLONED)) { 1115 struct ifnet *cifp; 1116 1117 cifp = if_get(crt->rt_ifidx); 1118 KASSERT(cifp != NULL); 1119 rtdeletemsg(crt, cifp, tableid); 1120 if_put(cifp); 1121 1122 error = rtable_insert(tableid, ndst, 1123 info->rti_info[RTAX_NETMASK], 1124 info->rti_info[RTAX_GATEWAY], 1125 rt->rt_priority, rt); 1126 } 1127 rtfree(crt); 1128 } 1129 if (error != 0) { 1130 ifafree(ifa); 1131 rtfree(rt->rt_parent); 1132 rtfree(rt->rt_gwroute); 1133 free(rt->rt_gateway, M_RTABLE, 0); 1134 free(ndst, M_RTABLE, dlen); 1135 pool_put(&rtentry_pool, rt); 1136 return (EEXIST); 1137 } 1138 ifp->if_rtrequest(ifp, req, rt); 1139 1140 if ((rt->rt_flags & RTF_CLONING) != 0) { 1141 /* clean up any cloned children */ 1142 rtflushclone(tableid, rt); 1143 } 1144 1145 if_group_routechange(info->rti_info[RTAX_DST], 1146 info->rti_info[RTAX_NETMASK]); 1147 1148 if (ret_nrt != NULL) 1149 *ret_nrt = rt; 1150 else 1151 rtfree(rt); 1152 break; 1153 } 1154 1155 return (0); 1156 } 1157 1158 int 1159 rt_setgate(struct rtentry *rt, struct sockaddr *gate, u_int rtableid) 1160 { 1161 int glen = ROUNDUP(gate->sa_len); 1162 struct sockaddr *sa; 1163 1164 if (rt->rt_gateway == NULL || glen > ROUNDUP(rt->rt_gateway->sa_len)) { 1165 sa = malloc(glen, M_RTABLE, M_NOWAIT); 1166 if (sa == NULL) 1167 return (ENOBUFS); 1168 free(rt->rt_gateway, M_RTABLE, 0); 1169 rt->rt_gateway = sa; 1170 } 1171 memmove(rt->rt_gateway, gate, glen); 1172 1173 if (ISSET(rt->rt_flags, RTF_GATEWAY)) 1174 rt_setgwroute(rt, rtableid); 1175 1176 return (0); 1177 } 1178 1179 int 1180 rt_checkgate(struct rtentry *rt, struct rtentry **rtp) 1181 { 1182 struct rtentry *rt0; 1183 1184 KASSERT(rt != NULL); 1185 1186 rt0 = rt; 1187 1188 if (rt->rt_flags & RTF_GATEWAY) { 1189 if (rt->rt_gwroute == NULL) 1190 return (EHOSTUNREACH); 1191 rt = rt->rt_gwroute; 1192 } 1193 1194 if (rt->rt_flags & RTF_REJECT) 1195 if (rt->rt_expire == 0 || time_uptime < rt->rt_expire) 1196 return (rt == rt0 ? EHOSTDOWN : EHOSTUNREACH); 1197 1198 *rtp = rt; 1199 return (0); 1200 } 1201 1202 void 1203 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, 1204 struct sockaddr *netmask) 1205 { 1206 u_char *cp1 = (u_char *)src; 1207 u_char *cp2 = (u_char *)dst; 1208 u_char *cp3 = (u_char *)netmask; 1209 u_char *cplim = cp2 + *cp3; 1210 u_char *cplim2 = cp2 + *cp1; 1211 1212 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ 1213 cp3 += 2; 1214 if (cplim > cplim2) 1215 cplim = cplim2; 1216 while (cp2 < cplim) 1217 *cp2++ = *cp1++ & *cp3++; 1218 if (cp2 < cplim2) 1219 bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2)); 1220 } 1221 1222 int 1223 rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst) 1224 { 1225 struct ifnet *ifp = ifa->ifa_ifp; 1226 struct rtentry *rt; 1227 struct sockaddr_rtlabel sa_rl; 1228 struct rt_addrinfo info; 1229 unsigned int rtableid = ifp->if_rdomain; 1230 uint8_t prio = ifp->if_priority + RTP_STATIC; 1231 int error; 1232 1233 memset(&info, 0, sizeof(info)); 1234 info.rti_ifa = ifa; 1235 info.rti_flags = flags | RTF_MPATH; 1236 info.rti_info[RTAX_DST] = dst; 1237 if (flags & RTF_LLINFO) 1238 info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl); 1239 else 1240 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 1241 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); 1242 1243 #ifdef MPLS 1244 if ((flags & RTF_MPLS) == RTF_MPLS) { 1245 info.rti_mpls = MPLS_OP_POP; 1246 1247 /* MPLS routes only exist in rdomain 0 */ 1248 rtableid = 0; 1249 } 1250 #endif /* MPLS */ 1251 1252 if ((flags & RTF_HOST) == 0) 1253 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1254 1255 if (flags & (RTF_LOCAL|RTF_BROADCAST)) 1256 prio = RTP_LOCAL; 1257 1258 if (flags & RTF_CONNECTED) 1259 prio = RTP_CONNECTED; 1260 1261 error = rtrequest(RTM_ADD, &info, prio, &rt, rtableid); 1262 if (error == 0) { 1263 /* 1264 * A local route is created for every address configured 1265 * on an interface, so use this information to notify 1266 * userland that a new address has been added. 1267 */ 1268 if (flags & RTF_LOCAL) 1269 rt_sendaddrmsg(rt, RTM_NEWADDR, ifa); 1270 rt_sendmsg(rt, RTM_ADD, rtableid); 1271 rtfree(rt); 1272 } 1273 return (error); 1274 } 1275 1276 int 1277 rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst) 1278 { 1279 struct ifnet *ifp = ifa->ifa_ifp; 1280 struct rtentry *rt; 1281 struct mbuf *m = NULL; 1282 struct sockaddr *deldst; 1283 struct rt_addrinfo info; 1284 struct sockaddr_rtlabel sa_rl; 1285 unsigned int rtableid = ifp->if_rdomain; 1286 uint8_t prio = ifp->if_priority + RTP_STATIC; 1287 int error; 1288 1289 #ifdef MPLS 1290 if ((flags & RTF_MPLS) == RTF_MPLS) 1291 /* MPLS routes only exist in rdomain 0 */ 1292 rtableid = 0; 1293 #endif /* MPLS */ 1294 1295 if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) { 1296 m = m_get(M_DONTWAIT, MT_SONAME); 1297 if (m == NULL) 1298 return (ENOBUFS); 1299 deldst = mtod(m, struct sockaddr *); 1300 rt_maskedcopy(dst, deldst, ifa->ifa_netmask); 1301 dst = deldst; 1302 } 1303 1304 memset(&info, 0, sizeof(info)); 1305 info.rti_ifa = ifa; 1306 info.rti_flags = flags; 1307 info.rti_info[RTAX_DST] = dst; 1308 if ((flags & RTF_LLINFO) == 0) 1309 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 1310 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); 1311 1312 if ((flags & RTF_HOST) == 0) 1313 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1314 1315 if (flags & (RTF_LOCAL|RTF_BROADCAST)) 1316 prio = RTP_LOCAL; 1317 1318 if (flags & RTF_CONNECTED) 1319 prio = RTP_CONNECTED; 1320 1321 error = rtrequest_delete(&info, prio, ifp, &rt, rtableid); 1322 if (error == 0) { 1323 rt_sendmsg(rt, RTM_DELETE, rtableid); 1324 if (flags & RTF_LOCAL) 1325 rt_sendaddrmsg(rt, RTM_DELADDR, ifa); 1326 rtfree(rt); 1327 } 1328 if (m != NULL) 1329 m_free(m); 1330 1331 return (error); 1332 } 1333 1334 /* 1335 * Add ifa's address as a local rtentry. 1336 */ 1337 int 1338 rt_ifa_addlocal(struct ifaddr *ifa) 1339 { 1340 struct rtentry *rt; 1341 u_int flags = RTF_HOST|RTF_LOCAL; 1342 int error = 0; 1343 1344 /* 1345 * If the configured address correspond to the magical "any" 1346 * address do not add a local route entry because that might 1347 * corrupt the routing tree which uses this value for the 1348 * default routes. 1349 */ 1350 switch (ifa->ifa_addr->sa_family) { 1351 case AF_INET: 1352 if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) 1353 return (0); 1354 break; 1355 #ifdef INET6 1356 case AF_INET6: 1357 if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, 1358 &in6addr_any)) 1359 return (0); 1360 break; 1361 #endif 1362 default: 1363 break; 1364 } 1365 1366 if (!ISSET(ifa->ifa_ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) 1367 flags |= RTF_LLINFO; 1368 1369 /* If there is no loopback entry, allocate one. */ 1370 rt = rtalloc(ifa->ifa_addr, 0, ifa->ifa_ifp->if_rdomain); 1371 if (rt == NULL || !ISSET(rt->rt_flags, flags)) 1372 error = rt_ifa_add(ifa, flags, ifa->ifa_addr); 1373 rtfree(rt); 1374 1375 return (error); 1376 } 1377 1378 /* 1379 * Remove local rtentry of ifa's addresss if it exists. 1380 */ 1381 int 1382 rt_ifa_dellocal(struct ifaddr *ifa) 1383 { 1384 struct rtentry *rt; 1385 u_int flags = RTF_HOST|RTF_LOCAL; 1386 int error = 0; 1387 1388 /* 1389 * We do not add local routes for such address, so do not bother 1390 * removing them. 1391 */ 1392 switch (ifa->ifa_addr->sa_family) { 1393 case AF_INET: 1394 if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) 1395 return (0); 1396 break; 1397 #ifdef INET6 1398 case AF_INET6: 1399 if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, 1400 &in6addr_any)) 1401 return (0); 1402 break; 1403 #endif 1404 default: 1405 break; 1406 } 1407 1408 if (!ISSET(ifa->ifa_ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) 1409 flags |= RTF_LLINFO; 1410 1411 /* 1412 * Before deleting, check if a corresponding local host 1413 * route surely exists. With this check, we can avoid to 1414 * delete an interface direct route whose destination is same 1415 * as the address being removed. This can happen when removing 1416 * a subnet-router anycast address on an interface attached 1417 * to a shared medium. 1418 */ 1419 rt = rtalloc(ifa->ifa_addr, 0, ifa->ifa_ifp->if_rdomain); 1420 if (rt != NULL && ISSET(rt->rt_flags, flags)) 1421 error = rt_ifa_del(ifa, flags, ifa->ifa_addr); 1422 rtfree(rt); 1423 1424 return (error); 1425 } 1426 1427 /* 1428 * Route timer routines. These routes allow functions to be called 1429 * for various routes at any time. This is useful in supporting 1430 * path MTU discovery and redirect route deletion. 1431 * 1432 * This is similar to some BSDI internal functions, but it provides 1433 * for multiple queues for efficiency's sake... 1434 */ 1435 1436 LIST_HEAD(, rttimer_queue) rttimer_queue_head; 1437 static int rt_init_done = 0; 1438 1439 #define RTTIMER_CALLOUT(r) { \ 1440 if (r->rtt_func != NULL) { \ 1441 (*r->rtt_func)(r->rtt_rt, r); \ 1442 } else { \ 1443 struct rt_addrinfo info; \ 1444 bzero(&info, sizeof(info)); \ 1445 info.rti_info[RTAX_DST] = rt_key(r->rtt_rt); \ 1446 rtrequest(RTM_DELETE, &info, \ 1447 r->rtt_rt->rt_priority, NULL, r->rtt_tableid); \ 1448 } \ 1449 } 1450 1451 /* 1452 * Some subtle order problems with domain initialization mean that 1453 * we cannot count on this being run from rt_init before various 1454 * protocol initializations are done. Therefore, we make sure 1455 * that this is run when the first queue is added... 1456 */ 1457 1458 void 1459 rt_timer_init(void) 1460 { 1461 static struct timeout rt_timer_timeout; 1462 1463 if (rt_init_done) 1464 panic("rt_timer_init: already initialized"); 1465 1466 pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 0, 0, "rttmr", 1467 NULL); 1468 1469 LIST_INIT(&rttimer_queue_head); 1470 timeout_set(&rt_timer_timeout, rt_timer_timer, &rt_timer_timeout); 1471 timeout_add_sec(&rt_timer_timeout, 1); 1472 rt_init_done = 1; 1473 } 1474 1475 struct rttimer_queue * 1476 rt_timer_queue_create(u_int timeout) 1477 { 1478 struct rttimer_queue *rtq; 1479 1480 if (rt_init_done == 0) 1481 rt_timer_init(); 1482 1483 if ((rtq = malloc(sizeof(*rtq), M_RTABLE, M_NOWAIT|M_ZERO)) == NULL) 1484 return (NULL); 1485 1486 rtq->rtq_timeout = timeout; 1487 rtq->rtq_count = 0; 1488 TAILQ_INIT(&rtq->rtq_head); 1489 LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link); 1490 1491 return (rtq); 1492 } 1493 1494 void 1495 rt_timer_queue_change(struct rttimer_queue *rtq, long timeout) 1496 { 1497 rtq->rtq_timeout = timeout; 1498 } 1499 1500 void 1501 rt_timer_queue_destroy(struct rttimer_queue *rtq) 1502 { 1503 struct rttimer *r; 1504 1505 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) { 1506 LIST_REMOVE(r, rtt_link); 1507 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); 1508 RTTIMER_CALLOUT(r); 1509 pool_put(&rttimer_pool, r); 1510 if (rtq->rtq_count > 0) 1511 rtq->rtq_count--; 1512 else 1513 printf("rt_timer_queue_destroy: rtq_count reached 0\n"); 1514 } 1515 1516 LIST_REMOVE(rtq, rtq_link); 1517 free(rtq, M_RTABLE, sizeof(*rtq)); 1518 } 1519 1520 unsigned long 1521 rt_timer_queue_count(struct rttimer_queue *rtq) 1522 { 1523 return (rtq->rtq_count); 1524 } 1525 1526 void 1527 rt_timer_remove_all(struct rtentry *rt) 1528 { 1529 struct rttimer *r; 1530 1531 while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) { 1532 LIST_REMOVE(r, rtt_link); 1533 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); 1534 if (r->rtt_queue->rtq_count > 0) 1535 r->rtt_queue->rtq_count--; 1536 else 1537 printf("rt_timer_remove_all: rtq_count reached 0\n"); 1538 pool_put(&rttimer_pool, r); 1539 } 1540 } 1541 1542 int 1543 rt_timer_add(struct rtentry *rt, void (*func)(struct rtentry *, 1544 struct rttimer *), struct rttimer_queue *queue, u_int rtableid) 1545 { 1546 struct rttimer *r; 1547 long current_time; 1548 1549 current_time = time_uptime; 1550 rt->rt_rmx.rmx_expire = time_uptime + queue->rtq_timeout; 1551 1552 /* 1553 * If there's already a timer with this action, destroy it before 1554 * we add a new one. 1555 */ 1556 for (r = LIST_FIRST(&rt->rt_timer); r != NULL; 1557 r = LIST_NEXT(r, rtt_link)) { 1558 if (r->rtt_func == func) { 1559 LIST_REMOVE(r, rtt_link); 1560 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); 1561 if (r->rtt_queue->rtq_count > 0) 1562 r->rtt_queue->rtq_count--; 1563 else 1564 printf("rt_timer_add: rtq_count reached 0\n"); 1565 pool_put(&rttimer_pool, r); 1566 break; /* only one per list, so we can quit... */ 1567 } 1568 } 1569 1570 r = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO); 1571 if (r == NULL) 1572 return (ENOBUFS); 1573 1574 r->rtt_rt = rt; 1575 r->rtt_time = current_time; 1576 r->rtt_func = func; 1577 r->rtt_queue = queue; 1578 r->rtt_tableid = rtableid; 1579 LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link); 1580 TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next); 1581 r->rtt_queue->rtq_count++; 1582 1583 return (0); 1584 } 1585 1586 void 1587 rt_timer_timer(void *arg) 1588 { 1589 struct timeout *to = (struct timeout *)arg; 1590 struct rttimer_queue *rtq; 1591 struct rttimer *r; 1592 long current_time; 1593 int s; 1594 1595 current_time = time_uptime; 1596 1597 s = splsoftnet(); 1598 for (rtq = LIST_FIRST(&rttimer_queue_head); rtq != NULL; 1599 rtq = LIST_NEXT(rtq, rtq_link)) { 1600 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL && 1601 (r->rtt_time + rtq->rtq_timeout) < current_time) { 1602 LIST_REMOVE(r, rtt_link); 1603 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); 1604 RTTIMER_CALLOUT(r); 1605 pool_put(&rttimer_pool, r); 1606 if (rtq->rtq_count > 0) 1607 rtq->rtq_count--; 1608 else 1609 printf("rt_timer_timer: rtq_count reached 0\n"); 1610 } 1611 } 1612 splx(s); 1613 1614 timeout_add_sec(to, 1); 1615 } 1616 1617 u_int16_t 1618 rtlabel_name2id(char *name) 1619 { 1620 struct rt_label *label, *p = NULL; 1621 u_int16_t new_id = 1; 1622 1623 if (!name[0]) 1624 return (0); 1625 1626 TAILQ_FOREACH(label, &rt_labels, rtl_entry) 1627 if (strcmp(name, label->rtl_name) == 0) { 1628 label->rtl_ref++; 1629 return (label->rtl_id); 1630 } 1631 1632 /* 1633 * to avoid fragmentation, we do a linear search from the beginning 1634 * and take the first free slot we find. if there is none or the list 1635 * is empty, append a new entry at the end. 1636 */ 1637 1638 if (!TAILQ_EMPTY(&rt_labels)) 1639 for (p = TAILQ_FIRST(&rt_labels); p != NULL && 1640 p->rtl_id == new_id; p = TAILQ_NEXT(p, rtl_entry)) 1641 new_id = p->rtl_id + 1; 1642 1643 if (new_id > LABELID_MAX) 1644 return (0); 1645 1646 label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO); 1647 if (label == NULL) 1648 return (0); 1649 strlcpy(label->rtl_name, name, sizeof(label->rtl_name)); 1650 label->rtl_id = new_id; 1651 label->rtl_ref++; 1652 1653 if (p != NULL) /* insert new entry before p */ 1654 TAILQ_INSERT_BEFORE(p, label, rtl_entry); 1655 else /* either list empty or no free slot in between */ 1656 TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry); 1657 1658 return (label->rtl_id); 1659 } 1660 1661 const char * 1662 rtlabel_id2name(u_int16_t id) 1663 { 1664 struct rt_label *label; 1665 1666 TAILQ_FOREACH(label, &rt_labels, rtl_entry) 1667 if (label->rtl_id == id) 1668 return (label->rtl_name); 1669 1670 return (NULL); 1671 } 1672 1673 struct sockaddr * 1674 rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl) 1675 { 1676 const char *label; 1677 1678 if (labelid == 0 || (label = rtlabel_id2name(labelid)) == NULL) 1679 return (NULL); 1680 1681 bzero(sa_rl, sizeof(*sa_rl)); 1682 sa_rl->sr_len = sizeof(*sa_rl); 1683 sa_rl->sr_family = AF_UNSPEC; 1684 strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label)); 1685 1686 return ((struct sockaddr *)sa_rl); 1687 } 1688 1689 void 1690 rtlabel_unref(u_int16_t id) 1691 { 1692 struct rt_label *p, *next; 1693 1694 if (id == 0) 1695 return; 1696 1697 for (p = TAILQ_FIRST(&rt_labels); p != NULL; p = next) { 1698 next = TAILQ_NEXT(p, rtl_entry); 1699 if (id == p->rtl_id) { 1700 if (--p->rtl_ref == 0) { 1701 TAILQ_REMOVE(&rt_labels, p, rtl_entry); 1702 free(p, M_RTABLE, sizeof(*p)); 1703 } 1704 break; 1705 } 1706 } 1707 } 1708 1709 void 1710 rt_if_remove(struct ifnet *ifp) 1711 { 1712 int i; 1713 u_int tid; 1714 1715 for (tid = 0; tid < rtmap_limit; tid++) { 1716 /* skip rtables that are not in the rdomain of the ifp */ 1717 if (rtable_l2(tid) != ifp->if_rdomain) 1718 continue; 1719 for (i = 1; i <= AF_MAX; i++) { 1720 rtable_walk(tid, i, rt_if_remove_rtdelete, ifp); 1721 } 1722 } 1723 } 1724 1725 int 1726 rt_if_remove_rtdelete(struct rtentry *rt, void *vifp, u_int id) 1727 { 1728 struct ifnet *ifp = vifp; 1729 int error; 1730 1731 if (rt->rt_ifidx != ifp->if_index) 1732 return (0); 1733 1734 if ((error = rtdeletemsg(rt, ifp, id))) 1735 return (error); 1736 1737 return (EAGAIN); 1738 1739 } 1740 1741 #ifndef SMALL_KERNEL 1742 void 1743 rt_if_track(struct ifnet *ifp) 1744 { 1745 int i; 1746 u_int tid; 1747 1748 for (tid = 0; tid < rtmap_limit; tid++) { 1749 /* skip rtables that are not in the rdomain of the ifp */ 1750 if (rtable_l2(tid) != ifp->if_rdomain) 1751 continue; 1752 for (i = 1; i <= AF_MAX; i++) { 1753 if (!rtable_mpath_capable(tid, i)) 1754 continue; 1755 1756 rtable_walk(tid, i, rt_if_linkstate_change, ifp); 1757 } 1758 } 1759 } 1760 1761 int 1762 rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id) 1763 { 1764 struct ifnet *ifp = arg; 1765 struct sockaddr_in6 sa_mask; 1766 1767 if (rt->rt_ifidx != ifp->if_index) 1768 return (0); 1769 1770 /* Local routes are always usable. */ 1771 if (rt->rt_flags & RTF_LOCAL) { 1772 rt->rt_flags |= RTF_UP; 1773 return (0); 1774 } 1775 1776 if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) { 1777 if (!(rt->rt_flags & RTF_UP)) { 1778 /* bring route up */ 1779 rt->rt_flags |= RTF_UP; 1780 rtable_mpath_reprio(id, rt_key(rt), 1781 rt_plen2mask(rt, &sa_mask), 1782 rt->rt_priority & RTP_MASK, rt); 1783 } 1784 } else { 1785 if (rt->rt_flags & RTF_UP) { 1786 /* 1787 * Remove redirected and cloned routes (mainly ARP) 1788 * from down interfaces so we have a chance to get 1789 * new routes from a better source. 1790 */ 1791 if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC)) { 1792 int error; 1793 1794 if ((error = rtdeletemsg(rt, ifp, id))) 1795 return (error); 1796 return (EAGAIN); 1797 } 1798 /* take route down */ 1799 rt->rt_flags &= ~RTF_UP; 1800 rtable_mpath_reprio(id, rt_key(rt), 1801 rt_plen2mask(rt, &sa_mask), 1802 rt->rt_priority | RTP_DOWN, rt); 1803 } 1804 } 1805 if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask)); 1806 1807 return (0); 1808 } 1809 #endif 1810 1811 struct sockaddr * 1812 rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask) 1813 { 1814 struct sockaddr_in *sin = (struct sockaddr_in *)sa_mask; 1815 #ifdef INET6 1816 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa_mask; 1817 #endif 1818 1819 KASSERT(plen >= 0 || plen == -1); 1820 1821 if (plen == -1) 1822 return (NULL); 1823 1824 memset(sa_mask, 0, sizeof(*sa_mask)); 1825 1826 switch (af) { 1827 case AF_INET: 1828 sin->sin_family = AF_INET; 1829 sin->sin_len = sizeof(struct sockaddr_in); 1830 in_prefixlen2mask(&sin->sin_addr, plen); 1831 break; 1832 #ifdef INET6 1833 case AF_INET6: 1834 sin6->sin6_family = AF_INET6; 1835 sin6->sin6_len = sizeof(struct sockaddr_in6); 1836 in6_prefixlen2mask(&sin6->sin6_addr, plen); 1837 break; 1838 #endif /* INET6 */ 1839 default: 1840 return (NULL); 1841 } 1842 1843 return ((struct sockaddr *)sa_mask); 1844 } 1845 1846 struct sockaddr * 1847 rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask) 1848 { 1849 #ifndef ART 1850 return (rt_mask(rt)); 1851 #else 1852 return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask)); 1853 #endif /* ART */ 1854 } 1855 1856 #ifdef DDB 1857 #include <machine/db_machdep.h> 1858 #include <ddb/db_output.h> 1859 1860 void 1861 db_print_sa(struct sockaddr *sa) 1862 { 1863 int len; 1864 u_char *p; 1865 1866 if (sa == NULL) { 1867 db_printf("[NULL]"); 1868 return; 1869 } 1870 1871 p = (u_char *)sa; 1872 len = sa->sa_len; 1873 db_printf("["); 1874 while (len > 0) { 1875 db_printf("%d", *p); 1876 p++; 1877 len--; 1878 if (len) 1879 db_printf(","); 1880 } 1881 db_printf("]\n"); 1882 } 1883 1884 void 1885 db_print_ifa(struct ifaddr *ifa) 1886 { 1887 if (ifa == NULL) 1888 return; 1889 db_printf(" ifa_addr="); 1890 db_print_sa(ifa->ifa_addr); 1891 db_printf(" ifa_dsta="); 1892 db_print_sa(ifa->ifa_dstaddr); 1893 db_printf(" ifa_mask="); 1894 db_print_sa(ifa->ifa_netmask); 1895 db_printf(" flags=0x%x, refcnt=%d, metric=%d\n", 1896 ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric); 1897 } 1898 1899 /* 1900 * Function to pass to rtalble_walk(). 1901 * Return non-zero error to abort walk. 1902 */ 1903 int 1904 db_show_rtentry(struct rtentry *rt, void *w, unsigned int id) 1905 { 1906 db_printf("rtentry=%p", rt); 1907 1908 db_printf(" flags=0x%x refcnt=%d use=%llu expire=%lld rtableid=%u\n", 1909 rt->rt_flags, rt->rt_refcnt, rt->rt_use, rt->rt_expire, id); 1910 1911 db_printf(" key="); db_print_sa(rt_key(rt)); 1912 db_printf(" plen=%d", rt_plen(rt)); 1913 db_printf(" gw="); db_print_sa(rt->rt_gateway); 1914 db_printf(" ifidx=%u ", rt->rt_ifidx); 1915 db_printf(" ifa=%p\n", rt->rt_ifa); 1916 db_print_ifa(rt->rt_ifa); 1917 1918 db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo); 1919 return (0); 1920 } 1921 1922 /* 1923 * Function to print all the route trees. 1924 * Use this from ddb: "call db_show_arptab" 1925 */ 1926 int 1927 db_show_arptab(void) 1928 { 1929 db_printf("Route tree for AF_INET\n"); 1930 rtable_walk(0, AF_INET, db_show_rtentry, NULL); 1931 return (0); 1932 } 1933 #endif /* DDB */ 1934