xref: /openbsd-src/sys/lib/libz/inftrees.c (revision 4e1ee0786f11cc571bd0be17d38e46f635c719fc)
1 /*	$OpenBSD: inftrees.c,v 1.16 2021/07/04 14:24:49 tb Exp $ */
2 /* inftrees.c -- generate Huffman trees for efficient decoding
3  * Copyright (C) 1995-2017 Mark Adler
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 #include "zutil.h"
8 #include "inftrees.h"
9 
10 #define MAXBITS 15
11 
12 /*
13   If you use the zlib library in a product, an acknowledgment is welcome
14   in the documentation of your product. If for some reason you cannot
15   include such an acknowledgment, I would appreciate that you keep this
16   copyright string in the executable of your product.
17  */
18 
19 /*
20    Build a set of tables to decode the provided canonical Huffman code.
21    The code lengths are lens[0..codes-1].  The result starts at *table,
22    whose indices are 0..2^bits-1.  work is a writable array of at least
23    lens shorts, which is used as a work area.  type is the type of code
24    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
25    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
26    on return points to the next available entry's address.  bits is the
27    requested root table index bits, and on return it is the actual root
28    table index bits.  It will differ if the request is greater than the
29    longest code or if it is less than the shortest code.
30  */
31 int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
32 codetype type;
33 unsigned short FAR *lens;
34 unsigned codes;
35 code FAR * FAR *table;
36 unsigned FAR *bits;
37 unsigned short FAR *work;
38 {
39     unsigned len;               /* a code's length in bits */
40     unsigned sym;               /* index of code symbols */
41     unsigned min, max;          /* minimum and maximum code lengths */
42     unsigned root;              /* number of index bits for root table */
43     unsigned curr;              /* number of index bits for current table */
44     unsigned drop;              /* code bits to drop for sub-table */
45     int left;                   /* number of prefix codes available */
46     unsigned used;              /* code entries in table used */
47     unsigned huff;              /* Huffman code */
48     unsigned incr;              /* for incrementing code, index */
49     unsigned fill;              /* index for replicating entries */
50     unsigned low;               /* low bits for current root entry */
51     unsigned mask;              /* mask for low root bits */
52     code here;                  /* table entry for duplication */
53     code FAR *next;             /* next available space in table */
54     const unsigned short FAR *base;     /* base value table to use */
55     const unsigned short FAR *extra;    /* extra bits table to use */
56     unsigned match;             /* use base and extra for symbol >= match */
57     unsigned short count[MAXBITS+1];    /* number of codes of each length */
58     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
59     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
60         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
61         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
62     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
63         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
64         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 77, 202};
65     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
66         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
67         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
68         8193, 12289, 16385, 24577, 0, 0};
69     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
70         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
71         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
72         28, 28, 29, 29, 64, 64};
73 
74     /*
75        Process a set of code lengths to create a canonical Huffman code.  The
76        code lengths are lens[0..codes-1].  Each length corresponds to the
77        symbols 0..codes-1.  The Huffman code is generated by first sorting the
78        symbols by length from short to long, and retaining the symbol order
79        for codes with equal lengths.  Then the code starts with all zero bits
80        for the first code of the shortest length, and the codes are integer
81        increments for the same length, and zeros are appended as the length
82        increases.  For the deflate format, these bits are stored backwards
83        from their more natural integer increment ordering, and so when the
84        decoding tables are built in the large loop below, the integer codes
85        are incremented backwards.
86 
87        This routine assumes, but does not check, that all of the entries in
88        lens[] are in the range 0..MAXBITS.  The caller must assure this.
89        1..MAXBITS is interpreted as that code length.  zero means that that
90        symbol does not occur in this code.
91 
92        The codes are sorted by computing a count of codes for each length,
93        creating from that a table of starting indices for each length in the
94        sorted table, and then entering the symbols in order in the sorted
95        table.  The sorted table is work[], with that space being provided by
96        the caller.
97 
98        The length counts are used for other purposes as well, i.e. finding
99        the minimum and maximum length codes, determining if there are any
100        codes at all, checking for a valid set of lengths, and looking ahead
101        at length counts to determine sub-table sizes when building the
102        decoding tables.
103      */
104 
105     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
106     for (len = 0; len <= MAXBITS; len++)
107         count[len] = 0;
108     for (sym = 0; sym < codes; sym++)
109         count[lens[sym]]++;
110 
111     /* bound code lengths, force root to be within code lengths */
112     root = *bits;
113     for (max = MAXBITS; max >= 1; max--)
114         if (count[max] != 0) break;
115     if (root > max) root = max;
116     if (max == 0) {                     /* no symbols to code at all */
117         here.op = (unsigned char)64;    /* invalid code marker */
118         here.bits = (unsigned char)1;
119         here.val = (unsigned short)0;
120         *(*table)++ = here;             /* make a table to force an error */
121         *(*table)++ = here;
122         *bits = 1;
123         return 0;     /* no symbols, but wait for decoding to report error */
124     }
125     for (min = 1; min < max; min++)
126         if (count[min] != 0) break;
127     if (root < min) root = min;
128 
129     /* check for an over-subscribed or incomplete set of lengths */
130     left = 1;
131     for (len = 1; len <= MAXBITS; len++) {
132         left <<= 1;
133         left -= count[len];
134         if (left < 0) return -1;        /* over-subscribed */
135     }
136     if (left > 0 && (type == CODES || max != 1))
137         return -1;                      /* incomplete set */
138 
139     /* generate offsets into symbol table for each length for sorting */
140     offs[1] = 0;
141     for (len = 1; len < MAXBITS; len++)
142         offs[len + 1] = offs[len] + count[len];
143 
144     /* sort symbols by length, by symbol order within each length */
145     for (sym = 0; sym < codes; sym++)
146         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
147 
148     /*
149        Create and fill in decoding tables.  In this loop, the table being
150        filled is at next and has curr index bits.  The code being used is huff
151        with length len.  That code is converted to an index by dropping drop
152        bits off of the bottom.  For codes where len is less than drop + curr,
153        those top drop + curr - len bits are incremented through all values to
154        fill the table with replicated entries.
155 
156        root is the number of index bits for the root table.  When len exceeds
157        root, sub-tables are created pointed to by the root entry with an index
158        of the low root bits of huff.  This is saved in low to check for when a
159        new sub-table should be started.  drop is zero when the root table is
160        being filled, and drop is root when sub-tables are being filled.
161 
162        When a new sub-table is needed, it is necessary to look ahead in the
163        code lengths to determine what size sub-table is needed.  The length
164        counts are used for this, and so count[] is decremented as codes are
165        entered in the tables.
166 
167        used keeps track of how many table entries have been allocated from the
168        provided *table space.  It is checked for LENS and DIST tables against
169        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
170        the initial root table size constants.  See the comments in inftrees.h
171        for more information.
172 
173        sym increments through all symbols, and the loop terminates when
174        all codes of length max, i.e. all codes, have been processed.  This
175        routine permits incomplete codes, so another loop after this one fills
176        in the rest of the decoding tables with invalid code markers.
177      */
178 
179     /* set up for code type */
180     switch (type) {
181     case CODES:
182         base = extra = work;    /* dummy value--not used */
183         match = 20;
184         break;
185     case LENS:
186         base = lbase;
187         extra = lext;
188         match = 257;
189         break;
190     default:    /* DISTS */
191         base = dbase;
192         extra = dext;
193         match = 0;
194     }
195 
196     /* initialize state for loop */
197     huff = 0;                   /* starting code */
198     sym = 0;                    /* starting code symbol */
199     len = min;                  /* starting code length */
200     next = *table;              /* current table to fill in */
201     curr = root;                /* current table index bits */
202     drop = 0;                   /* current bits to drop from code for index */
203     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
204     used = 1U << root;          /* use root table entries */
205     mask = used - 1;            /* mask for comparing low */
206 
207     /* check available table space */
208     if ((type == LENS && used > ENOUGH_LENS) ||
209         (type == DISTS && used > ENOUGH_DISTS))
210         return 1;
211 
212     /* process all codes and make table entries */
213     for (;;) {
214         /* create table entry */
215         here.bits = (unsigned char)(len - drop);
216         if (work[sym] + 1U < match) {
217             here.op = (unsigned char)0;
218             here.val = work[sym];
219         }
220         else if (work[sym] >= match) {
221             here.op = (unsigned char)(extra[work[sym] - match]);
222             here.val = base[work[sym] - match];
223         }
224         else {
225             here.op = (unsigned char)(32 + 64);         /* end of block */
226             here.val = 0;
227         }
228 
229         /* replicate for those indices with low len bits equal to huff */
230         incr = 1U << (len - drop);
231         fill = 1U << curr;
232         min = fill;                 /* save offset to next table */
233         do {
234             fill -= incr;
235             next[(huff >> drop) + fill] = here;
236         } while (fill != 0);
237 
238         /* backwards increment the len-bit code huff */
239         incr = 1U << (len - 1);
240         while (huff & incr)
241             incr >>= 1;
242         if (incr != 0) {
243             huff &= incr - 1;
244             huff += incr;
245         }
246         else
247             huff = 0;
248 
249         /* go to next symbol, update count, len */
250         sym++;
251         if (--(count[len]) == 0) {
252             if (len == max) break;
253             len = lens[work[sym]];
254         }
255 
256         /* create new sub-table if needed */
257         if (len > root && (huff & mask) != low) {
258             /* if first time, transition to sub-tables */
259             if (drop == 0)
260                 drop = root;
261 
262             /* increment past last table */
263             next += min;            /* here min is 1 << curr */
264 
265             /* determine length of next table */
266             curr = len - drop;
267             left = (int)(1 << curr);
268             while (curr + drop < max) {
269                 left -= count[curr + drop];
270                 if (left <= 0) break;
271                 curr++;
272                 left <<= 1;
273             }
274 
275             /* check for enough space */
276             used += 1U << curr;
277             if ((type == LENS && used > ENOUGH_LENS) ||
278                 (type == DISTS && used > ENOUGH_DISTS))
279                 return 1;
280 
281             /* point entry in root table to sub-table */
282             low = huff & mask;
283             (*table)[low].op = (unsigned char)curr;
284             (*table)[low].bits = (unsigned char)root;
285             (*table)[low].val = (unsigned short)(next - *table);
286         }
287     }
288 
289     /* fill in remaining table entry if code is incomplete (guaranteed to have
290        at most one remaining entry, since if the code is incomplete, the
291        maximum code length that was allowed to get this far is one bit) */
292     if (huff != 0) {
293         here.op = (unsigned char)64;            /* invalid code marker */
294         here.bits = (unsigned char)(len - drop);
295         here.val = (unsigned short)0;
296         next[huff] = here;
297     }
298 
299     /* set return parameters */
300     *table += used;
301     *bits = root;
302     return 0;
303 }
304