1 /* $OpenBSD: deflate.c,v 1.8 2022/03/25 10:59:59 tb Exp $ */ 2 /* deflate.c -- compress data using the deflation algorithm 3 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 */ 6 7 /* 8 * ALGORITHM 9 * 10 * The "deflation" process depends on being able to identify portions 11 * of the input text which are identical to earlier input (within a 12 * sliding window trailing behind the input currently being processed). 13 * 14 * The most straightforward technique turns out to be the fastest for 15 * most input files: try all possible matches and select the longest. 16 * The key feature of this algorithm is that insertions into the string 17 * dictionary are very simple and thus fast, and deletions are avoided 18 * completely. Insertions are performed at each input character, whereas 19 * string matches are performed only when the previous match ends. So it 20 * is preferable to spend more time in matches to allow very fast string 21 * insertions and avoid deletions. The matching algorithm for small 22 * strings is inspired from that of Rabin & Karp. A brute force approach 23 * is used to find longer strings when a small match has been found. 24 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 25 * (by Leonid Broukhis). 26 * A previous version of this file used a more sophisticated algorithm 27 * (by Fiala and Greene) which is guaranteed to run in linear amortized 28 * time, but has a larger average cost, uses more memory and is patented. 29 * However the F&G algorithm may be faster for some highly redundant 30 * files if the parameter max_chain_length (described below) is too large. 31 * 32 * ACKNOWLEDGEMENTS 33 * 34 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 35 * I found it in 'freeze' written by Leonid Broukhis. 36 * Thanks to many people for bug reports and testing. 37 * 38 * REFERENCES 39 * 40 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 41 * Available in http://tools.ietf.org/html/rfc1951 42 * 43 * A description of the Rabin and Karp algorithm is given in the book 44 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 45 * 46 * Fiala,E.R., and Greene,D.H. 47 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 48 * 49 */ 50 51 #include "deflate.h" 52 53 /* 54 If you use the zlib library in a product, an acknowledgment is welcome 55 in the documentation of your product. If for some reason you cannot 56 include such an acknowledgment, I would appreciate that you keep this 57 copyright string in the executable of your product. 58 */ 59 60 /* =========================================================================== 61 * Function prototypes. 62 */ 63 typedef enum { 64 need_more, /* block not completed, need more input or more output */ 65 block_done, /* block flush performed */ 66 finish_started, /* finish started, need only more output at next deflate */ 67 finish_done /* finish done, accept no more input or output */ 68 } block_state; 69 70 typedef block_state (*compress_func) OF((deflate_state *s, int flush)); 71 /* Compression function. Returns the block state after the call. */ 72 73 local int deflateStateCheck OF((z_streamp strm)); 74 local void slide_hash OF((deflate_state *s)); 75 local void fill_window OF((deflate_state *s)); 76 local block_state deflate_stored OF((deflate_state *s, int flush)); 77 local block_state deflate_fast OF((deflate_state *s, int flush)); 78 #ifndef FASTEST 79 local block_state deflate_slow OF((deflate_state *s, int flush)); 80 #endif 81 local block_state deflate_rle OF((deflate_state *s, int flush)); 82 local block_state deflate_huff OF((deflate_state *s, int flush)); 83 local void lm_init OF((deflate_state *s)); 84 local void putShortMSB OF((deflate_state *s, uInt b)); 85 local void flush_pending OF((z_streamp strm)); 86 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); 87 #ifdef ASMV 88 # pragma message("Assembler code may have bugs -- use at your own risk") 89 void match_init OF((void)); /* asm code initialization */ 90 uInt longest_match OF((deflate_state *s, IPos cur_match)); 91 #else 92 local uInt longest_match OF((deflate_state *s, IPos cur_match)); 93 #endif 94 95 #ifdef ZLIB_DEBUG 96 local void check_match OF((deflate_state *s, IPos start, IPos match, 97 int length)); 98 #endif 99 100 /* =========================================================================== 101 * Local data 102 */ 103 104 #define NIL 0 105 /* Tail of hash chains */ 106 107 #ifndef TOO_FAR 108 # define TOO_FAR 4096 109 #endif 110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 111 112 /* Values for max_lazy_match, good_match and max_chain_length, depending on 113 * the desired pack level (0..9). The values given below have been tuned to 114 * exclude worst case performance for pathological files. Better values may be 115 * found for specific files. 116 */ 117 typedef struct config_s { 118 ush good_length; /* reduce lazy search above this match length */ 119 ush max_lazy; /* do not perform lazy search above this match length */ 120 ush nice_length; /* quit search above this match length */ 121 ush max_chain; 122 compress_func func; 123 } config; 124 125 #ifdef FASTEST 126 local const config configuration_table[2] = { 127 /* good lazy nice chain */ 128 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 129 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ 130 #else 131 local const config configuration_table[10] = { 132 /* good lazy nice chain */ 133 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ 134 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ 135 /* 2 */ {4, 5, 16, 8, deflate_fast}, 136 /* 3 */ {4, 6, 32, 32, deflate_fast}, 137 138 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 139 /* 5 */ {8, 16, 32, 32, deflate_slow}, 140 /* 6 */ {8, 16, 128, 128, deflate_slow}, 141 /* 7 */ {8, 32, 128, 256, deflate_slow}, 142 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 144 #endif 145 146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 148 * meaning. 149 */ 150 151 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ 152 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) 153 154 /* =========================================================================== 155 * Update a hash value with the given input byte 156 * IN assertion: all calls to UPDATE_HASH are made with consecutive input 157 * characters, so that a running hash key can be computed from the previous 158 * key instead of complete recalculation each time. 159 */ 160 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 161 162 163 /* =========================================================================== 164 * Insert string str in the dictionary and set match_head to the previous head 165 * of the hash chain (the most recent string with same hash key). Return 166 * the previous length of the hash chain. 167 * If this file is compiled with -DFASTEST, the compression level is forced 168 * to 1, and no hash chains are maintained. 169 * IN assertion: all calls to INSERT_STRING are made with consecutive input 170 * characters and the first MIN_MATCH bytes of str are valid (except for 171 * the last MIN_MATCH-1 bytes of the input file). 172 */ 173 #ifdef FASTEST 174 #define INSERT_STRING(s, str, match_head) \ 175 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 176 match_head = s->head[s->ins_h], \ 177 s->head[s->ins_h] = (Pos)(str)) 178 #else 179 #define INSERT_STRING(s, str, match_head) \ 180 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 181 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 182 s->head[s->ins_h] = (Pos)(str)) 183 #endif 184 185 /* =========================================================================== 186 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 187 * prev[] will be initialized on the fly. 188 */ 189 #define CLEAR_HASH(s) \ 190 do { \ 191 s->head[s->hash_size-1] = NIL; \ 192 zmemzero((Bytef *)s->head, \ 193 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \ 194 } while (0) 195 196 /* =========================================================================== 197 * Slide the hash table when sliding the window down (could be avoided with 32 198 * bit values at the expense of memory usage). We slide even when level == 0 to 199 * keep the hash table consistent if we switch back to level > 0 later. 200 */ 201 local void slide_hash(s) 202 deflate_state *s; 203 { 204 unsigned n, m; 205 Posf *p; 206 uInt wsize = s->w_size; 207 208 n = s->hash_size; 209 p = &s->head[n]; 210 do { 211 m = *--p; 212 *p = (Pos)(m >= wsize ? m - wsize : NIL); 213 } while (--n); 214 n = wsize; 215 #ifndef FASTEST 216 p = &s->prev[n]; 217 do { 218 m = *--p; 219 *p = (Pos)(m >= wsize ? m - wsize : NIL); 220 /* If n is not on any hash chain, prev[n] is garbage but 221 * its value will never be used. 222 */ 223 } while (--n); 224 #endif 225 } 226 227 /* ========================================================================= */ 228 int ZEXPORT deflateInit_(strm, level, version, stream_size) 229 z_streamp strm; 230 int level; 231 const char *version; 232 int stream_size; 233 { 234 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 235 Z_DEFAULT_STRATEGY, version, stream_size); 236 /* To do: ignore strm->next_in if we use it as window */ 237 } 238 239 /* ========================================================================= */ 240 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, 241 version, stream_size) 242 z_streamp strm; 243 int level; 244 int method; 245 int windowBits; 246 int memLevel; 247 int strategy; 248 const char *version; 249 int stream_size; 250 { 251 deflate_state *s; 252 int wrap = 1; 253 static const char my_version[] = ZLIB_VERSION; 254 255 if (version == Z_NULL || version[0] != my_version[0] || 256 stream_size != sizeof(z_stream)) { 257 return Z_VERSION_ERROR; 258 } 259 if (strm == Z_NULL) return Z_STREAM_ERROR; 260 261 strm->msg = Z_NULL; 262 if (strm->zalloc == (alloc_func)0) { 263 #ifdef Z_SOLO 264 return Z_STREAM_ERROR; 265 #else 266 strm->zalloc = zcalloc; 267 strm->opaque = (voidpf)0; 268 #endif 269 } 270 if (strm->zfree == (free_func)0) 271 #ifdef Z_SOLO 272 return Z_STREAM_ERROR; 273 #else 274 strm->zfree = zcfree; 275 #endif 276 277 #ifdef FASTEST 278 if (level != 0) level = 1; 279 #else 280 if (level == Z_DEFAULT_COMPRESSION) level = 6; 281 #endif 282 283 if (windowBits < 0) { /* suppress zlib wrapper */ 284 wrap = 0; 285 windowBits = -windowBits; 286 } 287 #ifdef GZIP 288 else if (windowBits > 15) { 289 wrap = 2; /* write gzip wrapper instead */ 290 windowBits -= 16; 291 } 292 #endif 293 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 294 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 295 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { 296 return Z_STREAM_ERROR; 297 } 298 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 299 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); 300 if (s == Z_NULL) return Z_MEM_ERROR; 301 strm->state = (struct internal_state FAR *)s; 302 s->strm = strm; 303 s->status = INIT_STATE; /* to pass state test in deflateReset() */ 304 305 s->wrap = wrap; 306 s->gzhead = Z_NULL; 307 s->w_bits = (uInt)windowBits; 308 s->w_size = 1 << s->w_bits; 309 s->w_mask = s->w_size - 1; 310 311 s->hash_bits = (uInt)memLevel + 7; 312 s->hash_size = 1 << s->hash_bits; 313 s->hash_mask = s->hash_size - 1; 314 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 315 316 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); 317 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); 318 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); 319 320 s->high_water = 0; /* nothing written to s->window yet */ 321 322 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 323 324 /* We overlay pending_buf and sym_buf. This works since the average size 325 * for length/distance pairs over any compressed block is assured to be 31 326 * bits or less. 327 * 328 * Analysis: The longest fixed codes are a length code of 8 bits plus 5 329 * extra bits, for lengths 131 to 257. The longest fixed distance codes are 330 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest 331 * possible fixed-codes length/distance pair is then 31 bits total. 332 * 333 * sym_buf starts one-fourth of the way into pending_buf. So there are 334 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol 335 * in sym_buf is three bytes -- two for the distance and one for the 336 * literal/length. As each symbol is consumed, the pointer to the next 337 * sym_buf value to read moves forward three bytes. From that symbol, up to 338 * 31 bits are written to pending_buf. The closest the written pending_buf 339 * bits gets to the next sym_buf symbol to read is just before the last 340 * code is written. At that time, 31*(n-2) bits have been written, just 341 * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at 342 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1 343 * symbols are written.) The closest the writing gets to what is unread is 344 * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and 345 * can range from 128 to 32768. 346 * 347 * Therefore, at a minimum, there are 142 bits of space between what is 348 * written and what is read in the overlain buffers, so the symbols cannot 349 * be overwritten by the compressed data. That space is actually 139 bits, 350 * due to the three-bit fixed-code block header. 351 * 352 * That covers the case where either Z_FIXED is specified, forcing fixed 353 * codes, or when the use of fixed codes is chosen, because that choice 354 * results in a smaller compressed block than dynamic codes. That latter 355 * condition then assures that the above analysis also covers all dynamic 356 * blocks. A dynamic-code block will only be chosen to be emitted if it has 357 * fewer bits than a fixed-code block would for the same set of symbols. 358 * Therefore its average symbol length is assured to be less than 31. So 359 * the compressed data for a dynamic block also cannot overwrite the 360 * symbols from which it is being constructed. 361 */ 362 363 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4); 364 s->pending_buf_size = (ulg)s->lit_bufsize * 4; 365 366 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 367 s->pending_buf == Z_NULL) { 368 s->status = FINISH_STATE; 369 strm->msg = ERR_MSG(Z_MEM_ERROR); 370 deflateEnd (strm); 371 return Z_MEM_ERROR; 372 } 373 s->sym_buf = s->pending_buf + s->lit_bufsize; 374 s->sym_end = (s->lit_bufsize - 1) * 3; 375 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K 376 * on 16 bit machines and because stored blocks are restricted to 377 * 64K-1 bytes. 378 */ 379 380 s->level = level; 381 s->strategy = strategy; 382 s->method = (Byte)method; 383 384 return deflateReset(strm); 385 } 386 387 /* ========================================================================= 388 * Check for a valid deflate stream state. Return 0 if ok, 1 if not. 389 */ 390 local int deflateStateCheck (strm) 391 z_streamp strm; 392 { 393 deflate_state *s; 394 if (strm == Z_NULL || 395 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) 396 return 1; 397 s = strm->state; 398 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && 399 #ifdef GZIP 400 s->status != GZIP_STATE && 401 #endif 402 s->status != EXTRA_STATE && 403 s->status != NAME_STATE && 404 s->status != COMMENT_STATE && 405 s->status != HCRC_STATE && 406 s->status != BUSY_STATE && 407 s->status != FINISH_STATE)) 408 return 1; 409 return 0; 410 } 411 412 /* ========================================================================= */ 413 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) 414 z_streamp strm; 415 const Bytef *dictionary; 416 uInt dictLength; 417 { 418 deflate_state *s; 419 uInt str, n; 420 int wrap; 421 unsigned avail; 422 z_const unsigned char *next; 423 424 if (deflateStateCheck(strm) || dictionary == Z_NULL) 425 return Z_STREAM_ERROR; 426 s = strm->state; 427 wrap = s->wrap; 428 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) 429 return Z_STREAM_ERROR; 430 431 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ 432 if (wrap == 1) 433 strm->adler = adler32(strm->adler, dictionary, dictLength); 434 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ 435 436 /* if dictionary would fill window, just replace the history */ 437 if (dictLength >= s->w_size) { 438 if (wrap == 0) { /* already empty otherwise */ 439 CLEAR_HASH(s); 440 s->strstart = 0; 441 s->block_start = 0L; 442 s->insert = 0; 443 } 444 dictionary += dictLength - s->w_size; /* use the tail */ 445 dictLength = s->w_size; 446 } 447 448 /* insert dictionary into window and hash */ 449 avail = strm->avail_in; 450 next = strm->next_in; 451 strm->avail_in = dictLength; 452 strm->next_in = (z_const Bytef *)dictionary; 453 fill_window(s); 454 while (s->lookahead >= MIN_MATCH) { 455 str = s->strstart; 456 n = s->lookahead - (MIN_MATCH-1); 457 do { 458 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 459 #ifndef FASTEST 460 s->prev[str & s->w_mask] = s->head[s->ins_h]; 461 #endif 462 s->head[s->ins_h] = (Pos)str; 463 str++; 464 } while (--n); 465 s->strstart = str; 466 s->lookahead = MIN_MATCH-1; 467 fill_window(s); 468 } 469 s->strstart += s->lookahead; 470 s->block_start = (long)s->strstart; 471 s->insert = s->lookahead; 472 s->lookahead = 0; 473 s->match_length = s->prev_length = MIN_MATCH-1; 474 s->match_available = 0; 475 strm->next_in = next; 476 strm->avail_in = avail; 477 s->wrap = wrap; 478 return Z_OK; 479 } 480 481 /* ========================================================================= */ 482 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength) 483 z_streamp strm; 484 Bytef *dictionary; 485 uInt *dictLength; 486 { 487 deflate_state *s; 488 uInt len; 489 490 if (deflateStateCheck(strm)) 491 return Z_STREAM_ERROR; 492 s = strm->state; 493 len = s->strstart + s->lookahead; 494 if (len > s->w_size) 495 len = s->w_size; 496 if (dictionary != Z_NULL && len) 497 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); 498 if (dictLength != Z_NULL) 499 *dictLength = len; 500 return Z_OK; 501 } 502 503 /* ========================================================================= */ 504 int ZEXPORT deflateResetKeep (strm) 505 z_streamp strm; 506 { 507 deflate_state *s; 508 509 if (deflateStateCheck(strm)) { 510 return Z_STREAM_ERROR; 511 } 512 513 strm->total_in = strm->total_out = 0; 514 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 515 strm->data_type = Z_UNKNOWN; 516 517 s = (deflate_state *)strm->state; 518 s->pending = 0; 519 s->pending_out = s->pending_buf; 520 521 if (s->wrap < 0) { 522 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 523 } 524 s->status = 525 #ifdef GZIP 526 s->wrap == 2 ? GZIP_STATE : 527 #endif 528 s->wrap ? INIT_STATE : BUSY_STATE; 529 strm->adler = 530 #ifdef GZIP 531 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : 532 #endif 533 adler32(0L, Z_NULL, 0); 534 s->last_flush = Z_NO_FLUSH; 535 536 _tr_init(s); 537 538 return Z_OK; 539 } 540 541 /* ========================================================================= */ 542 int ZEXPORT deflateReset (strm) 543 z_streamp strm; 544 { 545 int ret; 546 547 ret = deflateResetKeep(strm); 548 if (ret == Z_OK) 549 lm_init(strm->state); 550 return ret; 551 } 552 553 /* ========================================================================= */ 554 int ZEXPORT deflateSetHeader (strm, head) 555 z_streamp strm; 556 gz_headerp head; 557 { 558 if (deflateStateCheck(strm) || strm->state->wrap != 2) 559 return Z_STREAM_ERROR; 560 strm->state->gzhead = head; 561 return Z_OK; 562 } 563 564 /* ========================================================================= */ 565 int ZEXPORT deflatePending (strm, pending, bits) 566 unsigned *pending; 567 int *bits; 568 z_streamp strm; 569 { 570 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 571 if (pending != Z_NULL) 572 *pending = strm->state->pending; 573 if (bits != Z_NULL) 574 *bits = strm->state->bi_valid; 575 return Z_OK; 576 } 577 578 /* ========================================================================= */ 579 int ZEXPORT deflatePrime (strm, bits, value) 580 z_streamp strm; 581 int bits; 582 int value; 583 { 584 deflate_state *s; 585 int put; 586 587 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 588 s = strm->state; 589 if (bits < 0 || bits > 16 || 590 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) 591 return Z_BUF_ERROR; 592 do { 593 put = Buf_size - s->bi_valid; 594 if (put > bits) 595 put = bits; 596 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); 597 s->bi_valid += put; 598 _tr_flush_bits(s); 599 value >>= put; 600 bits -= put; 601 } while (bits); 602 return Z_OK; 603 } 604 605 /* ========================================================================= */ 606 int ZEXPORT deflateParams(strm, level, strategy) 607 z_streamp strm; 608 int level; 609 int strategy; 610 { 611 deflate_state *s; 612 compress_func func; 613 614 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 615 s = strm->state; 616 617 #ifdef FASTEST 618 if (level != 0) level = 1; 619 #else 620 if (level == Z_DEFAULT_COMPRESSION) level = 6; 621 #endif 622 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { 623 return Z_STREAM_ERROR; 624 } 625 func = configuration_table[s->level].func; 626 627 if ((strategy != s->strategy || func != configuration_table[level].func) && 628 s->high_water) { 629 /* Flush the last buffer: */ 630 int err = deflate(strm, Z_BLOCK); 631 if (err == Z_STREAM_ERROR) 632 return err; 633 if (strm->avail_out == 0) 634 return Z_BUF_ERROR; 635 } 636 if (s->level != level) { 637 if (s->level == 0 && s->matches != 0) { 638 if (s->matches == 1) 639 slide_hash(s); 640 else 641 CLEAR_HASH(s); 642 s->matches = 0; 643 } 644 s->level = level; 645 s->max_lazy_match = configuration_table[level].max_lazy; 646 s->good_match = configuration_table[level].good_length; 647 s->nice_match = configuration_table[level].nice_length; 648 s->max_chain_length = configuration_table[level].max_chain; 649 } 650 s->strategy = strategy; 651 return Z_OK; 652 } 653 654 /* ========================================================================= */ 655 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) 656 z_streamp strm; 657 int good_length; 658 int max_lazy; 659 int nice_length; 660 int max_chain; 661 { 662 deflate_state *s; 663 664 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 665 s = strm->state; 666 s->good_match = (uInt)good_length; 667 s->max_lazy_match = (uInt)max_lazy; 668 s->nice_match = nice_length; 669 s->max_chain_length = (uInt)max_chain; 670 return Z_OK; 671 } 672 673 /* ========================================================================= 674 * For the default windowBits of 15 and memLevel of 8, this function returns 675 * a close to exact, as well as small, upper bound on the compressed size. 676 * They are coded as constants here for a reason--if the #define's are 677 * changed, then this function needs to be changed as well. The return 678 * value for 15 and 8 only works for those exact settings. 679 * 680 * For any setting other than those defaults for windowBits and memLevel, 681 * the value returned is a conservative worst case for the maximum expansion 682 * resulting from using fixed blocks instead of stored blocks, which deflate 683 * can emit on compressed data for some combinations of the parameters. 684 * 685 * This function could be more sophisticated to provide closer upper bounds for 686 * every combination of windowBits and memLevel. But even the conservative 687 * upper bound of about 14% expansion does not seem onerous for output buffer 688 * allocation. 689 */ 690 uLong ZEXPORT deflateBound(strm, sourceLen) 691 z_streamp strm; 692 uLong sourceLen; 693 { 694 deflate_state *s; 695 uLong complen, wraplen; 696 697 /* conservative upper bound for compressed data */ 698 complen = sourceLen + 699 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5; 700 701 /* if can't get parameters, return conservative bound plus zlib wrapper */ 702 if (deflateStateCheck(strm)) 703 return complen + 6; 704 705 /* compute wrapper length */ 706 s = strm->state; 707 switch (s->wrap) { 708 case 0: /* raw deflate */ 709 wraplen = 0; 710 break; 711 case 1: /* zlib wrapper */ 712 wraplen = 6 + (s->strstart ? 4 : 0); 713 break; 714 #ifdef GZIP 715 case 2: /* gzip wrapper */ 716 wraplen = 18; 717 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ 718 Bytef *str; 719 if (s->gzhead->extra != Z_NULL) 720 wraplen += 2 + s->gzhead->extra_len; 721 str = s->gzhead->name; 722 if (str != Z_NULL) 723 do { 724 wraplen++; 725 } while (*str++); 726 str = s->gzhead->comment; 727 if (str != Z_NULL) 728 do { 729 wraplen++; 730 } while (*str++); 731 if (s->gzhead->hcrc) 732 wraplen += 2; 733 } 734 break; 735 #endif 736 default: /* for compiler happiness */ 737 wraplen = 6; 738 } 739 740 /* if not default parameters, return conservative bound */ 741 if (s->w_bits != 15 || s->hash_bits != 8 + 7) 742 return complen + wraplen; 743 744 /* default settings: return tight bound for that case */ 745 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + 746 (sourceLen >> 25) + 13 - 6 + wraplen; 747 } 748 749 /* ========================================================================= 750 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 751 * IN assertion: the stream state is correct and there is enough room in 752 * pending_buf. 753 */ 754 local void putShortMSB (s, b) 755 deflate_state *s; 756 uInt b; 757 { 758 put_byte(s, (Byte)(b >> 8)); 759 put_byte(s, (Byte)(b & 0xff)); 760 } 761 762 /* ========================================================================= 763 * Flush as much pending output as possible. All deflate() output, except for 764 * some deflate_stored() output, goes through this function so some 765 * applications may wish to modify it to avoid allocating a large 766 * strm->next_out buffer and copying into it. (See also read_buf()). 767 */ 768 local void flush_pending(strm) 769 z_streamp strm; 770 { 771 unsigned len; 772 deflate_state *s = strm->state; 773 774 _tr_flush_bits(s); 775 len = s->pending; 776 if (len > strm->avail_out) len = strm->avail_out; 777 if (len == 0) return; 778 779 zmemcpy(strm->next_out, s->pending_out, len); 780 strm->next_out += len; 781 s->pending_out += len; 782 strm->total_out += len; 783 strm->avail_out -= len; 784 s->pending -= len; 785 if (s->pending == 0) { 786 s->pending_out = s->pending_buf; 787 } 788 } 789 790 /* =========================================================================== 791 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. 792 */ 793 #define HCRC_UPDATE(beg) \ 794 do { \ 795 if (s->gzhead->hcrc && s->pending > (beg)) \ 796 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ 797 s->pending - (beg)); \ 798 } while (0) 799 800 /* ========================================================================= */ 801 int ZEXPORT deflate (strm, flush) 802 z_streamp strm; 803 int flush; 804 { 805 int old_flush; /* value of flush param for previous deflate call */ 806 deflate_state *s; 807 808 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { 809 return Z_STREAM_ERROR; 810 } 811 s = strm->state; 812 813 if (strm->next_out == Z_NULL || 814 (strm->avail_in != 0 && strm->next_in == Z_NULL) || 815 (s->status == FINISH_STATE && flush != Z_FINISH)) { 816 ERR_RETURN(strm, Z_STREAM_ERROR); 817 } 818 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 819 820 old_flush = s->last_flush; 821 s->last_flush = flush; 822 823 /* Flush as much pending output as possible */ 824 if (s->pending != 0) { 825 flush_pending(strm); 826 if (strm->avail_out == 0) { 827 /* Since avail_out is 0, deflate will be called again with 828 * more output space, but possibly with both pending and 829 * avail_in equal to zero. There won't be anything to do, 830 * but this is not an error situation so make sure we 831 * return OK instead of BUF_ERROR at next call of deflate: 832 */ 833 s->last_flush = -1; 834 return Z_OK; 835 } 836 837 /* Make sure there is something to do and avoid duplicate consecutive 838 * flushes. For repeated and useless calls with Z_FINISH, we keep 839 * returning Z_STREAM_END instead of Z_BUF_ERROR. 840 */ 841 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && 842 flush != Z_FINISH) { 843 ERR_RETURN(strm, Z_BUF_ERROR); 844 } 845 846 /* User must not provide more input after the first FINISH: */ 847 if (s->status == FINISH_STATE && strm->avail_in != 0) { 848 ERR_RETURN(strm, Z_BUF_ERROR); 849 } 850 851 /* Write the header */ 852 if (s->status == INIT_STATE) { 853 /* zlib header */ 854 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 855 uInt level_flags; 856 857 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 858 level_flags = 0; 859 else if (s->level < 6) 860 level_flags = 1; 861 else if (s->level == 6) 862 level_flags = 2; 863 else 864 level_flags = 3; 865 header |= (level_flags << 6); 866 if (s->strstart != 0) header |= PRESET_DICT; 867 header += 31 - (header % 31); 868 869 putShortMSB(s, header); 870 871 /* Save the adler32 of the preset dictionary: */ 872 if (s->strstart != 0) { 873 putShortMSB(s, (uInt)(strm->adler >> 16)); 874 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 875 } 876 strm->adler = adler32(0L, Z_NULL, 0); 877 s->status = BUSY_STATE; 878 879 /* Compression must start with an empty pending buffer */ 880 flush_pending(strm); 881 if (s->pending != 0) { 882 s->last_flush = -1; 883 return Z_OK; 884 } 885 } 886 #ifdef GZIP 887 if (s->status == GZIP_STATE) { 888 /* gzip header */ 889 strm->adler = crc32(0L, Z_NULL, 0); 890 put_byte(s, 31); 891 put_byte(s, 139); 892 put_byte(s, 8); 893 if (s->gzhead == Z_NULL) { 894 put_byte(s, 0); 895 put_byte(s, 0); 896 put_byte(s, 0); 897 put_byte(s, 0); 898 put_byte(s, 0); 899 put_byte(s, s->level == 9 ? 2 : 900 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 901 4 : 0)); 902 put_byte(s, OS_CODE); 903 s->status = BUSY_STATE; 904 905 /* Compression must start with an empty pending buffer */ 906 flush_pending(strm); 907 if (s->pending != 0) { 908 s->last_flush = -1; 909 return Z_OK; 910 } 911 } 912 else { 913 put_byte(s, (s->gzhead->text ? 1 : 0) + 914 (s->gzhead->hcrc ? 2 : 0) + 915 (s->gzhead->extra == Z_NULL ? 0 : 4) + 916 (s->gzhead->name == Z_NULL ? 0 : 8) + 917 (s->gzhead->comment == Z_NULL ? 0 : 16) 918 ); 919 put_byte(s, (Byte)(s->gzhead->time & 0xff)); 920 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); 921 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); 922 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); 923 put_byte(s, s->level == 9 ? 2 : 924 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? 925 4 : 0)); 926 put_byte(s, s->gzhead->os & 0xff); 927 if (s->gzhead->extra != Z_NULL) { 928 put_byte(s, s->gzhead->extra_len & 0xff); 929 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); 930 } 931 if (s->gzhead->hcrc) 932 strm->adler = crc32(strm->adler, s->pending_buf, 933 s->pending); 934 s->gzindex = 0; 935 s->status = EXTRA_STATE; 936 } 937 } 938 if (s->status == EXTRA_STATE) { 939 if (s->gzhead->extra != Z_NULL) { 940 ulg beg = s->pending; /* start of bytes to update crc */ 941 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; 942 while (s->pending + left > s->pending_buf_size) { 943 uInt copy = s->pending_buf_size - s->pending; 944 zmemcpy(s->pending_buf + s->pending, 945 s->gzhead->extra + s->gzindex, copy); 946 s->pending = s->pending_buf_size; 947 HCRC_UPDATE(beg); 948 s->gzindex += copy; 949 flush_pending(strm); 950 if (s->pending != 0) { 951 s->last_flush = -1; 952 return Z_OK; 953 } 954 beg = 0; 955 left -= copy; 956 } 957 zmemcpy(s->pending_buf + s->pending, 958 s->gzhead->extra + s->gzindex, left); 959 s->pending += left; 960 HCRC_UPDATE(beg); 961 s->gzindex = 0; 962 } 963 s->status = NAME_STATE; 964 } 965 if (s->status == NAME_STATE) { 966 if (s->gzhead->name != Z_NULL) { 967 ulg beg = s->pending; /* start of bytes to update crc */ 968 int val; 969 do { 970 if (s->pending == s->pending_buf_size) { 971 HCRC_UPDATE(beg); 972 flush_pending(strm); 973 if (s->pending != 0) { 974 s->last_flush = -1; 975 return Z_OK; 976 } 977 beg = 0; 978 } 979 val = s->gzhead->name[s->gzindex++]; 980 put_byte(s, val); 981 } while (val != 0); 982 HCRC_UPDATE(beg); 983 s->gzindex = 0; 984 } 985 s->status = COMMENT_STATE; 986 } 987 if (s->status == COMMENT_STATE) { 988 if (s->gzhead->comment != Z_NULL) { 989 ulg beg = s->pending; /* start of bytes to update crc */ 990 int val; 991 do { 992 if (s->pending == s->pending_buf_size) { 993 HCRC_UPDATE(beg); 994 flush_pending(strm); 995 if (s->pending != 0) { 996 s->last_flush = -1; 997 return Z_OK; 998 } 999 beg = 0; 1000 } 1001 val = s->gzhead->comment[s->gzindex++]; 1002 put_byte(s, val); 1003 } while (val != 0); 1004 HCRC_UPDATE(beg); 1005 } 1006 s->status = HCRC_STATE; 1007 } 1008 if (s->status == HCRC_STATE) { 1009 if (s->gzhead->hcrc) { 1010 if (s->pending + 2 > s->pending_buf_size) { 1011 flush_pending(strm); 1012 if (s->pending != 0) { 1013 s->last_flush = -1; 1014 return Z_OK; 1015 } 1016 } 1017 put_byte(s, (Byte)(strm->adler & 0xff)); 1018 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1019 strm->adler = crc32(0L, Z_NULL, 0); 1020 } 1021 s->status = BUSY_STATE; 1022 1023 /* Compression must start with an empty pending buffer */ 1024 flush_pending(strm); 1025 if (s->pending != 0) { 1026 s->last_flush = -1; 1027 return Z_OK; 1028 } 1029 } 1030 #endif 1031 1032 /* Start a new block or continue the current one. 1033 */ 1034 if (strm->avail_in != 0 || s->lookahead != 0 || 1035 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 1036 block_state bstate; 1037 1038 bstate = s->level == 0 ? deflate_stored(s, flush) : 1039 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 1040 s->strategy == Z_RLE ? deflate_rle(s, flush) : 1041 (*(configuration_table[s->level].func))(s, flush); 1042 1043 if (bstate == finish_started || bstate == finish_done) { 1044 s->status = FINISH_STATE; 1045 } 1046 if (bstate == need_more || bstate == finish_started) { 1047 if (strm->avail_out == 0) { 1048 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 1049 } 1050 return Z_OK; 1051 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 1052 * of deflate should use the same flush parameter to make sure 1053 * that the flush is complete. So we don't have to output an 1054 * empty block here, this will be done at next call. This also 1055 * ensures that for a very small output buffer, we emit at most 1056 * one empty block. 1057 */ 1058 } 1059 if (bstate == block_done) { 1060 if (flush == Z_PARTIAL_FLUSH) { 1061 _tr_align(s); 1062 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 1063 _tr_stored_block(s, (char*)0, 0L, 0); 1064 /* For a full flush, this empty block will be recognized 1065 * as a special marker by inflate_sync(). 1066 */ 1067 if (flush == Z_FULL_FLUSH) { 1068 CLEAR_HASH(s); /* forget history */ 1069 if (s->lookahead == 0) { 1070 s->strstart = 0; 1071 s->block_start = 0L; 1072 s->insert = 0; 1073 } 1074 } 1075 } 1076 flush_pending(strm); 1077 if (strm->avail_out == 0) { 1078 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 1079 return Z_OK; 1080 } 1081 } 1082 } 1083 1084 if (flush != Z_FINISH) return Z_OK; 1085 if (s->wrap <= 0) return Z_STREAM_END; 1086 1087 /* Write the trailer */ 1088 #ifdef GZIP 1089 if (s->wrap == 2) { 1090 put_byte(s, (Byte)(strm->adler & 0xff)); 1091 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); 1092 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); 1093 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); 1094 put_byte(s, (Byte)(strm->total_in & 0xff)); 1095 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); 1096 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); 1097 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); 1098 } 1099 else 1100 #endif 1101 { 1102 putShortMSB(s, (uInt)(strm->adler >> 16)); 1103 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 1104 } 1105 flush_pending(strm); 1106 /* If avail_out is zero, the application will call deflate again 1107 * to flush the rest. 1108 */ 1109 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 1110 return s->pending != 0 ? Z_OK : Z_STREAM_END; 1111 } 1112 1113 /* ========================================================================= */ 1114 int ZEXPORT deflateEnd (strm) 1115 z_streamp strm; 1116 { 1117 int status; 1118 1119 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; 1120 1121 status = strm->state->status; 1122 1123 /* Deallocate in reverse order of allocations: */ 1124 TRY_FREE(strm, strm->state->pending_buf, strm->state->pending_buf_size); 1125 TRY_FREE(strm, strm->state->head, strm->state->hash_size * sizeof(Pos)); 1126 TRY_FREE(strm, strm->state->prev, strm->state->w_size * sizeof(Pos)); 1127 TRY_FREE(strm, strm->state->window, strm->state->w_size * 2 * sizeof(Byte)); 1128 1129 ZFREE(strm, strm->state, sizeof(deflate_state)); 1130 strm->state = Z_NULL; 1131 1132 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 1133 } 1134 1135 /* ========================================================================= 1136 * Copy the source state to the destination state. 1137 * To simplify the source, this is not supported for 16-bit MSDOS (which 1138 * doesn't have enough memory anyway to duplicate compression states). 1139 */ 1140 int ZEXPORT deflateCopy (dest, source) 1141 z_streamp dest; 1142 z_streamp source; 1143 { 1144 #ifdef MAXSEG_64K 1145 return Z_STREAM_ERROR; 1146 #else 1147 deflate_state *ds; 1148 deflate_state *ss; 1149 1150 1151 if (deflateStateCheck(source) || dest == Z_NULL) { 1152 return Z_STREAM_ERROR; 1153 } 1154 1155 ss = source->state; 1156 1157 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); 1158 1159 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); 1160 if (ds == Z_NULL) return Z_MEM_ERROR; 1161 dest->state = (struct internal_state FAR *) ds; 1162 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); 1163 ds->strm = dest; 1164 1165 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); 1166 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); 1167 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); 1168 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4); 1169 1170 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || 1171 ds->pending_buf == Z_NULL) { 1172 deflateEnd (dest); 1173 return Z_MEM_ERROR; 1174 } 1175 /* following zmemcpy do not work for 16-bit MSDOS */ 1176 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); 1177 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); 1178 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); 1179 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); 1180 1181 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); 1182 ds->sym_buf = ds->pending_buf + ds->lit_bufsize; 1183 1184 ds->l_desc.dyn_tree = ds->dyn_ltree; 1185 ds->d_desc.dyn_tree = ds->dyn_dtree; 1186 ds->bl_desc.dyn_tree = ds->bl_tree; 1187 1188 return Z_OK; 1189 #endif /* MAXSEG_64K */ 1190 } 1191 1192 /* =========================================================================== 1193 * Read a new buffer from the current input stream, update the adler32 1194 * and total number of bytes read. All deflate() input goes through 1195 * this function so some applications may wish to modify it to avoid 1196 * allocating a large strm->next_in buffer and copying from it. 1197 * (See also flush_pending()). 1198 */ 1199 local unsigned read_buf(strm, buf, size) 1200 z_streamp strm; 1201 Bytef *buf; 1202 unsigned size; 1203 { 1204 unsigned len = strm->avail_in; 1205 1206 if (len > size) len = size; 1207 if (len == 0) return 0; 1208 1209 strm->avail_in -= len; 1210 1211 zmemcpy(buf, strm->next_in, len); 1212 if (strm->state->wrap == 1) { 1213 strm->adler = adler32(strm->adler, buf, len); 1214 } 1215 #ifdef GZIP 1216 else if (strm->state->wrap == 2) { 1217 strm->adler = crc32(strm->adler, buf, len); 1218 } 1219 #endif 1220 strm->next_in += len; 1221 strm->total_in += len; 1222 1223 return len; 1224 } 1225 1226 /* =========================================================================== 1227 * Initialize the "longest match" routines for a new zlib stream 1228 */ 1229 local void lm_init (s) 1230 deflate_state *s; 1231 { 1232 s->window_size = (ulg)2L*s->w_size; 1233 1234 CLEAR_HASH(s); 1235 1236 /* Set the default configuration parameters: 1237 */ 1238 s->max_lazy_match = configuration_table[s->level].max_lazy; 1239 s->good_match = configuration_table[s->level].good_length; 1240 s->nice_match = configuration_table[s->level].nice_length; 1241 s->max_chain_length = configuration_table[s->level].max_chain; 1242 1243 s->strstart = 0; 1244 s->block_start = 0L; 1245 s->lookahead = 0; 1246 s->insert = 0; 1247 s->match_length = s->prev_length = MIN_MATCH-1; 1248 s->match_available = 0; 1249 s->ins_h = 0; 1250 #ifndef FASTEST 1251 #ifdef ASMV 1252 match_init(); /* initialize the asm code */ 1253 #endif 1254 #endif 1255 } 1256 1257 #ifndef FASTEST 1258 /* =========================================================================== 1259 * Set match_start to the longest match starting at the given string and 1260 * return its length. Matches shorter or equal to prev_length are discarded, 1261 * in which case the result is equal to prev_length and match_start is 1262 * garbage. 1263 * IN assertions: cur_match is the head of the hash chain for the current 1264 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 1265 * OUT assertion: the match length is not greater than s->lookahead. 1266 */ 1267 #ifndef ASMV 1268 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or 1269 * match.S. The code will be functionally equivalent. 1270 */ 1271 local uInt longest_match(s, cur_match) 1272 deflate_state *s; 1273 IPos cur_match; /* current match */ 1274 { 1275 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 1276 register Bytef *scan = s->window + s->strstart; /* current string */ 1277 register Bytef *match; /* matched string */ 1278 register int len; /* length of current match */ 1279 int best_len = (int)s->prev_length; /* best match length so far */ 1280 int nice_match = s->nice_match; /* stop if match long enough */ 1281 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 1282 s->strstart - (IPos)MAX_DIST(s) : NIL; 1283 /* Stop when cur_match becomes <= limit. To simplify the code, 1284 * we prevent matches with the string of window index 0. 1285 */ 1286 Posf *prev = s->prev; 1287 uInt wmask = s->w_mask; 1288 1289 #ifdef UNALIGNED_OK 1290 /* Compare two bytes at a time. Note: this is not always beneficial. 1291 * Try with and without -DUNALIGNED_OK to check. 1292 */ 1293 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 1294 register ush scan_start = *(ushf*)scan; 1295 register ush scan_end = *(ushf*)(scan+best_len-1); 1296 #else 1297 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1298 register Byte scan_end1 = scan[best_len-1]; 1299 register Byte scan_end = scan[best_len]; 1300 #endif 1301 1302 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1303 * It is easy to get rid of this optimization if necessary. 1304 */ 1305 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1306 1307 /* Do not waste too much time if we already have a good match: */ 1308 if (s->prev_length >= s->good_match) { 1309 chain_length >>= 2; 1310 } 1311 /* Do not look for matches beyond the end of the input. This is necessary 1312 * to make deflate deterministic. 1313 */ 1314 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; 1315 1316 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1317 1318 do { 1319 Assert(cur_match < s->strstart, "no future"); 1320 match = s->window + cur_match; 1321 1322 /* Skip to next match if the match length cannot increase 1323 * or if the match length is less than 2. Note that the checks below 1324 * for insufficient lookahead only occur occasionally for performance 1325 * reasons. Therefore uninitialized memory will be accessed, and 1326 * conditional jumps will be made that depend on those values. 1327 * However the length of the match is limited to the lookahead, so 1328 * the output of deflate is not affected by the uninitialized values. 1329 */ 1330 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 1331 /* This code assumes sizeof(unsigned short) == 2. Do not use 1332 * UNALIGNED_OK if your compiler uses a different size. 1333 */ 1334 if (*(ushf*)(match+best_len-1) != scan_end || 1335 *(ushf*)match != scan_start) continue; 1336 1337 /* It is not necessary to compare scan[2] and match[2] since they are 1338 * always equal when the other bytes match, given that the hash keys 1339 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 1340 * strstart+3, +5, ... up to strstart+257. We check for insufficient 1341 * lookahead only every 4th comparison; the 128th check will be made 1342 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 1343 * necessary to put more guard bytes at the end of the window, or 1344 * to check more often for insufficient lookahead. 1345 */ 1346 Assert(scan[2] == match[2], "scan[2]?"); 1347 scan++, match++; 1348 do { 1349 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1350 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1351 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1352 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 1353 scan < strend); 1354 /* The funny "do {}" generates better code on most compilers */ 1355 1356 /* Here, scan <= window+strstart+257 */ 1357 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1358 if (*scan == *match) scan++; 1359 1360 len = (MAX_MATCH - 1) - (int)(strend-scan); 1361 scan = strend - (MAX_MATCH-1); 1362 1363 #else /* UNALIGNED_OK */ 1364 1365 if (match[best_len] != scan_end || 1366 match[best_len-1] != scan_end1 || 1367 *match != *scan || 1368 *++match != scan[1]) continue; 1369 1370 /* The check at best_len-1 can be removed because it will be made 1371 * again later. (This heuristic is not always a win.) 1372 * It is not necessary to compare scan[2] and match[2] since they 1373 * are always equal when the other bytes match, given that 1374 * the hash keys are equal and that HASH_BITS >= 8. 1375 */ 1376 scan += 2, match++; 1377 Assert(*scan == *match, "match[2]?"); 1378 1379 /* We check for insufficient lookahead only every 8th comparison; 1380 * the 256th check will be made at strstart+258. 1381 */ 1382 do { 1383 } while (*++scan == *++match && *++scan == *++match && 1384 *++scan == *++match && *++scan == *++match && 1385 *++scan == *++match && *++scan == *++match && 1386 *++scan == *++match && *++scan == *++match && 1387 scan < strend); 1388 1389 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1390 1391 len = MAX_MATCH - (int)(strend - scan); 1392 scan = strend - MAX_MATCH; 1393 1394 #endif /* UNALIGNED_OK */ 1395 1396 if (len > best_len) { 1397 s->match_start = cur_match; 1398 best_len = len; 1399 if (len >= nice_match) break; 1400 #ifdef UNALIGNED_OK 1401 scan_end = *(ushf*)(scan+best_len-1); 1402 #else 1403 scan_end1 = scan[best_len-1]; 1404 scan_end = scan[best_len]; 1405 #endif 1406 } 1407 } while ((cur_match = prev[cur_match & wmask]) > limit 1408 && --chain_length != 0); 1409 1410 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 1411 return s->lookahead; 1412 } 1413 #endif /* ASMV */ 1414 1415 #else /* FASTEST */ 1416 1417 /* --------------------------------------------------------------------------- 1418 * Optimized version for FASTEST only 1419 */ 1420 local uInt longest_match(s, cur_match) 1421 deflate_state *s; 1422 IPos cur_match; /* current match */ 1423 { 1424 register Bytef *scan = s->window + s->strstart; /* current string */ 1425 register Bytef *match; /* matched string */ 1426 register int len; /* length of current match */ 1427 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 1428 1429 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 1430 * It is easy to get rid of this optimization if necessary. 1431 */ 1432 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 1433 1434 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 1435 1436 Assert(cur_match < s->strstart, "no future"); 1437 1438 match = s->window + cur_match; 1439 1440 /* Return failure if the match length is less than 2: 1441 */ 1442 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; 1443 1444 /* The check at best_len-1 can be removed because it will be made 1445 * again later. (This heuristic is not always a win.) 1446 * It is not necessary to compare scan[2] and match[2] since they 1447 * are always equal when the other bytes match, given that 1448 * the hash keys are equal and that HASH_BITS >= 8. 1449 */ 1450 scan += 2, match += 2; 1451 Assert(*scan == *match, "match[2]?"); 1452 1453 /* We check for insufficient lookahead only every 8th comparison; 1454 * the 256th check will be made at strstart+258. 1455 */ 1456 do { 1457 } while (*++scan == *++match && *++scan == *++match && 1458 *++scan == *++match && *++scan == *++match && 1459 *++scan == *++match && *++scan == *++match && 1460 *++scan == *++match && *++scan == *++match && 1461 scan < strend); 1462 1463 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 1464 1465 len = MAX_MATCH - (int)(strend - scan); 1466 1467 if (len < MIN_MATCH) return MIN_MATCH - 1; 1468 1469 s->match_start = cur_match; 1470 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; 1471 } 1472 1473 #endif /* FASTEST */ 1474 1475 #ifdef ZLIB_DEBUG 1476 1477 #define EQUAL 0 1478 /* result of memcmp for equal strings */ 1479 1480 /* =========================================================================== 1481 * Check that the match at match_start is indeed a match. 1482 */ 1483 local void check_match(s, start, match, length) 1484 deflate_state *s; 1485 IPos start, match; 1486 int length; 1487 { 1488 /* check that the match is indeed a match */ 1489 if (zmemcmp(s->window + match, 1490 s->window + start, length) != EQUAL) { 1491 fprintf(stderr, " start %u, match %u, length %d\n", 1492 start, match, length); 1493 do { 1494 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 1495 } while (--length != 0); 1496 z_error("invalid match"); 1497 } 1498 if (z_verbose > 1) { 1499 fprintf(stderr,"\\[%d,%d]", start-match, length); 1500 do { putc(s->window[start++], stderr); } while (--length != 0); 1501 } 1502 } 1503 #else 1504 # define check_match(s, start, match, length) 1505 #endif /* ZLIB_DEBUG */ 1506 1507 /* =========================================================================== 1508 * Fill the window when the lookahead becomes insufficient. 1509 * Updates strstart and lookahead. 1510 * 1511 * IN assertion: lookahead < MIN_LOOKAHEAD 1512 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 1513 * At least one byte has been read, or avail_in == 0; reads are 1514 * performed for at least two bytes (required for the zip translate_eol 1515 * option -- not supported here). 1516 */ 1517 local void fill_window(s) 1518 deflate_state *s; 1519 { 1520 unsigned n; 1521 unsigned more; /* Amount of free space at the end of the window. */ 1522 uInt wsize = s->w_size; 1523 1524 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); 1525 1526 do { 1527 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 1528 1529 /* Deal with !@#$% 64K limit: */ 1530 if (sizeof(int) <= 2) { 1531 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 1532 more = wsize; 1533 1534 } else if (more == (unsigned)(-1)) { 1535 /* Very unlikely, but possible on 16 bit machine if 1536 * strstart == 0 && lookahead == 1 (input done a byte at time) 1537 */ 1538 more--; 1539 } 1540 } 1541 1542 /* If the window is almost full and there is insufficient lookahead, 1543 * move the upper half to the lower one to make room in the upper half. 1544 */ 1545 if (s->strstart >= wsize+MAX_DIST(s)) { 1546 1547 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more); 1548 s->match_start -= wsize; 1549 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 1550 s->block_start -= (long) wsize; 1551 slide_hash(s); 1552 more += wsize; 1553 } 1554 if (s->strm->avail_in == 0) break; 1555 1556 /* If there was no sliding: 1557 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 1558 * more == window_size - lookahead - strstart 1559 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 1560 * => more >= window_size - 2*WSIZE + 2 1561 * In the BIG_MEM or MMAP case (not yet supported), 1562 * window_size == input_size + MIN_LOOKAHEAD && 1563 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 1564 * Otherwise, window_size == 2*WSIZE so more >= 2. 1565 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 1566 */ 1567 Assert(more >= 2, "more < 2"); 1568 1569 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 1570 s->lookahead += n; 1571 1572 /* Initialize the hash value now that we have some input: */ 1573 if (s->lookahead + s->insert >= MIN_MATCH) { 1574 uInt str = s->strstart - s->insert; 1575 s->ins_h = s->window[str]; 1576 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); 1577 #if MIN_MATCH != 3 1578 Call UPDATE_HASH() MIN_MATCH-3 more times 1579 #endif 1580 while (s->insert) { 1581 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 1582 #ifndef FASTEST 1583 s->prev[str & s->w_mask] = s->head[s->ins_h]; 1584 #endif 1585 s->head[s->ins_h] = (Pos)str; 1586 str++; 1587 s->insert--; 1588 if (s->lookahead + s->insert < MIN_MATCH) 1589 break; 1590 } 1591 } 1592 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 1593 * but this is not important since only literal bytes will be emitted. 1594 */ 1595 1596 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 1597 1598 /* If the WIN_INIT bytes after the end of the current data have never been 1599 * written, then zero those bytes in order to avoid memory check reports of 1600 * the use of uninitialized (or uninitialised as Julian writes) bytes by 1601 * the longest match routines. Update the high water mark for the next 1602 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 1603 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 1604 */ 1605 if (s->high_water < s->window_size) { 1606 ulg curr = s->strstart + (ulg)(s->lookahead); 1607 ulg init; 1608 1609 if (s->high_water < curr) { 1610 /* Previous high water mark below current data -- zero WIN_INIT 1611 * bytes or up to end of window, whichever is less. 1612 */ 1613 init = s->window_size - curr; 1614 if (init > WIN_INIT) 1615 init = WIN_INIT; 1616 zmemzero(s->window + curr, (unsigned)init); 1617 s->high_water = curr + init; 1618 } 1619 else if (s->high_water < (ulg)curr + WIN_INIT) { 1620 /* High water mark at or above current data, but below current data 1621 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 1622 * to end of window, whichever is less. 1623 */ 1624 init = (ulg)curr + WIN_INIT - s->high_water; 1625 if (init > s->window_size - s->high_water) 1626 init = s->window_size - s->high_water; 1627 zmemzero(s->window + s->high_water, (unsigned)init); 1628 s->high_water += init; 1629 } 1630 } 1631 1632 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 1633 "not enough room for search"); 1634 } 1635 1636 /* =========================================================================== 1637 * Flush the current block, with given end-of-file flag. 1638 * IN assertion: strstart is set to the end of the current match. 1639 */ 1640 #define FLUSH_BLOCK_ONLY(s, last) { \ 1641 _tr_flush_block(s, (s->block_start >= 0L ? \ 1642 (charf *)&s->window[(unsigned)s->block_start] : \ 1643 (charf *)Z_NULL), \ 1644 (ulg)((long)s->strstart - s->block_start), \ 1645 (last)); \ 1646 s->block_start = s->strstart; \ 1647 flush_pending(s->strm); \ 1648 Tracev((stderr,"[FLUSH]")); \ 1649 } 1650 1651 /* Same but force premature exit if necessary. */ 1652 #define FLUSH_BLOCK(s, last) { \ 1653 FLUSH_BLOCK_ONLY(s, last); \ 1654 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 1655 } 1656 1657 /* Maximum stored block length in deflate format (not including header). */ 1658 #define MAX_STORED 65535 1659 1660 #ifndef MIN 1661 /* Minimum of a and b. */ 1662 #define MIN(a, b) ((a) > (b) ? (b) : (a)) 1663 #endif 1664 1665 /* =========================================================================== 1666 * Copy without compression as much as possible from the input stream, return 1667 * the current block state. 1668 * 1669 * In case deflateParams() is used to later switch to a non-zero compression 1670 * level, s->matches (otherwise unused when storing) keeps track of the number 1671 * of hash table slides to perform. If s->matches is 1, then one hash table 1672 * slide will be done when switching. If s->matches is 2, the maximum value 1673 * allowed here, then the hash table will be cleared, since two or more slides 1674 * is the same as a clear. 1675 * 1676 * deflate_stored() is written to minimize the number of times an input byte is 1677 * copied. It is most efficient with large input and output buffers, which 1678 * maximizes the opportunites to have a single copy from next_in to next_out. 1679 */ 1680 local block_state deflate_stored(s, flush) 1681 deflate_state *s; 1682 int flush; 1683 { 1684 /* Smallest worthy block size when not flushing or finishing. By default 1685 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For 1686 * large input and output buffers, the stored block size will be larger. 1687 */ 1688 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); 1689 1690 /* Copy as many min_block or larger stored blocks directly to next_out as 1691 * possible. If flushing, copy the remaining available input to next_out as 1692 * stored blocks, if there is enough space. 1693 */ 1694 unsigned len, left, have, last = 0; 1695 unsigned used = s->strm->avail_in; 1696 do { 1697 /* Set len to the maximum size block that we can copy directly with the 1698 * available input data and output space. Set left to how much of that 1699 * would be copied from what's left in the window. 1700 */ 1701 len = MAX_STORED; /* maximum deflate stored block length */ 1702 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1703 if (s->strm->avail_out < have) /* need room for header */ 1704 break; 1705 /* maximum stored block length that will fit in avail_out: */ 1706 have = s->strm->avail_out - have; 1707 left = s->strstart - s->block_start; /* bytes left in window */ 1708 if (len > (ulg)left + s->strm->avail_in) 1709 len = left + s->strm->avail_in; /* limit len to the input */ 1710 if (len > have) 1711 len = have; /* limit len to the output */ 1712 1713 /* If the stored block would be less than min_block in length, or if 1714 * unable to copy all of the available input when flushing, then try 1715 * copying to the window and the pending buffer instead. Also don't 1716 * write an empty block when flushing -- deflate() does that. 1717 */ 1718 if (len < min_block && ((len == 0 && flush != Z_FINISH) || 1719 flush == Z_NO_FLUSH || 1720 len != left + s->strm->avail_in)) 1721 break; 1722 1723 /* Make a dummy stored block in pending to get the header bytes, 1724 * including any pending bits. This also updates the debugging counts. 1725 */ 1726 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; 1727 _tr_stored_block(s, (char *)0, 0L, last); 1728 1729 /* Replace the lengths in the dummy stored block with len. */ 1730 s->pending_buf[s->pending - 4] = len; 1731 s->pending_buf[s->pending - 3] = len >> 8; 1732 s->pending_buf[s->pending - 2] = ~len; 1733 s->pending_buf[s->pending - 1] = ~len >> 8; 1734 1735 /* Write the stored block header bytes. */ 1736 flush_pending(s->strm); 1737 1738 #ifdef ZLIB_DEBUG 1739 /* Update debugging counts for the data about to be copied. */ 1740 s->compressed_len += len << 3; 1741 s->bits_sent += len << 3; 1742 #endif 1743 1744 /* Copy uncompressed bytes from the window to next_out. */ 1745 if (left) { 1746 if (left > len) 1747 left = len; 1748 zmemcpy(s->strm->next_out, s->window + s->block_start, left); 1749 s->strm->next_out += left; 1750 s->strm->avail_out -= left; 1751 s->strm->total_out += left; 1752 s->block_start += left; 1753 len -= left; 1754 } 1755 1756 /* Copy uncompressed bytes directly from next_in to next_out, updating 1757 * the check value. 1758 */ 1759 if (len) { 1760 read_buf(s->strm, s->strm->next_out, len); 1761 s->strm->next_out += len; 1762 s->strm->avail_out -= len; 1763 s->strm->total_out += len; 1764 } 1765 } while (last == 0); 1766 1767 /* Update the sliding window with the last s->w_size bytes of the copied 1768 * data, or append all of the copied data to the existing window if less 1769 * than s->w_size bytes were copied. Also update the number of bytes to 1770 * insert in the hash tables, in the event that deflateParams() switches to 1771 * a non-zero compression level. 1772 */ 1773 used -= s->strm->avail_in; /* number of input bytes directly copied */ 1774 if (used) { 1775 /* If any input was used, then no unused input remains in the window, 1776 * therefore s->block_start == s->strstart. 1777 */ 1778 if (used >= s->w_size) { /* supplant the previous history */ 1779 s->matches = 2; /* clear hash */ 1780 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); 1781 s->strstart = s->w_size; 1782 } 1783 else { 1784 if (s->window_size - s->strstart <= used) { 1785 /* Slide the window down. */ 1786 s->strstart -= s->w_size; 1787 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1788 if (s->matches < 2) 1789 s->matches++; /* add a pending slide_hash() */ 1790 } 1791 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); 1792 s->strstart += used; 1793 } 1794 s->block_start = s->strstart; 1795 s->insert += MIN(used, s->w_size - s->insert); 1796 } 1797 if (s->high_water < s->strstart) 1798 s->high_water = s->strstart; 1799 1800 /* If the last block was written to next_out, then done. */ 1801 if (last) 1802 return finish_done; 1803 1804 /* If flushing and all input has been consumed, then done. */ 1805 if (flush != Z_NO_FLUSH && flush != Z_FINISH && 1806 s->strm->avail_in == 0 && (long)s->strstart == s->block_start) 1807 return block_done; 1808 1809 /* Fill the window with any remaining input. */ 1810 have = s->window_size - s->strstart - 1; 1811 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { 1812 /* Slide the window down. */ 1813 s->block_start -= s->w_size; 1814 s->strstart -= s->w_size; 1815 zmemcpy(s->window, s->window + s->w_size, s->strstart); 1816 if (s->matches < 2) 1817 s->matches++; /* add a pending slide_hash() */ 1818 have += s->w_size; /* more space now */ 1819 } 1820 if (have > s->strm->avail_in) 1821 have = s->strm->avail_in; 1822 if (have) { 1823 read_buf(s->strm, s->window + s->strstart, have); 1824 s->strstart += have; 1825 } 1826 if (s->high_water < s->strstart) 1827 s->high_water = s->strstart; 1828 1829 /* There was not enough avail_out to write a complete worthy or flushed 1830 * stored block to next_out. Write a stored block to pending instead, if we 1831 * have enough input for a worthy block, or if flushing and there is enough 1832 * room for the remaining input as a stored block in the pending buffer. 1833 */ 1834 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ 1835 /* maximum stored block length that will fit in pending: */ 1836 have = MIN(s->pending_buf_size - have, MAX_STORED); 1837 min_block = MIN(have, s->w_size); 1838 left = s->strstart - s->block_start; 1839 if (left >= min_block || 1840 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && 1841 s->strm->avail_in == 0 && left <= have)) { 1842 len = MIN(left, have); 1843 last = flush == Z_FINISH && s->strm->avail_in == 0 && 1844 len == left ? 1 : 0; 1845 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); 1846 s->block_start += len; 1847 flush_pending(s->strm); 1848 } 1849 1850 /* We've done all we can with the available input and output. */ 1851 return last ? finish_started : need_more; 1852 } 1853 1854 /* =========================================================================== 1855 * Compress as much as possible from the input stream, return the current 1856 * block state. 1857 * This function does not perform lazy evaluation of matches and inserts 1858 * new strings in the dictionary only for unmatched strings or for short 1859 * matches. It is used only for the fast compression options. 1860 */ 1861 local block_state deflate_fast(s, flush) 1862 deflate_state *s; 1863 int flush; 1864 { 1865 IPos hash_head; /* head of the hash chain */ 1866 int bflush; /* set if current block must be flushed */ 1867 1868 for (;;) { 1869 /* Make sure that we always have enough lookahead, except 1870 * at the end of the input file. We need MAX_MATCH bytes 1871 * for the next match, plus MIN_MATCH bytes to insert the 1872 * string following the next match. 1873 */ 1874 if (s->lookahead < MIN_LOOKAHEAD) { 1875 fill_window(s); 1876 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1877 return need_more; 1878 } 1879 if (s->lookahead == 0) break; /* flush the current block */ 1880 } 1881 1882 /* Insert the string window[strstart .. strstart+2] in the 1883 * dictionary, and set hash_head to the head of the hash chain: 1884 */ 1885 hash_head = NIL; 1886 if (s->lookahead >= MIN_MATCH) { 1887 INSERT_STRING(s, s->strstart, hash_head); 1888 } 1889 1890 /* Find the longest match, discarding those <= prev_length. 1891 * At this point we have always match_length < MIN_MATCH 1892 */ 1893 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { 1894 /* To simplify the code, we prevent matches with the string 1895 * of window index 0 (in particular we have to avoid a match 1896 * of the string with itself at the start of the input file). 1897 */ 1898 s->match_length = longest_match (s, hash_head); 1899 /* longest_match() sets match_start */ 1900 } 1901 if (s->match_length >= MIN_MATCH) { 1902 check_match(s, s->strstart, s->match_start, s->match_length); 1903 1904 _tr_tally_dist(s, s->strstart - s->match_start, 1905 s->match_length - MIN_MATCH, bflush); 1906 1907 s->lookahead -= s->match_length; 1908 1909 /* Insert new strings in the hash table only if the match length 1910 * is not too large. This saves time but degrades compression. 1911 */ 1912 #ifndef FASTEST 1913 if (s->match_length <= s->max_insert_length && 1914 s->lookahead >= MIN_MATCH) { 1915 s->match_length--; /* string at strstart already in table */ 1916 do { 1917 s->strstart++; 1918 INSERT_STRING(s, s->strstart, hash_head); 1919 /* strstart never exceeds WSIZE-MAX_MATCH, so there are 1920 * always MIN_MATCH bytes ahead. 1921 */ 1922 } while (--s->match_length != 0); 1923 s->strstart++; 1924 } else 1925 #endif 1926 { 1927 s->strstart += s->match_length; 1928 s->match_length = 0; 1929 s->ins_h = s->window[s->strstart]; 1930 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); 1931 #if MIN_MATCH != 3 1932 Call UPDATE_HASH() MIN_MATCH-3 more times 1933 #endif 1934 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not 1935 * matter since it will be recomputed at next deflate call. 1936 */ 1937 } 1938 } else { 1939 /* No match, output a literal byte */ 1940 Tracevv((stderr,"%c", s->window[s->strstart])); 1941 _tr_tally_lit (s, s->window[s->strstart], bflush); 1942 s->lookahead--; 1943 s->strstart++; 1944 } 1945 if (bflush) FLUSH_BLOCK(s, 0); 1946 } 1947 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1948 if (flush == Z_FINISH) { 1949 FLUSH_BLOCK(s, 1); 1950 return finish_done; 1951 } 1952 if (s->sym_next) 1953 FLUSH_BLOCK(s, 0); 1954 return block_done; 1955 } 1956 1957 #ifndef FASTEST 1958 /* =========================================================================== 1959 * Same as above, but achieves better compression. We use a lazy 1960 * evaluation for matches: a match is finally adopted only if there is 1961 * no better match at the next window position. 1962 */ 1963 local block_state deflate_slow(s, flush) 1964 deflate_state *s; 1965 int flush; 1966 { 1967 IPos hash_head; /* head of hash chain */ 1968 int bflush; /* set if current block must be flushed */ 1969 1970 /* Process the input block. */ 1971 for (;;) { 1972 /* Make sure that we always have enough lookahead, except 1973 * at the end of the input file. We need MAX_MATCH bytes 1974 * for the next match, plus MIN_MATCH bytes to insert the 1975 * string following the next match. 1976 */ 1977 if (s->lookahead < MIN_LOOKAHEAD) { 1978 fill_window(s); 1979 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 1980 return need_more; 1981 } 1982 if (s->lookahead == 0) break; /* flush the current block */ 1983 } 1984 1985 /* Insert the string window[strstart .. strstart+2] in the 1986 * dictionary, and set hash_head to the head of the hash chain: 1987 */ 1988 hash_head = NIL; 1989 if (s->lookahead >= MIN_MATCH) { 1990 INSERT_STRING(s, s->strstart, hash_head); 1991 } 1992 1993 /* Find the longest match, discarding those <= prev_length. 1994 */ 1995 s->prev_length = s->match_length, s->prev_match = s->match_start; 1996 s->match_length = MIN_MATCH-1; 1997 1998 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 1999 s->strstart - hash_head <= MAX_DIST(s)) { 2000 /* To simplify the code, we prevent matches with the string 2001 * of window index 0 (in particular we have to avoid a match 2002 * of the string with itself at the start of the input file). 2003 */ 2004 s->match_length = longest_match (s, hash_head); 2005 /* longest_match() sets match_start */ 2006 2007 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 2008 #if TOO_FAR <= 32767 2009 || (s->match_length == MIN_MATCH && 2010 s->strstart - s->match_start > TOO_FAR) 2011 #endif 2012 )) { 2013 2014 /* If prev_match is also MIN_MATCH, match_start is garbage 2015 * but we will ignore the current match anyway. 2016 */ 2017 s->match_length = MIN_MATCH-1; 2018 } 2019 } 2020 /* If there was a match at the previous step and the current 2021 * match is not better, output the previous match: 2022 */ 2023 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 2024 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 2025 /* Do not insert strings in hash table beyond this. */ 2026 2027 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 2028 2029 _tr_tally_dist(s, s->strstart -1 - s->prev_match, 2030 s->prev_length - MIN_MATCH, bflush); 2031 2032 /* Insert in hash table all strings up to the end of the match. 2033 * strstart-1 and strstart are already inserted. If there is not 2034 * enough lookahead, the last two strings are not inserted in 2035 * the hash table. 2036 */ 2037 s->lookahead -= s->prev_length-1; 2038 s->prev_length -= 2; 2039 do { 2040 if (++s->strstart <= max_insert) { 2041 INSERT_STRING(s, s->strstart, hash_head); 2042 } 2043 } while (--s->prev_length != 0); 2044 s->match_available = 0; 2045 s->match_length = MIN_MATCH-1; 2046 s->strstart++; 2047 2048 if (bflush) FLUSH_BLOCK(s, 0); 2049 2050 } else if (s->match_available) { 2051 /* If there was no match at the previous position, output a 2052 * single literal. If there was a match but the current match 2053 * is longer, truncate the previous match to a single literal. 2054 */ 2055 Tracevv((stderr,"%c", s->window[s->strstart-1])); 2056 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 2057 if (bflush) { 2058 FLUSH_BLOCK_ONLY(s, 0); 2059 } 2060 s->strstart++; 2061 s->lookahead--; 2062 if (s->strm->avail_out == 0) return need_more; 2063 } else { 2064 /* There is no previous match to compare with, wait for 2065 * the next step to decide. 2066 */ 2067 s->match_available = 1; 2068 s->strstart++; 2069 s->lookahead--; 2070 } 2071 } 2072 Assert (flush != Z_NO_FLUSH, "no flush?"); 2073 if (s->match_available) { 2074 Tracevv((stderr,"%c", s->window[s->strstart-1])); 2075 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 2076 s->match_available = 0; 2077 } 2078 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 2079 if (flush == Z_FINISH) { 2080 FLUSH_BLOCK(s, 1); 2081 return finish_done; 2082 } 2083 if (s->sym_next) 2084 FLUSH_BLOCK(s, 0); 2085 return block_done; 2086 } 2087 #endif /* FASTEST */ 2088 2089 /* =========================================================================== 2090 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 2091 * one. Do not maintain a hash table. (It will be regenerated if this run of 2092 * deflate switches away from Z_RLE.) 2093 */ 2094 local block_state deflate_rle(s, flush) 2095 deflate_state *s; 2096 int flush; 2097 { 2098 int bflush; /* set if current block must be flushed */ 2099 uInt prev; /* byte at distance one to match */ 2100 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 2101 2102 for (;;) { 2103 /* Make sure that we always have enough lookahead, except 2104 * at the end of the input file. We need MAX_MATCH bytes 2105 * for the longest run, plus one for the unrolled loop. 2106 */ 2107 if (s->lookahead <= MAX_MATCH) { 2108 fill_window(s); 2109 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { 2110 return need_more; 2111 } 2112 if (s->lookahead == 0) break; /* flush the current block */ 2113 } 2114 2115 /* See how many times the previous byte repeats */ 2116 s->match_length = 0; 2117 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 2118 scan = s->window + s->strstart - 1; 2119 prev = *scan; 2120 if (prev == *++scan && prev == *++scan && prev == *++scan) { 2121 strend = s->window + s->strstart + MAX_MATCH; 2122 do { 2123 } while (prev == *++scan && prev == *++scan && 2124 prev == *++scan && prev == *++scan && 2125 prev == *++scan && prev == *++scan && 2126 prev == *++scan && prev == *++scan && 2127 scan < strend); 2128 s->match_length = MAX_MATCH - (uInt)(strend - scan); 2129 if (s->match_length > s->lookahead) 2130 s->match_length = s->lookahead; 2131 } 2132 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); 2133 } 2134 2135 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 2136 if (s->match_length >= MIN_MATCH) { 2137 check_match(s, s->strstart, s->strstart - 1, s->match_length); 2138 2139 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 2140 2141 s->lookahead -= s->match_length; 2142 s->strstart += s->match_length; 2143 s->match_length = 0; 2144 } else { 2145 /* No match, output a literal byte */ 2146 Tracevv((stderr,"%c", s->window[s->strstart])); 2147 _tr_tally_lit (s, s->window[s->strstart], bflush); 2148 s->lookahead--; 2149 s->strstart++; 2150 } 2151 if (bflush) FLUSH_BLOCK(s, 0); 2152 } 2153 s->insert = 0; 2154 if (flush == Z_FINISH) { 2155 FLUSH_BLOCK(s, 1); 2156 return finish_done; 2157 } 2158 if (s->sym_next) 2159 FLUSH_BLOCK(s, 0); 2160 return block_done; 2161 } 2162 2163 /* =========================================================================== 2164 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 2165 * (It will be regenerated if this run of deflate switches away from Huffman.) 2166 */ 2167 local block_state deflate_huff(s, flush) 2168 deflate_state *s; 2169 int flush; 2170 { 2171 int bflush; /* set if current block must be flushed */ 2172 2173 for (;;) { 2174 /* Make sure that we have a literal to write. */ 2175 if (s->lookahead == 0) { 2176 fill_window(s); 2177 if (s->lookahead == 0) { 2178 if (flush == Z_NO_FLUSH) 2179 return need_more; 2180 break; /* flush the current block */ 2181 } 2182 } 2183 2184 /* Output a literal byte */ 2185 s->match_length = 0; 2186 Tracevv((stderr,"%c", s->window[s->strstart])); 2187 _tr_tally_lit (s, s->window[s->strstart], bflush); 2188 s->lookahead--; 2189 s->strstart++; 2190 if (bflush) FLUSH_BLOCK(s, 0); 2191 } 2192 s->insert = 0; 2193 if (flush == Z_FINISH) { 2194 FLUSH_BLOCK(s, 1); 2195 return finish_done; 2196 } 2197 if (s->sym_next) 2198 FLUSH_BLOCK(s, 0); 2199 return block_done; 2200 } 2201