1 /* $OpenBSD: trees.c,v 1.7 2022/10/20 15:36:47 tb Exp $ */ 2 /* trees.c -- output deflated data using Huffman coding 3 * Copyright (C) 1995-2021 Jean-loup Gailly 4 * detect_data_type() function provided freely by Cosmin Truta, 2006 5 * For conditions of distribution and use, see copyright notice in zlib.h 6 */ 7 8 /* 9 * ALGORITHM 10 * 11 * The "deflation" process uses several Huffman trees. The more 12 * common source values are represented by shorter bit sequences. 13 * 14 * Each code tree is stored in a compressed form which is itself 15 * a Huffman encoding of the lengths of all the code strings (in 16 * ascending order by source values). The actual code strings are 17 * reconstructed from the lengths in the inflate process, as described 18 * in the deflate specification. 19 * 20 * REFERENCES 21 * 22 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 23 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 24 * 25 * Storer, James A. 26 * Data Compression: Methods and Theory, pp. 49-50. 27 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 28 * 29 * Sedgewick, R. 30 * Algorithms, p290. 31 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 32 */ 33 34 /* #define GEN_TREES_H */ 35 36 #include "deflate.h" 37 38 #ifdef ZLIB_DEBUG 39 # include <ctype.h> 40 #endif 41 42 /* =========================================================================== 43 * Constants 44 */ 45 46 #define MAX_BL_BITS 7 47 /* Bit length codes must not exceed MAX_BL_BITS bits */ 48 49 #define END_BLOCK 256 50 /* end of block literal code */ 51 52 #define REP_3_6 16 53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 54 55 #define REPZ_3_10 17 56 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 57 58 #define REPZ_11_138 18 59 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 60 61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 63 64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 66 67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 69 70 local const uch bl_order[BL_CODES] 71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 72 /* The lengths of the bit length codes are sent in order of decreasing 73 * probability, to avoid transmitting the lengths for unused bit length codes. 74 */ 75 76 /* =========================================================================== 77 * Local data. These are initialized only once. 78 */ 79 80 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 81 82 #if defined(GEN_TREES_H) || !defined(STDC) 83 /* non ANSI compilers may not accept trees.h */ 84 85 local ct_data static_ltree[L_CODES+2]; 86 /* The static literal tree. Since the bit lengths are imposed, there is no 87 * need for the L_CODES extra codes used during heap construction. However 88 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 89 * below). 90 */ 91 92 local ct_data static_dtree[D_CODES]; 93 /* The static distance tree. (Actually a trivial tree since all codes use 94 * 5 bits.) 95 */ 96 97 uch _dist_code[DIST_CODE_LEN]; 98 /* Distance codes. The first 256 values correspond to the distances 99 * 3 .. 258, the last 256 values correspond to the top 8 bits of 100 * the 15 bit distances. 101 */ 102 103 uch _length_code[MAX_MATCH-MIN_MATCH+1]; 104 /* length code for each normalized match length (0 == MIN_MATCH) */ 105 106 local int base_length[LENGTH_CODES]; 107 /* First normalized length for each code (0 = MIN_MATCH) */ 108 109 local int base_dist[D_CODES]; 110 /* First normalized distance for each code (0 = distance of 1) */ 111 112 #else 113 # include "trees.h" 114 #endif /* GEN_TREES_H */ 115 116 struct static_tree_desc_s { 117 const ct_data *static_tree; /* static tree or NULL */ 118 const intf *extra_bits; /* extra bits for each code or NULL */ 119 int extra_base; /* base index for extra_bits */ 120 int elems; /* max number of elements in the tree */ 121 int max_length; /* max bit length for the codes */ 122 }; 123 124 local const static_tree_desc static_l_desc = 125 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 126 127 local const static_tree_desc static_d_desc = 128 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 129 130 local const static_tree_desc static_bl_desc = 131 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 132 133 /* =========================================================================== 134 * Local (static) routines in this file. 135 */ 136 137 local void tr_static_init OF((void)); 138 local void init_block OF((deflate_state *s)); 139 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); 140 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); 141 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); 142 local void build_tree OF((deflate_state *s, tree_desc *desc)); 143 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); 144 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); 145 local int build_bl_tree OF((deflate_state *s)); 146 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, 147 int blcodes)); 148 local void compress_block OF((deflate_state *s, const ct_data *ltree, 149 const ct_data *dtree)); 150 local int detect_data_type OF((deflate_state *s)); 151 local unsigned bi_reverse OF((unsigned code, int len)); 152 local void bi_windup OF((deflate_state *s)); 153 local void bi_flush OF((deflate_state *s)); 154 155 #ifdef GEN_TREES_H 156 local void gen_trees_header OF((void)); 157 #endif 158 159 #ifndef ZLIB_DEBUG 160 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 161 /* Send a code of the given tree. c and tree must not have side effects */ 162 163 #else /* !ZLIB_DEBUG */ 164 # define send_code(s, c, tree) \ 165 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 166 send_bits(s, tree[c].Code, tree[c].Len); } 167 #endif 168 169 /* =========================================================================== 170 * Output a short LSB first on the stream. 171 * IN assertion: there is enough room in pendingBuf. 172 */ 173 #define put_short(s, w) { \ 174 put_byte(s, (uch)((w) & 0xff)); \ 175 put_byte(s, (uch)((ush)(w) >> 8)); \ 176 } 177 178 /* =========================================================================== 179 * Send a value on a given number of bits. 180 * IN assertion: length <= 16 and value fits in length bits. 181 */ 182 #ifdef ZLIB_DEBUG 183 local void send_bits OF((deflate_state *s, int value, int length)); 184 185 local void send_bits(s, value, length) 186 deflate_state *s; 187 int value; /* value to send */ 188 int length; /* number of bits */ 189 { 190 Tracevv((stderr," l %2d v %4x ", length, value)); 191 Assert(length > 0 && length <= 15, "invalid length"); 192 s->bits_sent += (ulg)length; 193 194 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 195 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid)) 196 * unused bits in value. 197 */ 198 if (s->bi_valid > (int)Buf_size - length) { 199 s->bi_buf |= (ush)value << s->bi_valid; 200 put_short(s, s->bi_buf); 201 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 202 s->bi_valid += length - Buf_size; 203 } else { 204 s->bi_buf |= (ush)value << s->bi_valid; 205 s->bi_valid += length; 206 } 207 } 208 #else /* !ZLIB_DEBUG */ 209 210 #define send_bits(s, value, length) \ 211 { int len = length;\ 212 if (s->bi_valid > (int)Buf_size - len) {\ 213 int val = (int)value;\ 214 s->bi_buf |= (ush)val << s->bi_valid;\ 215 put_short(s, s->bi_buf);\ 216 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 217 s->bi_valid += len - Buf_size;\ 218 } else {\ 219 s->bi_buf |= (ush)(value) << s->bi_valid;\ 220 s->bi_valid += len;\ 221 }\ 222 } 223 #endif /* ZLIB_DEBUG */ 224 225 226 /* the arguments must not have side effects */ 227 228 /* =========================================================================== 229 * Initialize the various 'constant' tables. 230 */ 231 local void tr_static_init() 232 { 233 #if defined(GEN_TREES_H) || !defined(STDC) 234 static int static_init_done = 0; 235 int n; /* iterates over tree elements */ 236 int bits; /* bit counter */ 237 int length; /* length value */ 238 int code; /* code value */ 239 int dist; /* distance index */ 240 ush bl_count[MAX_BITS+1]; 241 /* number of codes at each bit length for an optimal tree */ 242 243 if (static_init_done) return; 244 245 /* For some embedded targets, global variables are not initialized: */ 246 #ifdef NO_INIT_GLOBAL_POINTERS 247 static_l_desc.static_tree = static_ltree; 248 static_l_desc.extra_bits = extra_lbits; 249 static_d_desc.static_tree = static_dtree; 250 static_d_desc.extra_bits = extra_dbits; 251 static_bl_desc.extra_bits = extra_blbits; 252 #endif 253 254 /* Initialize the mapping length (0..255) -> length code (0..28) */ 255 length = 0; 256 for (code = 0; code < LENGTH_CODES-1; code++) { 257 base_length[code] = length; 258 for (n = 0; n < (1 << extra_lbits[code]); n++) { 259 _length_code[length++] = (uch)code; 260 } 261 } 262 Assert (length == 256, "tr_static_init: length != 256"); 263 /* Note that the length 255 (match length 258) can be represented 264 * in two different ways: code 284 + 5 bits or code 285, so we 265 * overwrite length_code[255] to use the best encoding: 266 */ 267 _length_code[length - 1] = (uch)code; 268 269 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 270 dist = 0; 271 for (code = 0 ; code < 16; code++) { 272 base_dist[code] = dist; 273 for (n = 0; n < (1 << extra_dbits[code]); n++) { 274 _dist_code[dist++] = (uch)code; 275 } 276 } 277 Assert (dist == 256, "tr_static_init: dist != 256"); 278 dist >>= 7; /* from now on, all distances are divided by 128 */ 279 for ( ; code < D_CODES; code++) { 280 base_dist[code] = dist << 7; 281 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { 282 _dist_code[256 + dist++] = (uch)code; 283 } 284 } 285 Assert (dist == 256, "tr_static_init: 256 + dist != 512"); 286 287 /* Construct the codes of the static literal tree */ 288 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 289 n = 0; 290 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 291 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 292 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 293 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 294 /* Codes 286 and 287 do not exist, but we must include them in the 295 * tree construction to get a canonical Huffman tree (longest code 296 * all ones) 297 */ 298 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 299 300 /* The static distance tree is trivial: */ 301 for (n = 0; n < D_CODES; n++) { 302 static_dtree[n].Len = 5; 303 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 304 } 305 static_init_done = 1; 306 307 # ifdef GEN_TREES_H 308 gen_trees_header(); 309 # endif 310 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 311 } 312 313 /* =========================================================================== 314 * Generate the file trees.h describing the static trees. 315 */ 316 #ifdef GEN_TREES_H 317 # ifndef ZLIB_DEBUG 318 # include <stdio.h> 319 # endif 320 321 # define SEPARATOR(i, last, width) \ 322 ((i) == (last)? "\n};\n\n" : \ 323 ((i) % (width) == (width) - 1 ? ",\n" : ", ")) 324 325 void gen_trees_header() 326 { 327 FILE *header = fopen("trees.h", "w"); 328 int i; 329 330 Assert (header != NULL, "Can't open trees.h"); 331 fprintf(header, 332 "/* header created automatically with -DGEN_TREES_H */\n\n"); 333 334 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 335 for (i = 0; i < L_CODES+2; i++) { 336 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 337 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 338 } 339 340 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 341 for (i = 0; i < D_CODES; i++) { 342 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 343 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 344 } 345 346 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); 347 for (i = 0; i < DIST_CODE_LEN; i++) { 348 fprintf(header, "%2u%s", _dist_code[i], 349 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 350 } 351 352 fprintf(header, 353 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 354 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 355 fprintf(header, "%2u%s", _length_code[i], 356 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 357 } 358 359 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 360 for (i = 0; i < LENGTH_CODES; i++) { 361 fprintf(header, "%1u%s", base_length[i], 362 SEPARATOR(i, LENGTH_CODES-1, 20)); 363 } 364 365 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 366 for (i = 0; i < D_CODES; i++) { 367 fprintf(header, "%5u%s", base_dist[i], 368 SEPARATOR(i, D_CODES-1, 10)); 369 } 370 371 fclose(header); 372 } 373 #endif /* GEN_TREES_H */ 374 375 /* =========================================================================== 376 * Initialize the tree data structures for a new zlib stream. 377 */ 378 void ZLIB_INTERNAL _tr_init(s) 379 deflate_state *s; 380 { 381 tr_static_init(); 382 383 s->l_desc.dyn_tree = s->dyn_ltree; 384 s->l_desc.stat_desc = &static_l_desc; 385 386 s->d_desc.dyn_tree = s->dyn_dtree; 387 s->d_desc.stat_desc = &static_d_desc; 388 389 s->bl_desc.dyn_tree = s->bl_tree; 390 s->bl_desc.stat_desc = &static_bl_desc; 391 392 s->bi_buf = 0; 393 s->bi_valid = 0; 394 #ifdef ZLIB_DEBUG 395 s->compressed_len = 0L; 396 s->bits_sent = 0L; 397 #endif 398 399 /* Initialize the first block of the first file: */ 400 init_block(s); 401 } 402 403 /* =========================================================================== 404 * Initialize a new block. 405 */ 406 local void init_block(s) 407 deflate_state *s; 408 { 409 int n; /* iterates over tree elements */ 410 411 /* Initialize the trees. */ 412 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 413 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 414 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 415 416 s->dyn_ltree[END_BLOCK].Freq = 1; 417 s->opt_len = s->static_len = 0L; 418 s->sym_next = s->matches = 0; 419 } 420 421 #define SMALLEST 1 422 /* Index within the heap array of least frequent node in the Huffman tree */ 423 424 425 /* =========================================================================== 426 * Remove the smallest element from the heap and recreate the heap with 427 * one less element. Updates heap and heap_len. 428 */ 429 #define pqremove(s, tree, top) \ 430 {\ 431 top = s->heap[SMALLEST]; \ 432 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 433 pqdownheap(s, tree, SMALLEST); \ 434 } 435 436 /* =========================================================================== 437 * Compares to subtrees, using the tree depth as tie breaker when 438 * the subtrees have equal frequency. This minimizes the worst case length. 439 */ 440 #define smaller(tree, n, m, depth) \ 441 (tree[n].Freq < tree[m].Freq || \ 442 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 443 444 /* =========================================================================== 445 * Restore the heap property by moving down the tree starting at node k, 446 * exchanging a node with the smallest of its two sons if necessary, stopping 447 * when the heap property is re-established (each father smaller than its 448 * two sons). 449 */ 450 local void pqdownheap(s, tree, k) 451 deflate_state *s; 452 ct_data *tree; /* the tree to restore */ 453 int k; /* node to move down */ 454 { 455 int v = s->heap[k]; 456 int j = k << 1; /* left son of k */ 457 while (j <= s->heap_len) { 458 /* Set j to the smallest of the two sons: */ 459 if (j < s->heap_len && 460 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { 461 j++; 462 } 463 /* Exit if v is smaller than both sons */ 464 if (smaller(tree, v, s->heap[j], s->depth)) break; 465 466 /* Exchange v with the smallest son */ 467 s->heap[k] = s->heap[j]; k = j; 468 469 /* And continue down the tree, setting j to the left son of k */ 470 j <<= 1; 471 } 472 s->heap[k] = v; 473 } 474 475 /* =========================================================================== 476 * Compute the optimal bit lengths for a tree and update the total bit length 477 * for the current block. 478 * IN assertion: the fields freq and dad are set, heap[heap_max] and 479 * above are the tree nodes sorted by increasing frequency. 480 * OUT assertions: the field len is set to the optimal bit length, the 481 * array bl_count contains the frequencies for each bit length. 482 * The length opt_len is updated; static_len is also updated if stree is 483 * not null. 484 */ 485 local void gen_bitlen(s, desc) 486 deflate_state *s; 487 tree_desc *desc; /* the tree descriptor */ 488 { 489 ct_data *tree = desc->dyn_tree; 490 int max_code = desc->max_code; 491 const ct_data *stree = desc->stat_desc->static_tree; 492 const intf *extra = desc->stat_desc->extra_bits; 493 int base = desc->stat_desc->extra_base; 494 int max_length = desc->stat_desc->max_length; 495 int h; /* heap index */ 496 int n, m; /* iterate over the tree elements */ 497 int bits; /* bit length */ 498 int xbits; /* extra bits */ 499 ush f; /* frequency */ 500 int overflow = 0; /* number of elements with bit length too large */ 501 502 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 503 504 /* In a first pass, compute the optimal bit lengths (which may 505 * overflow in the case of the bit length tree). 506 */ 507 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 508 509 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { 510 n = s->heap[h]; 511 bits = tree[tree[n].Dad].Len + 1; 512 if (bits > max_length) bits = max_length, overflow++; 513 tree[n].Len = (ush)bits; 514 /* We overwrite tree[n].Dad which is no longer needed */ 515 516 if (n > max_code) continue; /* not a leaf node */ 517 518 s->bl_count[bits]++; 519 xbits = 0; 520 if (n >= base) xbits = extra[n - base]; 521 f = tree[n].Freq; 522 s->opt_len += (ulg)f * (unsigned)(bits + xbits); 523 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); 524 } 525 if (overflow == 0) return; 526 527 Tracev((stderr,"\nbit length overflow\n")); 528 /* This happens for example on obj2 and pic of the Calgary corpus */ 529 530 /* Find the first bit length which could increase: */ 531 do { 532 bits = max_length - 1; 533 while (s->bl_count[bits] == 0) bits--; 534 s->bl_count[bits]--; /* move one leaf down the tree */ 535 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ 536 s->bl_count[max_length]--; 537 /* The brother of the overflow item also moves one step up, 538 * but this does not affect bl_count[max_length] 539 */ 540 overflow -= 2; 541 } while (overflow > 0); 542 543 /* Now recompute all bit lengths, scanning in increasing frequency. 544 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 545 * lengths instead of fixing only the wrong ones. This idea is taken 546 * from 'ar' written by Haruhiko Okumura.) 547 */ 548 for (bits = max_length; bits != 0; bits--) { 549 n = s->bl_count[bits]; 550 while (n != 0) { 551 m = s->heap[--h]; 552 if (m > max_code) continue; 553 if ((unsigned) tree[m].Len != (unsigned) bits) { 554 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 555 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; 556 tree[m].Len = (ush)bits; 557 } 558 n--; 559 } 560 } 561 } 562 563 /* =========================================================================== 564 * Generate the codes for a given tree and bit counts (which need not be 565 * optimal). 566 * IN assertion: the array bl_count contains the bit length statistics for 567 * the given tree and the field len is set for all tree elements. 568 * OUT assertion: the field code is set for all tree elements of non 569 * zero code length. 570 */ 571 local void gen_codes(tree, max_code, bl_count) 572 ct_data *tree; /* the tree to decorate */ 573 int max_code; /* largest code with non zero frequency */ 574 ushf *bl_count; /* number of codes at each bit length */ 575 { 576 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 577 unsigned code = 0; /* running code value */ 578 int bits; /* bit index */ 579 int n; /* code index */ 580 581 /* The distribution counts are first used to generate the code values 582 * without bit reversal. 583 */ 584 for (bits = 1; bits <= MAX_BITS; bits++) { 585 code = (code + bl_count[bits - 1]) << 1; 586 next_code[bits] = (ush)code; 587 } 588 /* Check that the bit counts in bl_count are consistent. The last code 589 * must be all ones. 590 */ 591 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, 592 "inconsistent bit counts"); 593 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 594 595 for (n = 0; n <= max_code; n++) { 596 int len = tree[n].Len; 597 if (len == 0) continue; 598 /* Now reverse the bits */ 599 tree[n].Code = (ush)bi_reverse(next_code[len]++, len); 600 601 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 602 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); 603 } 604 } 605 606 /* =========================================================================== 607 * Construct one Huffman tree and assigns the code bit strings and lengths. 608 * Update the total bit length for the current block. 609 * IN assertion: the field freq is set for all tree elements. 610 * OUT assertions: the fields len and code are set to the optimal bit length 611 * and corresponding code. The length opt_len is updated; static_len is 612 * also updated if stree is not null. The field max_code is set. 613 */ 614 local void build_tree(s, desc) 615 deflate_state *s; 616 tree_desc *desc; /* the tree descriptor */ 617 { 618 ct_data *tree = desc->dyn_tree; 619 const ct_data *stree = desc->stat_desc->static_tree; 620 int elems = desc->stat_desc->elems; 621 int n, m; /* iterate over heap elements */ 622 int max_code = -1; /* largest code with non zero frequency */ 623 int node; /* new node being created */ 624 625 /* Construct the initial heap, with least frequent element in 626 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1]. 627 * heap[0] is not used. 628 */ 629 s->heap_len = 0, s->heap_max = HEAP_SIZE; 630 631 for (n = 0; n < elems; n++) { 632 if (tree[n].Freq != 0) { 633 s->heap[++(s->heap_len)] = max_code = n; 634 s->depth[n] = 0; 635 } else { 636 tree[n].Len = 0; 637 } 638 } 639 640 /* The pkzip format requires that at least one distance code exists, 641 * and that at least one bit should be sent even if there is only one 642 * possible code. So to avoid special checks later on we force at least 643 * two codes of non zero frequency. 644 */ 645 while (s->heap_len < 2) { 646 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 647 tree[node].Freq = 1; 648 s->depth[node] = 0; 649 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 650 /* node is 0 or 1 so it does not have extra bits */ 651 } 652 desc->max_code = max_code; 653 654 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree, 655 * establish sub-heaps of increasing lengths: 656 */ 657 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 658 659 /* Construct the Huffman tree by repeatedly combining the least two 660 * frequent nodes. 661 */ 662 node = elems; /* next internal node of the tree */ 663 do { 664 pqremove(s, tree, n); /* n = node of least frequency */ 665 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 666 667 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 668 s->heap[--(s->heap_max)] = m; 669 670 /* Create a new node father of n and m */ 671 tree[node].Freq = tree[n].Freq + tree[m].Freq; 672 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 673 s->depth[n] : s->depth[m]) + 1); 674 tree[n].Dad = tree[m].Dad = (ush)node; 675 #ifdef DUMP_BL_TREE 676 if (tree == s->bl_tree) { 677 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 678 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 679 } 680 #endif 681 /* and insert the new node in the heap */ 682 s->heap[SMALLEST] = node++; 683 pqdownheap(s, tree, SMALLEST); 684 685 } while (s->heap_len >= 2); 686 687 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 688 689 /* At this point, the fields freq and dad are set. We can now 690 * generate the bit lengths. 691 */ 692 gen_bitlen(s, (tree_desc *)desc); 693 694 /* The field len is now set, we can generate the bit codes */ 695 gen_codes ((ct_data *)tree, max_code, s->bl_count); 696 } 697 698 /* =========================================================================== 699 * Scan a literal or distance tree to determine the frequencies of the codes 700 * in the bit length tree. 701 */ 702 local void scan_tree(s, tree, max_code) 703 deflate_state *s; 704 ct_data *tree; /* the tree to be scanned */ 705 int max_code; /* and its largest code of non zero frequency */ 706 { 707 int n; /* iterates over all tree elements */ 708 int prevlen = -1; /* last emitted length */ 709 int curlen; /* length of current code */ 710 int nextlen = tree[0].Len; /* length of next code */ 711 int count = 0; /* repeat count of the current code */ 712 int max_count = 7; /* max repeat count */ 713 int min_count = 4; /* min repeat count */ 714 715 if (nextlen == 0) max_count = 138, min_count = 3; 716 tree[max_code + 1].Len = (ush)0xffff; /* guard */ 717 718 for (n = 0; n <= max_code; n++) { 719 curlen = nextlen; nextlen = tree[n + 1].Len; 720 if (++count < max_count && curlen == nextlen) { 721 continue; 722 } else if (count < min_count) { 723 s->bl_tree[curlen].Freq += count; 724 } else if (curlen != 0) { 725 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 726 s->bl_tree[REP_3_6].Freq++; 727 } else if (count <= 10) { 728 s->bl_tree[REPZ_3_10].Freq++; 729 } else { 730 s->bl_tree[REPZ_11_138].Freq++; 731 } 732 count = 0; prevlen = curlen; 733 if (nextlen == 0) { 734 max_count = 138, min_count = 3; 735 } else if (curlen == nextlen) { 736 max_count = 6, min_count = 3; 737 } else { 738 max_count = 7, min_count = 4; 739 } 740 } 741 } 742 743 /* =========================================================================== 744 * Send a literal or distance tree in compressed form, using the codes in 745 * bl_tree. 746 */ 747 local void send_tree(s, tree, max_code) 748 deflate_state *s; 749 ct_data *tree; /* the tree to be scanned */ 750 int max_code; /* and its largest code of non zero frequency */ 751 { 752 int n; /* iterates over all tree elements */ 753 int prevlen = -1; /* last emitted length */ 754 int curlen; /* length of current code */ 755 int nextlen = tree[0].Len; /* length of next code */ 756 int count = 0; /* repeat count of the current code */ 757 int max_count = 7; /* max repeat count */ 758 int min_count = 4; /* min repeat count */ 759 760 /* tree[max_code + 1].Len = -1; */ /* guard already set */ 761 if (nextlen == 0) max_count = 138, min_count = 3; 762 763 for (n = 0; n <= max_code; n++) { 764 curlen = nextlen; nextlen = tree[n + 1].Len; 765 if (++count < max_count && curlen == nextlen) { 766 continue; 767 } else if (count < min_count) { 768 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 769 770 } else if (curlen != 0) { 771 if (curlen != prevlen) { 772 send_code(s, curlen, s->bl_tree); count--; 773 } 774 Assert(count >= 3 && count <= 6, " 3_6?"); 775 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); 776 777 } else if (count <= 10) { 778 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); 779 780 } else { 781 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); 782 } 783 count = 0; prevlen = curlen; 784 if (nextlen == 0) { 785 max_count = 138, min_count = 3; 786 } else if (curlen == nextlen) { 787 max_count = 6, min_count = 3; 788 } else { 789 max_count = 7, min_count = 4; 790 } 791 } 792 } 793 794 /* =========================================================================== 795 * Construct the Huffman tree for the bit lengths and return the index in 796 * bl_order of the last bit length code to send. 797 */ 798 local int build_bl_tree(s) 799 deflate_state *s; 800 { 801 int max_blindex; /* index of last bit length code of non zero freq */ 802 803 /* Determine the bit length frequencies for literal and distance trees */ 804 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 805 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 806 807 /* Build the bit length tree: */ 808 build_tree(s, (tree_desc *)(&(s->bl_desc))); 809 /* opt_len now includes the length of the tree representations, except the 810 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts. 811 */ 812 813 /* Determine the number of bit length codes to send. The pkzip format 814 * requires that at least 4 bit length codes be sent. (appnote.txt says 815 * 3 but the actual value used is 4.) 816 */ 817 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 818 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 819 } 820 /* Update opt_len to include the bit length tree and counts */ 821 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4; 822 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 823 s->opt_len, s->static_len)); 824 825 return max_blindex; 826 } 827 828 /* =========================================================================== 829 * Send the header for a block using dynamic Huffman trees: the counts, the 830 * lengths of the bit length codes, the literal tree and the distance tree. 831 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 832 */ 833 local void send_all_trees(s, lcodes, dcodes, blcodes) 834 deflate_state *s; 835 int lcodes, dcodes, blcodes; /* number of codes for each tree */ 836 { 837 int rank; /* index in bl_order */ 838 839 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 840 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 841 "too many codes"); 842 Tracev((stderr, "\nbl counts: ")); 843 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ 844 send_bits(s, dcodes - 1, 5); 845 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ 846 for (rank = 0; rank < blcodes; rank++) { 847 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 848 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 849 } 850 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 851 852 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */ 853 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 854 855 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */ 856 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 857 } 858 859 /* =========================================================================== 860 * Send a stored block 861 */ 862 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) 863 deflate_state *s; 864 charf *buf; /* input block */ 865 ulg stored_len; /* length of input block */ 866 int last; /* one if this is the last block for a file */ 867 { 868 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */ 869 bi_windup(s); /* align on byte boundary */ 870 put_short(s, (ush)stored_len); 871 put_short(s, (ush)~stored_len); 872 if (stored_len) 873 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); 874 s->pending += stored_len; 875 #ifdef ZLIB_DEBUG 876 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 877 s->compressed_len += (stored_len + 4) << 3; 878 s->bits_sent += 2*16; 879 s->bits_sent += stored_len << 3; 880 #endif 881 } 882 883 /* =========================================================================== 884 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) 885 */ 886 void ZLIB_INTERNAL _tr_flush_bits(s) 887 deflate_state *s; 888 { 889 bi_flush(s); 890 } 891 892 /* =========================================================================== 893 * Send one empty static block to give enough lookahead for inflate. 894 * This takes 10 bits, of which 7 may remain in the bit buffer. 895 */ 896 void ZLIB_INTERNAL _tr_align(s) 897 deflate_state *s; 898 { 899 send_bits(s, STATIC_TREES<<1, 3); 900 send_code(s, END_BLOCK, static_ltree); 901 #ifdef ZLIB_DEBUG 902 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 903 #endif 904 bi_flush(s); 905 } 906 907 /* =========================================================================== 908 * Determine the best encoding for the current block: dynamic trees, static 909 * trees or store, and write out the encoded block. 910 */ 911 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) 912 deflate_state *s; 913 charf *buf; /* input block, or NULL if too old */ 914 ulg stored_len; /* length of input block */ 915 int last; /* one if this is the last block for a file */ 916 { 917 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 918 int max_blindex = 0; /* index of last bit length code of non zero freq */ 919 920 /* Build the Huffman trees unless a stored block is forced */ 921 if (s->level > 0) { 922 923 /* Check if the file is binary or text */ 924 if (s->strm->data_type == Z_UNKNOWN) 925 s->strm->data_type = detect_data_type(s); 926 927 /* Construct the literal and distance trees */ 928 build_tree(s, (tree_desc *)(&(s->l_desc))); 929 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 930 s->static_len)); 931 932 build_tree(s, (tree_desc *)(&(s->d_desc))); 933 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 934 s->static_len)); 935 /* At this point, opt_len and static_len are the total bit lengths of 936 * the compressed block data, excluding the tree representations. 937 */ 938 939 /* Build the bit length tree for the above two trees, and get the index 940 * in bl_order of the last bit length code to send. 941 */ 942 max_blindex = build_bl_tree(s); 943 944 /* Determine the best encoding. Compute the block lengths in bytes. */ 945 opt_lenb = (s->opt_len + 3 + 7) >> 3; 946 static_lenb = (s->static_len + 3 + 7) >> 3; 947 948 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 949 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 950 s->sym_next / 3)); 951 952 #ifndef FORCE_STATIC 953 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) 954 #endif 955 opt_lenb = static_lenb; 956 957 } else { 958 Assert(buf != (char*)0, "lost buf"); 959 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 960 } 961 962 #ifdef FORCE_STORED 963 if (buf != (char*)0) { /* force stored block */ 964 #else 965 if (stored_len + 4 <= opt_lenb && buf != (char*)0) { 966 /* 4: two words for the lengths */ 967 #endif 968 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 969 * Otherwise we can't have processed more than WSIZE input bytes since 970 * the last block flush, because compression would have been 971 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 972 * transform a block into a stored block. 973 */ 974 _tr_stored_block(s, buf, stored_len, last); 975 976 } else if (static_lenb == opt_lenb) { 977 send_bits(s, (STATIC_TREES<<1) + last, 3); 978 compress_block(s, (const ct_data *)static_ltree, 979 (const ct_data *)static_dtree); 980 #ifdef ZLIB_DEBUG 981 s->compressed_len += 3 + s->static_len; 982 #endif 983 } else { 984 send_bits(s, (DYN_TREES<<1) + last, 3); 985 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, 986 max_blindex + 1); 987 compress_block(s, (const ct_data *)s->dyn_ltree, 988 (const ct_data *)s->dyn_dtree); 989 #ifdef ZLIB_DEBUG 990 s->compressed_len += 3 + s->opt_len; 991 #endif 992 } 993 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 994 /* The above check is made mod 2^32, for files larger than 512 MB 995 * and uLong implemented on 32 bits. 996 */ 997 init_block(s); 998 999 if (last) { 1000 bi_windup(s); 1001 #ifdef ZLIB_DEBUG 1002 s->compressed_len += 7; /* align on byte boundary */ 1003 #endif 1004 } 1005 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3, 1006 s->compressed_len - 7*last)); 1007 } 1008 1009 /* =========================================================================== 1010 * Save the match info and tally the frequency counts. Return true if 1011 * the current block must be flushed. 1012 */ 1013 int ZLIB_INTERNAL _tr_tally(s, dist, lc) 1014 deflate_state *s; 1015 unsigned dist; /* distance of matched string */ 1016 unsigned lc; /* match length - MIN_MATCH or unmatched char (dist==0) */ 1017 { 1018 s->sym_buf[s->sym_next++] = (uch)dist; 1019 s->sym_buf[s->sym_next++] = (uch)(dist >> 8); 1020 s->sym_buf[s->sym_next++] = (uch)lc; 1021 if (dist == 0) { 1022 /* lc is the unmatched char */ 1023 s->dyn_ltree[lc].Freq++; 1024 } else { 1025 s->matches++; 1026 /* Here, lc is the match length - MIN_MATCH */ 1027 dist--; /* dist = match distance - 1 */ 1028 Assert((ush)dist < (ush)MAX_DIST(s) && 1029 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1030 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1031 1032 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++; 1033 s->dyn_dtree[d_code(dist)].Freq++; 1034 } 1035 return (s->sym_next == s->sym_end); 1036 } 1037 1038 /* =========================================================================== 1039 * Send the block data compressed using the given Huffman trees 1040 */ 1041 local void compress_block(s, ltree, dtree) 1042 deflate_state *s; 1043 const ct_data *ltree; /* literal tree */ 1044 const ct_data *dtree; /* distance tree */ 1045 { 1046 unsigned dist; /* distance of matched string */ 1047 int lc; /* match length or unmatched char (if dist == 0) */ 1048 unsigned sx = 0; /* running index in sym_buf */ 1049 unsigned code; /* the code to send */ 1050 int extra; /* number of extra bits to send */ 1051 1052 if (s->sym_next != 0) do { 1053 dist = s->sym_buf[sx++] & 0xff; 1054 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; 1055 lc = s->sym_buf[sx++]; 1056 if (dist == 0) { 1057 send_code(s, lc, ltree); /* send a literal byte */ 1058 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 1059 } else { 1060 /* Here, lc is the match length - MIN_MATCH */ 1061 code = _length_code[lc]; 1062 send_code(s, code + LITERALS + 1, ltree); /* send length code */ 1063 extra = extra_lbits[code]; 1064 if (extra != 0) { 1065 lc -= base_length[code]; 1066 send_bits(s, lc, extra); /* send the extra length bits */ 1067 } 1068 dist--; /* dist is now the match distance - 1 */ 1069 code = d_code(dist); 1070 Assert (code < D_CODES, "bad d_code"); 1071 1072 send_code(s, code, dtree); /* send the distance code */ 1073 extra = extra_dbits[code]; 1074 if (extra != 0) { 1075 dist -= (unsigned)base_dist[code]; 1076 send_bits(s, dist, extra); /* send the extra distance bits */ 1077 } 1078 } /* literal or match pair ? */ 1079 1080 /* Check that the overlay between pending_buf and sym_buf is ok: */ 1081 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); 1082 1083 } while (sx < s->sym_next); 1084 1085 send_code(s, END_BLOCK, ltree); 1086 } 1087 1088 /* =========================================================================== 1089 * Check if the data type is TEXT or BINARY, using the following algorithm: 1090 * - TEXT if the two conditions below are satisfied: 1091 * a) There are no non-portable control characters belonging to the 1092 * "block list" (0..6, 14..25, 28..31). 1093 * b) There is at least one printable character belonging to the 1094 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). 1095 * - BINARY otherwise. 1096 * - The following partially-portable control characters form a 1097 * "gray list" that is ignored in this detection algorithm: 1098 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). 1099 * IN assertion: the fields Freq of dyn_ltree are set. 1100 */ 1101 local int detect_data_type(s) 1102 deflate_state *s; 1103 { 1104 /* block_mask is the bit mask of block-listed bytes 1105 * set bits 0..6, 14..25, and 28..31 1106 * 0xf3ffc07f = binary 11110011111111111100000001111111 1107 */ 1108 unsigned long block_mask = 0xf3ffc07fUL; 1109 int n; 1110 1111 /* Check for non-textual ("block-listed") bytes. */ 1112 for (n = 0; n <= 31; n++, block_mask >>= 1) 1113 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0)) 1114 return Z_BINARY; 1115 1116 /* Check for textual ("allow-listed") bytes. */ 1117 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 1118 || s->dyn_ltree[13].Freq != 0) 1119 return Z_TEXT; 1120 for (n = 32; n < LITERALS; n++) 1121 if (s->dyn_ltree[n].Freq != 0) 1122 return Z_TEXT; 1123 1124 /* There are no "block-listed" or "allow-listed" bytes: 1125 * this stream either is empty or has tolerated ("gray-listed") bytes only. 1126 */ 1127 return Z_BINARY; 1128 } 1129 1130 /* =========================================================================== 1131 * Reverse the first len bits of a code, using straightforward code (a faster 1132 * method would use a table) 1133 * IN assertion: 1 <= len <= 15 1134 */ 1135 local unsigned bi_reverse(code, len) 1136 unsigned code; /* the value to invert */ 1137 int len; /* its bit length */ 1138 { 1139 register unsigned res = 0; 1140 do { 1141 res |= code & 1; 1142 code >>= 1, res <<= 1; 1143 } while (--len > 0); 1144 return res >> 1; 1145 } 1146 1147 /* =========================================================================== 1148 * Flush the bit buffer, keeping at most 7 bits in it. 1149 */ 1150 local void bi_flush(s) 1151 deflate_state *s; 1152 { 1153 if (s->bi_valid == 16) { 1154 put_short(s, s->bi_buf); 1155 s->bi_buf = 0; 1156 s->bi_valid = 0; 1157 } else if (s->bi_valid >= 8) { 1158 put_byte(s, (Byte)s->bi_buf); 1159 s->bi_buf >>= 8; 1160 s->bi_valid -= 8; 1161 } 1162 } 1163 1164 /* =========================================================================== 1165 * Flush the bit buffer and align the output on a byte boundary 1166 */ 1167 local void bi_windup(s) 1168 deflate_state *s; 1169 { 1170 if (s->bi_valid > 8) { 1171 put_short(s, s->bi_buf); 1172 } else if (s->bi_valid > 0) { 1173 put_byte(s, (Byte)s->bi_buf); 1174 } 1175 s->bi_buf = 0; 1176 s->bi_valid = 0; 1177 #ifdef ZLIB_DEBUG 1178 s->bits_sent = (s->bits_sent + 7) & ~7; 1179 #endif 1180 } 1181