xref: /openbsd-src/sys/lib/libz/trees.c (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2021 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* #define GEN_TREES_H */
34 
35 #include "deflate.h"
36 
37 #ifdef ZLIB_DEBUG
38 #  include <ctype.h>
39 #endif
40 
41 /* ===========================================================================
42  * Constants
43  */
44 
45 #define MAX_BL_BITS 7
46 /* Bit length codes must not exceed MAX_BL_BITS bits */
47 
48 #define END_BLOCK 256
49 /* end of block literal code */
50 
51 #define REP_3_6      16
52 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
53 
54 #define REPZ_3_10    17
55 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
56 
57 #define REPZ_11_138  18
58 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
59 
60 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
61    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
62 
63 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
64    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
65 
66 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
67    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
68 
69 local const uch bl_order[BL_CODES]
70    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
71 /* The lengths of the bit length codes are sent in order of decreasing
72  * probability, to avoid transmitting the lengths for unused bit length codes.
73  */
74 
75 /* ===========================================================================
76  * Local data. These are initialized only once.
77  */
78 
79 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
80 
81 #if defined(GEN_TREES_H) || !defined(STDC)
82 /* non ANSI compilers may not accept trees.h */
83 
84 local ct_data static_ltree[L_CODES+2];
85 /* The static literal tree. Since the bit lengths are imposed, there is no
86  * need for the L_CODES extra codes used during heap construction. However
87  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
88  * below).
89  */
90 
91 local ct_data static_dtree[D_CODES];
92 /* The static distance tree. (Actually a trivial tree since all codes use
93  * 5 bits.)
94  */
95 
96 uch _dist_code[DIST_CODE_LEN];
97 /* Distance codes. The first 256 values correspond to the distances
98  * 3 .. 258, the last 256 values correspond to the top 8 bits of
99  * the 15 bit distances.
100  */
101 
102 uch _length_code[MAX_MATCH-MIN_MATCH+1];
103 /* length code for each normalized match length (0 == MIN_MATCH) */
104 
105 local int base_length[LENGTH_CODES];
106 /* First normalized length for each code (0 = MIN_MATCH) */
107 
108 local int base_dist[D_CODES];
109 /* First normalized distance for each code (0 = distance of 1) */
110 
111 #else
112 #  include "trees.h"
113 #endif /* GEN_TREES_H */
114 
115 struct static_tree_desc_s {
116     const ct_data *static_tree;  /* static tree or NULL */
117     const intf *extra_bits;      /* extra bits for each code or NULL */
118     int     extra_base;          /* base index for extra_bits */
119     int     elems;               /* max number of elements in the tree */
120     int     max_length;          /* max bit length for the codes */
121 };
122 
123 local const static_tree_desc  static_l_desc =
124 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
125 
126 local const static_tree_desc  static_d_desc =
127 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
128 
129 local const static_tree_desc  static_bl_desc =
130 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
131 
132 /* ===========================================================================
133  * Local (static) routines in this file.
134  */
135 
136 local void tr_static_init OF((void));
137 local void init_block     OF((deflate_state *s));
138 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
139 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
140 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
141 local void build_tree     OF((deflate_state *s, tree_desc *desc));
142 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
143 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
144 local int  build_bl_tree  OF((deflate_state *s));
145 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
146                               int blcodes));
147 local void compress_block OF((deflate_state *s, const ct_data *ltree,
148                               const ct_data *dtree));
149 local int  detect_data_type OF((deflate_state *s));
150 local unsigned bi_reverse OF((unsigned code, int len));
151 local void bi_windup      OF((deflate_state *s));
152 local void bi_flush       OF((deflate_state *s));
153 
154 #ifdef GEN_TREES_H
155 local void gen_trees_header OF((void));
156 #endif
157 
158 #ifndef ZLIB_DEBUG
159 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
160    /* Send a code of the given tree. c and tree must not have side effects */
161 
162 #else /* !ZLIB_DEBUG */
163 #  define send_code(s, c, tree) \
164      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
165        send_bits(s, tree[c].Code, tree[c].Len); }
166 #endif
167 
168 /* ===========================================================================
169  * Output a short LSB first on the stream.
170  * IN assertion: there is enough room in pendingBuf.
171  */
172 #define put_short(s, w) { \
173     put_byte(s, (uch)((w) & 0xff)); \
174     put_byte(s, (uch)((ush)(w) >> 8)); \
175 }
176 
177 /* ===========================================================================
178  * Send a value on a given number of bits.
179  * IN assertion: length <= 16 and value fits in length bits.
180  */
181 #ifdef ZLIB_DEBUG
182 local void send_bits      OF((deflate_state *s, int value, int length));
183 
184 local void send_bits(s, value, length)
185     deflate_state *s;
186     int value;  /* value to send */
187     int length; /* number of bits */
188 {
189     Tracevv((stderr," l %2d v %4x ", length, value));
190     Assert(length > 0 && length <= 15, "invalid length");
191     s->bits_sent += (ulg)length;
192 
193     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
194      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
195      * unused bits in value.
196      */
197     if (s->bi_valid > (int)Buf_size - length) {
198         s->bi_buf |= (ush)value << s->bi_valid;
199         put_short(s, s->bi_buf);
200         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
201         s->bi_valid += length - Buf_size;
202     } else {
203         s->bi_buf |= (ush)value << s->bi_valid;
204         s->bi_valid += length;
205     }
206 }
207 #else /* !ZLIB_DEBUG */
208 
209 #define send_bits(s, value, length) \
210 { int len = length;\
211   if (s->bi_valid > (int)Buf_size - len) {\
212     int val = (int)value;\
213     s->bi_buf |= (ush)val << s->bi_valid;\
214     put_short(s, s->bi_buf);\
215     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
216     s->bi_valid += len - Buf_size;\
217   } else {\
218     s->bi_buf |= (ush)(value) << s->bi_valid;\
219     s->bi_valid += len;\
220   }\
221 }
222 #endif /* ZLIB_DEBUG */
223 
224 
225 /* the arguments must not have side effects */
226 
227 /* ===========================================================================
228  * Initialize the various 'constant' tables.
229  */
230 local void tr_static_init()
231 {
232 #if defined(GEN_TREES_H) || !defined(STDC)
233     static int static_init_done = 0;
234     int n;        /* iterates over tree elements */
235     int bits;     /* bit counter */
236     int length;   /* length value */
237     int code;     /* code value */
238     int dist;     /* distance index */
239     ush bl_count[MAX_BITS+1];
240     /* number of codes at each bit length for an optimal tree */
241 
242     if (static_init_done) return;
243 
244     /* For some embedded targets, global variables are not initialized: */
245 #ifdef NO_INIT_GLOBAL_POINTERS
246     static_l_desc.static_tree = static_ltree;
247     static_l_desc.extra_bits = extra_lbits;
248     static_d_desc.static_tree = static_dtree;
249     static_d_desc.extra_bits = extra_dbits;
250     static_bl_desc.extra_bits = extra_blbits;
251 #endif
252 
253     /* Initialize the mapping length (0..255) -> length code (0..28) */
254     length = 0;
255     for (code = 0; code < LENGTH_CODES-1; code++) {
256         base_length[code] = length;
257         for (n = 0; n < (1 << extra_lbits[code]); n++) {
258             _length_code[length++] = (uch)code;
259         }
260     }
261     Assert (length == 256, "tr_static_init: length != 256");
262     /* Note that the length 255 (match length 258) can be represented
263      * in two different ways: code 284 + 5 bits or code 285, so we
264      * overwrite length_code[255] to use the best encoding:
265      */
266     _length_code[length - 1] = (uch)code;
267 
268     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
269     dist = 0;
270     for (code = 0 ; code < 16; code++) {
271         base_dist[code] = dist;
272         for (n = 0; n < (1 << extra_dbits[code]); n++) {
273             _dist_code[dist++] = (uch)code;
274         }
275     }
276     Assert (dist == 256, "tr_static_init: dist != 256");
277     dist >>= 7; /* from now on, all distances are divided by 128 */
278     for ( ; code < D_CODES; code++) {
279         base_dist[code] = dist << 7;
280         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
281             _dist_code[256 + dist++] = (uch)code;
282         }
283     }
284     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
285 
286     /* Construct the codes of the static literal tree */
287     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
288     n = 0;
289     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
290     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
291     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
292     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
293     /* Codes 286 and 287 do not exist, but we must include them in the
294      * tree construction to get a canonical Huffman tree (longest code
295      * all ones)
296      */
297     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
298 
299     /* The static distance tree is trivial: */
300     for (n = 0; n < D_CODES; n++) {
301         static_dtree[n].Len = 5;
302         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
303     }
304     static_init_done = 1;
305 
306 #  ifdef GEN_TREES_H
307     gen_trees_header();
308 #  endif
309 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
310 }
311 
312 /* ===========================================================================
313  * Generate the file trees.h describing the static trees.
314  */
315 #ifdef GEN_TREES_H
316 #  ifndef ZLIB_DEBUG
317 #    include <stdio.h>
318 #  endif
319 
320 #  define SEPARATOR(i, last, width) \
321       ((i) == (last)? "\n};\n\n" :    \
322        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
323 
324 void gen_trees_header()
325 {
326     FILE *header = fopen("trees.h", "w");
327     int i;
328 
329     Assert (header != NULL, "Can't open trees.h");
330     fprintf(header,
331             "/* header created automatically with -DGEN_TREES_H */\n\n");
332 
333     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
334     for (i = 0; i < L_CODES+2; i++) {
335         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
336                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
337     }
338 
339     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
340     for (i = 0; i < D_CODES; i++) {
341         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
342                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
343     }
344 
345     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
346     for (i = 0; i < DIST_CODE_LEN; i++) {
347         fprintf(header, "%2u%s", _dist_code[i],
348                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
349     }
350 
351     fprintf(header,
352         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
353     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
354         fprintf(header, "%2u%s", _length_code[i],
355                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
356     }
357 
358     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
359     for (i = 0; i < LENGTH_CODES; i++) {
360         fprintf(header, "%1u%s", base_length[i],
361                 SEPARATOR(i, LENGTH_CODES-1, 20));
362     }
363 
364     fprintf(header, "local const int base_dist[D_CODES] = {\n");
365     for (i = 0; i < D_CODES; i++) {
366         fprintf(header, "%5u%s", base_dist[i],
367                 SEPARATOR(i, D_CODES-1, 10));
368     }
369 
370     fclose(header);
371 }
372 #endif /* GEN_TREES_H */
373 
374 /* ===========================================================================
375  * Initialize the tree data structures for a new zlib stream.
376  */
377 void ZLIB_INTERNAL _tr_init(s)
378     deflate_state *s;
379 {
380     tr_static_init();
381 
382     s->l_desc.dyn_tree = s->dyn_ltree;
383     s->l_desc.stat_desc = &static_l_desc;
384 
385     s->d_desc.dyn_tree = s->dyn_dtree;
386     s->d_desc.stat_desc = &static_d_desc;
387 
388     s->bl_desc.dyn_tree = s->bl_tree;
389     s->bl_desc.stat_desc = &static_bl_desc;
390 
391     s->bi_buf = 0;
392     s->bi_valid = 0;
393 #ifdef ZLIB_DEBUG
394     s->compressed_len = 0L;
395     s->bits_sent = 0L;
396 #endif
397 
398     /* Initialize the first block of the first file: */
399     init_block(s);
400 }
401 
402 /* ===========================================================================
403  * Initialize a new block.
404  */
405 local void init_block(s)
406     deflate_state *s;
407 {
408     int n; /* iterates over tree elements */
409 
410     /* Initialize the trees. */
411     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
412     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
413     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
414 
415     s->dyn_ltree[END_BLOCK].Freq = 1;
416     s->opt_len = s->static_len = 0L;
417     s->sym_next = s->matches = 0;
418 }
419 
420 #define SMALLEST 1
421 /* Index within the heap array of least frequent node in the Huffman tree */
422 
423 
424 /* ===========================================================================
425  * Remove the smallest element from the heap and recreate the heap with
426  * one less element. Updates heap and heap_len.
427  */
428 #define pqremove(s, tree, top) \
429 {\
430     top = s->heap[SMALLEST]; \
431     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
432     pqdownheap(s, tree, SMALLEST); \
433 }
434 
435 /* ===========================================================================
436  * Compares to subtrees, using the tree depth as tie breaker when
437  * the subtrees have equal frequency. This minimizes the worst case length.
438  */
439 #define smaller(tree, n, m, depth) \
440    (tree[n].Freq < tree[m].Freq || \
441    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
442 
443 /* ===========================================================================
444  * Restore the heap property by moving down the tree starting at node k,
445  * exchanging a node with the smallest of its two sons if necessary, stopping
446  * when the heap property is re-established (each father smaller than its
447  * two sons).
448  */
449 local void pqdownheap(s, tree, k)
450     deflate_state *s;
451     ct_data *tree;  /* the tree to restore */
452     int k;               /* node to move down */
453 {
454     int v = s->heap[k];
455     int j = k << 1;  /* left son of k */
456     while (j <= s->heap_len) {
457         /* Set j to the smallest of the two sons: */
458         if (j < s->heap_len &&
459             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
460             j++;
461         }
462         /* Exit if v is smaller than both sons */
463         if (smaller(tree, v, s->heap[j], s->depth)) break;
464 
465         /* Exchange v with the smallest son */
466         s->heap[k] = s->heap[j];  k = j;
467 
468         /* And continue down the tree, setting j to the left son of k */
469         j <<= 1;
470     }
471     s->heap[k] = v;
472 }
473 
474 /* ===========================================================================
475  * Compute the optimal bit lengths for a tree and update the total bit length
476  * for the current block.
477  * IN assertion: the fields freq and dad are set, heap[heap_max] and
478  *    above are the tree nodes sorted by increasing frequency.
479  * OUT assertions: the field len is set to the optimal bit length, the
480  *     array bl_count contains the frequencies for each bit length.
481  *     The length opt_len is updated; static_len is also updated if stree is
482  *     not null.
483  */
484 local void gen_bitlen(s, desc)
485     deflate_state *s;
486     tree_desc *desc;    /* the tree descriptor */
487 {
488     ct_data *tree        = desc->dyn_tree;
489     int max_code         = desc->max_code;
490     const ct_data *stree = desc->stat_desc->static_tree;
491     const intf *extra    = desc->stat_desc->extra_bits;
492     int base             = desc->stat_desc->extra_base;
493     int max_length       = desc->stat_desc->max_length;
494     int h;              /* heap index */
495     int n, m;           /* iterate over the tree elements */
496     int bits;           /* bit length */
497     int xbits;          /* extra bits */
498     ush f;              /* frequency */
499     int overflow = 0;   /* number of elements with bit length too large */
500 
501     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
502 
503     /* In a first pass, compute the optimal bit lengths (which may
504      * overflow in the case of the bit length tree).
505      */
506     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
507 
508     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
509         n = s->heap[h];
510         bits = tree[tree[n].Dad].Len + 1;
511         if (bits > max_length) bits = max_length, overflow++;
512         tree[n].Len = (ush)bits;
513         /* We overwrite tree[n].Dad which is no longer needed */
514 
515         if (n > max_code) continue; /* not a leaf node */
516 
517         s->bl_count[bits]++;
518         xbits = 0;
519         if (n >= base) xbits = extra[n - base];
520         f = tree[n].Freq;
521         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
522         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
523     }
524     if (overflow == 0) return;
525 
526     Tracev((stderr,"\nbit length overflow\n"));
527     /* This happens for example on obj2 and pic of the Calgary corpus */
528 
529     /* Find the first bit length which could increase: */
530     do {
531         bits = max_length - 1;
532         while (s->bl_count[bits] == 0) bits--;
533         s->bl_count[bits]--;        /* move one leaf down the tree */
534         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
535         s->bl_count[max_length]--;
536         /* The brother of the overflow item also moves one step up,
537          * but this does not affect bl_count[max_length]
538          */
539         overflow -= 2;
540     } while (overflow > 0);
541 
542     /* Now recompute all bit lengths, scanning in increasing frequency.
543      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
544      * lengths instead of fixing only the wrong ones. This idea is taken
545      * from 'ar' written by Haruhiko Okumura.)
546      */
547     for (bits = max_length; bits != 0; bits--) {
548         n = s->bl_count[bits];
549         while (n != 0) {
550             m = s->heap[--h];
551             if (m > max_code) continue;
552             if ((unsigned) tree[m].Len != (unsigned) bits) {
553                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
554                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
555                 tree[m].Len = (ush)bits;
556             }
557             n--;
558         }
559     }
560 }
561 
562 /* ===========================================================================
563  * Generate the codes for a given tree and bit counts (which need not be
564  * optimal).
565  * IN assertion: the array bl_count contains the bit length statistics for
566  * the given tree and the field len is set for all tree elements.
567  * OUT assertion: the field code is set for all tree elements of non
568  *     zero code length.
569  */
570 local void gen_codes(tree, max_code, bl_count)
571     ct_data *tree;             /* the tree to decorate */
572     int max_code;              /* largest code with non zero frequency */
573     ushf *bl_count;            /* number of codes at each bit length */
574 {
575     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
576     unsigned code = 0;         /* running code value */
577     int bits;                  /* bit index */
578     int n;                     /* code index */
579 
580     /* The distribution counts are first used to generate the code values
581      * without bit reversal.
582      */
583     for (bits = 1; bits <= MAX_BITS; bits++) {
584         code = (code + bl_count[bits - 1]) << 1;
585         next_code[bits] = (ush)code;
586     }
587     /* Check that the bit counts in bl_count are consistent. The last code
588      * must be all ones.
589      */
590     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
591             "inconsistent bit counts");
592     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
593 
594     for (n = 0;  n <= max_code; n++) {
595         int len = tree[n].Len;
596         if (len == 0) continue;
597         /* Now reverse the bits */
598         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
599 
600         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
601             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
602     }
603 }
604 
605 /* ===========================================================================
606  * Construct one Huffman tree and assigns the code bit strings and lengths.
607  * Update the total bit length for the current block.
608  * IN assertion: the field freq is set for all tree elements.
609  * OUT assertions: the fields len and code are set to the optimal bit length
610  *     and corresponding code. The length opt_len is updated; static_len is
611  *     also updated if stree is not null. The field max_code is set.
612  */
613 local void build_tree(s, desc)
614     deflate_state *s;
615     tree_desc *desc; /* the tree descriptor */
616 {
617     ct_data *tree         = desc->dyn_tree;
618     const ct_data *stree  = desc->stat_desc->static_tree;
619     int elems             = desc->stat_desc->elems;
620     int n, m;          /* iterate over heap elements */
621     int max_code = -1; /* largest code with non zero frequency */
622     int node;          /* new node being created */
623 
624     /* Construct the initial heap, with least frequent element in
625      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
626      * heap[0] is not used.
627      */
628     s->heap_len = 0, s->heap_max = HEAP_SIZE;
629 
630     for (n = 0; n < elems; n++) {
631         if (tree[n].Freq != 0) {
632             s->heap[++(s->heap_len)] = max_code = n;
633             s->depth[n] = 0;
634         } else {
635             tree[n].Len = 0;
636         }
637     }
638 
639     /* The pkzip format requires that at least one distance code exists,
640      * and that at least one bit should be sent even if there is only one
641      * possible code. So to avoid special checks later on we force at least
642      * two codes of non zero frequency.
643      */
644     while (s->heap_len < 2) {
645         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
646         tree[node].Freq = 1;
647         s->depth[node] = 0;
648         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
649         /* node is 0 or 1 so it does not have extra bits */
650     }
651     desc->max_code = max_code;
652 
653     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
654      * establish sub-heaps of increasing lengths:
655      */
656     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
657 
658     /* Construct the Huffman tree by repeatedly combining the least two
659      * frequent nodes.
660      */
661     node = elems;              /* next internal node of the tree */
662     do {
663         pqremove(s, tree, n);  /* n = node of least frequency */
664         m = s->heap[SMALLEST]; /* m = node of next least frequency */
665 
666         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
667         s->heap[--(s->heap_max)] = m;
668 
669         /* Create a new node father of n and m */
670         tree[node].Freq = tree[n].Freq + tree[m].Freq;
671         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
672                                 s->depth[n] : s->depth[m]) + 1);
673         tree[n].Dad = tree[m].Dad = (ush)node;
674 #ifdef DUMP_BL_TREE
675         if (tree == s->bl_tree) {
676             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
677                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
678         }
679 #endif
680         /* and insert the new node in the heap */
681         s->heap[SMALLEST] = node++;
682         pqdownheap(s, tree, SMALLEST);
683 
684     } while (s->heap_len >= 2);
685 
686     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
687 
688     /* At this point, the fields freq and dad are set. We can now
689      * generate the bit lengths.
690      */
691     gen_bitlen(s, (tree_desc *)desc);
692 
693     /* The field len is now set, we can generate the bit codes */
694     gen_codes ((ct_data *)tree, max_code, s->bl_count);
695 }
696 
697 /* ===========================================================================
698  * Scan a literal or distance tree to determine the frequencies of the codes
699  * in the bit length tree.
700  */
701 local void scan_tree(s, tree, max_code)
702     deflate_state *s;
703     ct_data *tree;   /* the tree to be scanned */
704     int max_code;    /* and its largest code of non zero frequency */
705 {
706     int n;                     /* iterates over all tree elements */
707     int prevlen = -1;          /* last emitted length */
708     int curlen;                /* length of current code */
709     int nextlen = tree[0].Len; /* length of next code */
710     int count = 0;             /* repeat count of the current code */
711     int max_count = 7;         /* max repeat count */
712     int min_count = 4;         /* min repeat count */
713 
714     if (nextlen == 0) max_count = 138, min_count = 3;
715     tree[max_code + 1].Len = (ush)0xffff; /* guard */
716 
717     for (n = 0; n <= max_code; n++) {
718         curlen = nextlen; nextlen = tree[n + 1].Len;
719         if (++count < max_count && curlen == nextlen) {
720             continue;
721         } else if (count < min_count) {
722             s->bl_tree[curlen].Freq += count;
723         } else if (curlen != 0) {
724             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
725             s->bl_tree[REP_3_6].Freq++;
726         } else if (count <= 10) {
727             s->bl_tree[REPZ_3_10].Freq++;
728         } else {
729             s->bl_tree[REPZ_11_138].Freq++;
730         }
731         count = 0; prevlen = curlen;
732         if (nextlen == 0) {
733             max_count = 138, min_count = 3;
734         } else if (curlen == nextlen) {
735             max_count = 6, min_count = 3;
736         } else {
737             max_count = 7, min_count = 4;
738         }
739     }
740 }
741 
742 /* ===========================================================================
743  * Send a literal or distance tree in compressed form, using the codes in
744  * bl_tree.
745  */
746 local void send_tree(s, tree, max_code)
747     deflate_state *s;
748     ct_data *tree; /* the tree to be scanned */
749     int max_code;       /* and its largest code of non zero frequency */
750 {
751     int n;                     /* iterates over all tree elements */
752     int prevlen = -1;          /* last emitted length */
753     int curlen;                /* length of current code */
754     int nextlen = tree[0].Len; /* length of next code */
755     int count = 0;             /* repeat count of the current code */
756     int max_count = 7;         /* max repeat count */
757     int min_count = 4;         /* min repeat count */
758 
759     /* tree[max_code + 1].Len = -1; */  /* guard already set */
760     if (nextlen == 0) max_count = 138, min_count = 3;
761 
762     for (n = 0; n <= max_code; n++) {
763         curlen = nextlen; nextlen = tree[n + 1].Len;
764         if (++count < max_count && curlen == nextlen) {
765             continue;
766         } else if (count < min_count) {
767             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
768 
769         } else if (curlen != 0) {
770             if (curlen != prevlen) {
771                 send_code(s, curlen, s->bl_tree); count--;
772             }
773             Assert(count >= 3 && count <= 6, " 3_6?");
774             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
775 
776         } else if (count <= 10) {
777             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
778 
779         } else {
780             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
781         }
782         count = 0; prevlen = curlen;
783         if (nextlen == 0) {
784             max_count = 138, min_count = 3;
785         } else if (curlen == nextlen) {
786             max_count = 6, min_count = 3;
787         } else {
788             max_count = 7, min_count = 4;
789         }
790     }
791 }
792 
793 /* ===========================================================================
794  * Construct the Huffman tree for the bit lengths and return the index in
795  * bl_order of the last bit length code to send.
796  */
797 local int build_bl_tree(s)
798     deflate_state *s;
799 {
800     int max_blindex;  /* index of last bit length code of non zero freq */
801 
802     /* Determine the bit length frequencies for literal and distance trees */
803     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
804     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
805 
806     /* Build the bit length tree: */
807     build_tree(s, (tree_desc *)(&(s->bl_desc)));
808     /* opt_len now includes the length of the tree representations, except the
809      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
810      */
811 
812     /* Determine the number of bit length codes to send. The pkzip format
813      * requires that at least 4 bit length codes be sent. (appnote.txt says
814      * 3 but the actual value used is 4.)
815      */
816     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
817         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
818     }
819     /* Update opt_len to include the bit length tree and counts */
820     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
821     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
822             s->opt_len, s->static_len));
823 
824     return max_blindex;
825 }
826 
827 /* ===========================================================================
828  * Send the header for a block using dynamic Huffman trees: the counts, the
829  * lengths of the bit length codes, the literal tree and the distance tree.
830  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
831  */
832 local void send_all_trees(s, lcodes, dcodes, blcodes)
833     deflate_state *s;
834     int lcodes, dcodes, blcodes; /* number of codes for each tree */
835 {
836     int rank;                    /* index in bl_order */
837 
838     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
839     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
840             "too many codes");
841     Tracev((stderr, "\nbl counts: "));
842     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
843     send_bits(s, dcodes - 1,   5);
844     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
845     for (rank = 0; rank < blcodes; rank++) {
846         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
847         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
848     }
849     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
850 
851     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
852     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
853 
854     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
855     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
856 }
857 
858 /* ===========================================================================
859  * Send a stored block
860  */
861 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
862     deflate_state *s;
863     charf *buf;       /* input block */
864     ulg stored_len;   /* length of input block */
865     int last;         /* one if this is the last block for a file */
866 {
867     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
868     bi_windup(s);        /* align on byte boundary */
869     put_short(s, (ush)stored_len);
870     put_short(s, (ush)~stored_len);
871     if (stored_len)
872         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
873     s->pending += stored_len;
874 #ifdef ZLIB_DEBUG
875     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
876     s->compressed_len += (stored_len + 4) << 3;
877     s->bits_sent += 2*16;
878     s->bits_sent += stored_len << 3;
879 #endif
880 }
881 
882 /* ===========================================================================
883  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
884  */
885 void ZLIB_INTERNAL _tr_flush_bits(s)
886     deflate_state *s;
887 {
888     bi_flush(s);
889 }
890 
891 /* ===========================================================================
892  * Send one empty static block to give enough lookahead for inflate.
893  * This takes 10 bits, of which 7 may remain in the bit buffer.
894  */
895 void ZLIB_INTERNAL _tr_align(s)
896     deflate_state *s;
897 {
898     send_bits(s, STATIC_TREES<<1, 3);
899     send_code(s, END_BLOCK, static_ltree);
900 #ifdef ZLIB_DEBUG
901     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
902 #endif
903     bi_flush(s);
904 }
905 
906 /* ===========================================================================
907  * Determine the best encoding for the current block: dynamic trees, static
908  * trees or store, and write out the encoded block.
909  */
910 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
911     deflate_state *s;
912     charf *buf;       /* input block, or NULL if too old */
913     ulg stored_len;   /* length of input block */
914     int last;         /* one if this is the last block for a file */
915 {
916     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
917     int max_blindex = 0;  /* index of last bit length code of non zero freq */
918 
919     /* Build the Huffman trees unless a stored block is forced */
920     if (s->level > 0) {
921 
922         /* Check if the file is binary or text */
923         if (s->strm->data_type == Z_UNKNOWN)
924             s->strm->data_type = detect_data_type(s);
925 
926         /* Construct the literal and distance trees */
927         build_tree(s, (tree_desc *)(&(s->l_desc)));
928         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
929                 s->static_len));
930 
931         build_tree(s, (tree_desc *)(&(s->d_desc)));
932         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
933                 s->static_len));
934         /* At this point, opt_len and static_len are the total bit lengths of
935          * the compressed block data, excluding the tree representations.
936          */
937 
938         /* Build the bit length tree for the above two trees, and get the index
939          * in bl_order of the last bit length code to send.
940          */
941         max_blindex = build_bl_tree(s);
942 
943         /* Determine the best encoding. Compute the block lengths in bytes. */
944         opt_lenb = (s->opt_len + 3 + 7) >> 3;
945         static_lenb = (s->static_len + 3 + 7) >> 3;
946 
947         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
948                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
949                 s->sym_next / 3));
950 
951 #ifndef FORCE_STATIC
952         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
953 #endif
954             opt_lenb = static_lenb;
955 
956     } else {
957         Assert(buf != (char*)0, "lost buf");
958         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
959     }
960 
961 #ifdef FORCE_STORED
962     if (buf != (char*)0) { /* force stored block */
963 #else
964     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
965                        /* 4: two words for the lengths */
966 #endif
967         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
968          * Otherwise we can't have processed more than WSIZE input bytes since
969          * the last block flush, because compression would have been
970          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
971          * transform a block into a stored block.
972          */
973         _tr_stored_block(s, buf, stored_len, last);
974 
975     } else if (static_lenb == opt_lenb) {
976         send_bits(s, (STATIC_TREES<<1) + last, 3);
977         compress_block(s, (const ct_data *)static_ltree,
978                        (const ct_data *)static_dtree);
979 #ifdef ZLIB_DEBUG
980         s->compressed_len += 3 + s->static_len;
981 #endif
982     } else {
983         send_bits(s, (DYN_TREES<<1) + last, 3);
984         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
985                        max_blindex + 1);
986         compress_block(s, (const ct_data *)s->dyn_ltree,
987                        (const ct_data *)s->dyn_dtree);
988 #ifdef ZLIB_DEBUG
989         s->compressed_len += 3 + s->opt_len;
990 #endif
991     }
992     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
993     /* The above check is made mod 2^32, for files larger than 512 MB
994      * and uLong implemented on 32 bits.
995      */
996     init_block(s);
997 
998     if (last) {
999         bi_windup(s);
1000 #ifdef ZLIB_DEBUG
1001         s->compressed_len += 7;  /* align on byte boundary */
1002 #endif
1003     }
1004     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1005            s->compressed_len - 7*last));
1006 }
1007 
1008 /* ===========================================================================
1009  * Save the match info and tally the frequency counts. Return true if
1010  * the current block must be flushed.
1011  */
1012 int ZLIB_INTERNAL _tr_tally(s, dist, lc)
1013     deflate_state *s;
1014     unsigned dist;  /* distance of matched string */
1015     unsigned lc;    /* match length - MIN_MATCH or unmatched char (dist==0) */
1016 {
1017     s->sym_buf[s->sym_next++] = (uch)dist;
1018     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1019     s->sym_buf[s->sym_next++] = (uch)lc;
1020     if (dist == 0) {
1021         /* lc is the unmatched char */
1022         s->dyn_ltree[lc].Freq++;
1023     } else {
1024         s->matches++;
1025         /* Here, lc is the match length - MIN_MATCH */
1026         dist--;             /* dist = match distance - 1 */
1027         Assert((ush)dist < (ush)MAX_DIST(s) &&
1028                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1029                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1030 
1031         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1032         s->dyn_dtree[d_code(dist)].Freq++;
1033     }
1034     return (s->sym_next == s->sym_end);
1035 }
1036 
1037 /* ===========================================================================
1038  * Send the block data compressed using the given Huffman trees
1039  */
1040 local void compress_block(s, ltree, dtree)
1041     deflate_state *s;
1042     const ct_data *ltree; /* literal tree */
1043     const ct_data *dtree; /* distance tree */
1044 {
1045     unsigned dist;      /* distance of matched string */
1046     int lc;             /* match length or unmatched char (if dist == 0) */
1047     unsigned sx = 0;    /* running index in sym_buf */
1048     unsigned code;      /* the code to send */
1049     int extra;          /* number of extra bits to send */
1050 
1051     if (s->sym_next != 0) do {
1052         dist = s->sym_buf[sx++] & 0xff;
1053         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
1054         lc = s->sym_buf[sx++];
1055         if (dist == 0) {
1056             send_code(s, lc, ltree); /* send a literal byte */
1057             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1058         } else {
1059             /* Here, lc is the match length - MIN_MATCH */
1060             code = _length_code[lc];
1061             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
1062             extra = extra_lbits[code];
1063             if (extra != 0) {
1064                 lc -= base_length[code];
1065                 send_bits(s, lc, extra);       /* send the extra length bits */
1066             }
1067             dist--; /* dist is now the match distance - 1 */
1068             code = d_code(dist);
1069             Assert (code < D_CODES, "bad d_code");
1070 
1071             send_code(s, code, dtree);       /* send the distance code */
1072             extra = extra_dbits[code];
1073             if (extra != 0) {
1074                 dist -= (unsigned)base_dist[code];
1075                 send_bits(s, dist, extra);   /* send the extra distance bits */
1076             }
1077         } /* literal or match pair ? */
1078 
1079         /* Check that the overlay between pending_buf and sym_buf is ok: */
1080         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
1081 
1082     } while (sx < s->sym_next);
1083 
1084     send_code(s, END_BLOCK, ltree);
1085 }
1086 
1087 /* ===========================================================================
1088  * Check if the data type is TEXT or BINARY, using the following algorithm:
1089  * - TEXT if the two conditions below are satisfied:
1090  *    a) There are no non-portable control characters belonging to the
1091  *       "block list" (0..6, 14..25, 28..31).
1092  *    b) There is at least one printable character belonging to the
1093  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1094  * - BINARY otherwise.
1095  * - The following partially-portable control characters form a
1096  *   "gray list" that is ignored in this detection algorithm:
1097  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1098  * IN assertion: the fields Freq of dyn_ltree are set.
1099  */
1100 local int detect_data_type(s)
1101     deflate_state *s;
1102 {
1103     /* block_mask is the bit mask of block-listed bytes
1104      * set bits 0..6, 14..25, and 28..31
1105      * 0xf3ffc07f = binary 11110011111111111100000001111111
1106      */
1107     unsigned long block_mask = 0xf3ffc07fUL;
1108     int n;
1109 
1110     /* Check for non-textual ("block-listed") bytes. */
1111     for (n = 0; n <= 31; n++, block_mask >>= 1)
1112         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1113             return Z_BINARY;
1114 
1115     /* Check for textual ("allow-listed") bytes. */
1116     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1117             || s->dyn_ltree[13].Freq != 0)
1118         return Z_TEXT;
1119     for (n = 32; n < LITERALS; n++)
1120         if (s->dyn_ltree[n].Freq != 0)
1121             return Z_TEXT;
1122 
1123     /* There are no "block-listed" or "allow-listed" bytes:
1124      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1125      */
1126     return Z_BINARY;
1127 }
1128 
1129 /* ===========================================================================
1130  * Reverse the first len bits of a code, using straightforward code (a faster
1131  * method would use a table)
1132  * IN assertion: 1 <= len <= 15
1133  */
1134 local unsigned bi_reverse(code, len)
1135     unsigned code; /* the value to invert */
1136     int len;       /* its bit length */
1137 {
1138     register unsigned res = 0;
1139     do {
1140         res |= code & 1;
1141         code >>= 1, res <<= 1;
1142     } while (--len > 0);
1143     return res >> 1;
1144 }
1145 
1146 /* ===========================================================================
1147  * Flush the bit buffer, keeping at most 7 bits in it.
1148  */
1149 local void bi_flush(s)
1150     deflate_state *s;
1151 {
1152     if (s->bi_valid == 16) {
1153         put_short(s, s->bi_buf);
1154         s->bi_buf = 0;
1155         s->bi_valid = 0;
1156     } else if (s->bi_valid >= 8) {
1157         put_byte(s, (Byte)s->bi_buf);
1158         s->bi_buf >>= 8;
1159         s->bi_valid -= 8;
1160     }
1161 }
1162 
1163 /* ===========================================================================
1164  * Flush the bit buffer and align the output on a byte boundary
1165  */
1166 local void bi_windup(s)
1167     deflate_state *s;
1168 {
1169     if (s->bi_valid > 8) {
1170         put_short(s, s->bi_buf);
1171     } else if (s->bi_valid > 0) {
1172         put_byte(s, (Byte)s->bi_buf);
1173     }
1174     s->bi_buf = 0;
1175     s->bi_valid = 0;
1176 #ifdef ZLIB_DEBUG
1177     s->bits_sent = (s->bits_sent + 7) & ~7;
1178 #endif
1179 }
1180