xref: /openbsd-src/sys/lib/libz/deflate.c (revision 8550894424f8a4aa4aafb6cd57229dd6ed7cd9dd)
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49 
50 #include "deflate.h"
51 
52 /*
53   If you use the zlib library in a product, an acknowledgment is welcome
54   in the documentation of your product. If for some reason you cannot
55   include such an acknowledgment, I would appreciate that you keep this
56   copyright string in the executable of your product.
57  */
58 
59 /* ===========================================================================
60  *  Function prototypes.
61  */
62 typedef enum {
63     need_more,      /* block not completed, need more input or more output */
64     block_done,     /* block flush performed */
65     finish_started, /* finish started, need only more output at next deflate */
66     finish_done     /* finish done, accept no more input or output */
67 } block_state;
68 
69 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
70 /* Compression function. Returns the block state after the call. */
71 
72 local int deflateStateCheck      OF((z_streamp strm));
73 local void slide_hash     OF((deflate_state *s));
74 local void fill_window    OF((deflate_state *s));
75 local block_state deflate_stored OF((deflate_state *s, int flush));
76 local block_state deflate_fast   OF((deflate_state *s, int flush));
77 #ifndef FASTEST
78 local block_state deflate_slow   OF((deflate_state *s, int flush));
79 #endif
80 local block_state deflate_rle    OF((deflate_state *s, int flush));
81 local block_state deflate_huff   OF((deflate_state *s, int flush));
82 local void lm_init        OF((deflate_state *s));
83 local void putShortMSB    OF((deflate_state *s, uInt b));
84 local void flush_pending  OF((z_streamp strm));
85 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
86 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
87 
88 #ifdef ZLIB_DEBUG
89 local  void check_match OF((deflate_state *s, IPos start, IPos match,
90                             int length));
91 #endif
92 
93 /* ===========================================================================
94  * Local data
95  */
96 
97 #define NIL 0
98 /* Tail of hash chains */
99 
100 #ifndef TOO_FAR
101 #  define TOO_FAR 4096
102 #endif
103 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
104 
105 /* Values for max_lazy_match, good_match and max_chain_length, depending on
106  * the desired pack level (0..9). The values given below have been tuned to
107  * exclude worst case performance for pathological files. Better values may be
108  * found for specific files.
109  */
110 typedef struct config_s {
111    ush good_length; /* reduce lazy search above this match length */
112    ush max_lazy;    /* do not perform lazy search above this match length */
113    ush nice_length; /* quit search above this match length */
114    ush max_chain;
115    compress_func func;
116 } config;
117 
118 #ifdef FASTEST
119 local const config configuration_table[2] = {
120 /*      good lazy nice chain */
121 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
122 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
123 #else
124 local const config configuration_table[10] = {
125 /*      good lazy nice chain */
126 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
127 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
128 /* 2 */ {4,    5, 16,    8, deflate_fast},
129 /* 3 */ {4,    6, 32,   32, deflate_fast},
130 
131 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
132 /* 5 */ {8,   16, 32,   32, deflate_slow},
133 /* 6 */ {8,   16, 128, 128, deflate_slow},
134 /* 7 */ {8,   32, 128, 256, deflate_slow},
135 /* 8 */ {32, 128, 258, 1024, deflate_slow},
136 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
137 #endif
138 
139 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
140  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
141  * meaning.
142  */
143 
144 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
145 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
146 
147 /* ===========================================================================
148  * Update a hash value with the given input byte
149  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
150  *    characters, so that a running hash key can be computed from the previous
151  *    key instead of complete recalculation each time.
152  */
153 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
154 
155 
156 /* ===========================================================================
157  * Insert string str in the dictionary and set match_head to the previous head
158  * of the hash chain (the most recent string with same hash key). Return
159  * the previous length of the hash chain.
160  * If this file is compiled with -DFASTEST, the compression level is forced
161  * to 1, and no hash chains are maintained.
162  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
163  *    characters and the first MIN_MATCH bytes of str are valid (except for
164  *    the last MIN_MATCH-1 bytes of the input file).
165  */
166 #ifdef FASTEST
167 #define INSERT_STRING(s, str, match_head) \
168    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
169     match_head = s->head[s->ins_h], \
170     s->head[s->ins_h] = (Pos)(str))
171 #else
172 #define INSERT_STRING(s, str, match_head) \
173    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
174     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
175     s->head[s->ins_h] = (Pos)(str))
176 #endif
177 
178 /* ===========================================================================
179  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
180  * prev[] will be initialized on the fly.
181  */
182 #define CLEAR_HASH(s) \
183     do { \
184         s->head[s->hash_size - 1] = NIL; \
185         zmemzero((Bytef *)s->head, \
186                  (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
187     } while (0)
188 
189 /* ===========================================================================
190  * Slide the hash table when sliding the window down (could be avoided with 32
191  * bit values at the expense of memory usage). We slide even when level == 0 to
192  * keep the hash table consistent if we switch back to level > 0 later.
193  */
194 local void slide_hash(s)
195     deflate_state *s;
196 {
197     unsigned n, m;
198     Posf *p;
199     uInt wsize = s->w_size;
200 
201     n = s->hash_size;
202     p = &s->head[n];
203     do {
204         m = *--p;
205         *p = (Pos)(m >= wsize ? m - wsize : NIL);
206     } while (--n);
207     n = wsize;
208 #ifndef FASTEST
209     p = &s->prev[n];
210     do {
211         m = *--p;
212         *p = (Pos)(m >= wsize ? m - wsize : NIL);
213         /* If n is not on any hash chain, prev[n] is garbage but
214          * its value will never be used.
215          */
216     } while (--n);
217 #endif
218 }
219 
220 /* ========================================================================= */
221 int ZEXPORT deflateInit_(strm, level, version, stream_size)
222     z_streamp strm;
223     int level;
224     const char *version;
225     int stream_size;
226 {
227     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
228                          Z_DEFAULT_STRATEGY, version, stream_size);
229     /* To do: ignore strm->next_in if we use it as window */
230 }
231 
232 /* ========================================================================= */
233 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
234                   version, stream_size)
235     z_streamp strm;
236     int  level;
237     int  method;
238     int  windowBits;
239     int  memLevel;
240     int  strategy;
241     const char *version;
242     int stream_size;
243 {
244     deflate_state *s;
245     int wrap = 1;
246     static const char my_version[] = ZLIB_VERSION;
247 
248     if (version == Z_NULL || version[0] != my_version[0] ||
249         stream_size != sizeof(z_stream)) {
250         return Z_VERSION_ERROR;
251     }
252     if (strm == Z_NULL) return Z_STREAM_ERROR;
253 
254     strm->msg = Z_NULL;
255     if (strm->zalloc == (alloc_func)0) {
256 #ifdef Z_SOLO
257         return Z_STREAM_ERROR;
258 #else
259         strm->zalloc = zcalloc;
260         strm->opaque = (voidpf)0;
261 #endif
262     }
263     if (strm->zfree == (free_func)0)
264 #ifdef Z_SOLO
265         return Z_STREAM_ERROR;
266 #else
267         strm->zfree = zcfree;
268 #endif
269 
270 #ifdef FASTEST
271     if (level != 0) level = 1;
272 #else
273     if (level == Z_DEFAULT_COMPRESSION) level = 6;
274 #endif
275 
276     if (windowBits < 0) { /* suppress zlib wrapper */
277         wrap = 0;
278         if (windowBits < -15)
279             return Z_STREAM_ERROR;
280         windowBits = -windowBits;
281     }
282 #ifdef GZIP
283     else if (windowBits > 15) {
284         wrap = 2;       /* write gzip wrapper instead */
285         windowBits -= 16;
286     }
287 #endif
288     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
289         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
290         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
291         return Z_STREAM_ERROR;
292     }
293     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
294     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
295     if (s == Z_NULL) return Z_MEM_ERROR;
296     strm->state = (struct internal_state FAR *)s;
297     s->strm = strm;
298     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
299 
300     s->wrap = wrap;
301     s->gzhead = Z_NULL;
302     s->w_bits = (uInt)windowBits;
303     s->w_size = 1 << s->w_bits;
304     s->w_mask = s->w_size - 1;
305 
306     s->hash_bits = (uInt)memLevel + 7;
307     s->hash_size = 1 << s->hash_bits;
308     s->hash_mask = s->hash_size - 1;
309     s->hash_shift =  ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
310 
311     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
312     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
313     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
314 
315     s->high_water = 0;      /* nothing written to s->window yet */
316 
317     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
318 
319     /* We overlay pending_buf and sym_buf. This works since the average size
320      * for length/distance pairs over any compressed block is assured to be 31
321      * bits or less.
322      *
323      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
324      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
325      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
326      * possible fixed-codes length/distance pair is then 31 bits total.
327      *
328      * sym_buf starts one-fourth of the way into pending_buf. So there are
329      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
330      * in sym_buf is three bytes -- two for the distance and one for the
331      * literal/length. As each symbol is consumed, the pointer to the next
332      * sym_buf value to read moves forward three bytes. From that symbol, up to
333      * 31 bits are written to pending_buf. The closest the written pending_buf
334      * bits gets to the next sym_buf symbol to read is just before the last
335      * code is written. At that time, 31*(n - 2) bits have been written, just
336      * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
337      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
338      * symbols are written.) The closest the writing gets to what is unread is
339      * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
340      * can range from 128 to 32768.
341      *
342      * Therefore, at a minimum, there are 142 bits of space between what is
343      * written and what is read in the overlain buffers, so the symbols cannot
344      * be overwritten by the compressed data. That space is actually 139 bits,
345      * due to the three-bit fixed-code block header.
346      *
347      * That covers the case where either Z_FIXED is specified, forcing fixed
348      * codes, or when the use of fixed codes is chosen, because that choice
349      * results in a smaller compressed block than dynamic codes. That latter
350      * condition then assures that the above analysis also covers all dynamic
351      * blocks. A dynamic-code block will only be chosen to be emitted if it has
352      * fewer bits than a fixed-code block would for the same set of symbols.
353      * Therefore its average symbol length is assured to be less than 31. So
354      * the compressed data for a dynamic block also cannot overwrite the
355      * symbols from which it is being constructed.
356      */
357 
358     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
359     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
360 
361     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
362         s->pending_buf == Z_NULL) {
363         s->status = FINISH_STATE;
364         strm->msg = ERR_MSG(Z_MEM_ERROR);
365         deflateEnd (strm);
366         return Z_MEM_ERROR;
367     }
368     s->sym_buf = s->pending_buf + s->lit_bufsize;
369     s->sym_end = (s->lit_bufsize - 1) * 3;
370     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
371      * on 16 bit machines and because stored blocks are restricted to
372      * 64K-1 bytes.
373      */
374 
375     s->level = level;
376     s->strategy = strategy;
377     s->method = (Byte)method;
378 
379     return deflateReset(strm);
380 }
381 
382 /* =========================================================================
383  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
384  */
385 local int deflateStateCheck(strm)
386     z_streamp strm;
387 {
388     deflate_state *s;
389     if (strm == Z_NULL ||
390         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
391         return 1;
392     s = strm->state;
393     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
394 #ifdef GZIP
395                                            s->status != GZIP_STATE &&
396 #endif
397                                            s->status != EXTRA_STATE &&
398                                            s->status != NAME_STATE &&
399                                            s->status != COMMENT_STATE &&
400                                            s->status != HCRC_STATE &&
401                                            s->status != BUSY_STATE &&
402                                            s->status != FINISH_STATE))
403         return 1;
404     return 0;
405 }
406 
407 /* ========================================================================= */
408 int ZEXPORT deflateSetDictionary(strm, dictionary, dictLength)
409     z_streamp strm;
410     const Bytef *dictionary;
411     uInt  dictLength;
412 {
413     deflate_state *s;
414     uInt str, n;
415     int wrap;
416     unsigned avail;
417     z_const unsigned char *next;
418 
419     if (deflateStateCheck(strm) || dictionary == Z_NULL)
420         return Z_STREAM_ERROR;
421     s = strm->state;
422     wrap = s->wrap;
423     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
424         return Z_STREAM_ERROR;
425 
426     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
427     if (wrap == 1)
428         strm->adler = adler32(strm->adler, dictionary, dictLength);
429     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
430 
431     /* if dictionary would fill window, just replace the history */
432     if (dictLength >= s->w_size) {
433         if (wrap == 0) {            /* already empty otherwise */
434             CLEAR_HASH(s);
435             s->strstart = 0;
436             s->block_start = 0L;
437             s->insert = 0;
438         }
439         dictionary += dictLength - s->w_size;  /* use the tail */
440         dictLength = s->w_size;
441     }
442 
443     /* insert dictionary into window and hash */
444     avail = strm->avail_in;
445     next = strm->next_in;
446     strm->avail_in = dictLength;
447     strm->next_in = (z_const Bytef *)dictionary;
448     fill_window(s);
449     while (s->lookahead >= MIN_MATCH) {
450         str = s->strstart;
451         n = s->lookahead - (MIN_MATCH-1);
452         do {
453             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
454 #ifndef FASTEST
455             s->prev[str & s->w_mask] = s->head[s->ins_h];
456 #endif
457             s->head[s->ins_h] = (Pos)str;
458             str++;
459         } while (--n);
460         s->strstart = str;
461         s->lookahead = MIN_MATCH-1;
462         fill_window(s);
463     }
464     s->strstart += s->lookahead;
465     s->block_start = (long)s->strstart;
466     s->insert = s->lookahead;
467     s->lookahead = 0;
468     s->match_length = s->prev_length = MIN_MATCH-1;
469     s->match_available = 0;
470     strm->next_in = next;
471     strm->avail_in = avail;
472     s->wrap = wrap;
473     return Z_OK;
474 }
475 
476 /* ========================================================================= */
477 int ZEXPORT deflateGetDictionary(strm, dictionary, dictLength)
478     z_streamp strm;
479     Bytef *dictionary;
480     uInt  *dictLength;
481 {
482     deflate_state *s;
483     uInt len;
484 
485     if (deflateStateCheck(strm))
486         return Z_STREAM_ERROR;
487     s = strm->state;
488     len = s->strstart + s->lookahead;
489     if (len > s->w_size)
490         len = s->w_size;
491     if (dictionary != Z_NULL && len)
492         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
493     if (dictLength != Z_NULL)
494         *dictLength = len;
495     return Z_OK;
496 }
497 
498 /* ========================================================================= */
499 int ZEXPORT deflateResetKeep(strm)
500     z_streamp strm;
501 {
502     deflate_state *s;
503 
504     if (deflateStateCheck(strm)) {
505         return Z_STREAM_ERROR;
506     }
507 
508     strm->total_in = strm->total_out = 0;
509     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
510     strm->data_type = Z_UNKNOWN;
511 
512     s = (deflate_state *)strm->state;
513     s->pending = 0;
514     s->pending_out = s->pending_buf;
515 
516     if (s->wrap < 0) {
517         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
518     }
519     s->status =
520 #ifdef GZIP
521         s->wrap == 2 ? GZIP_STATE :
522 #endif
523         INIT_STATE;
524     strm->adler =
525 #ifdef GZIP
526         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
527 #endif
528         adler32(0L, Z_NULL, 0);
529     s->last_flush = -2;
530 
531     _tr_init(s);
532 
533     return Z_OK;
534 }
535 
536 /* ========================================================================= */
537 int ZEXPORT deflateReset(strm)
538     z_streamp strm;
539 {
540     int ret;
541 
542     ret = deflateResetKeep(strm);
543     if (ret == Z_OK)
544         lm_init(strm->state);
545     return ret;
546 }
547 
548 /* ========================================================================= */
549 int ZEXPORT deflateSetHeader(strm, head)
550     z_streamp strm;
551     gz_headerp head;
552 {
553     if (deflateStateCheck(strm) || strm->state->wrap != 2)
554         return Z_STREAM_ERROR;
555     strm->state->gzhead = head;
556     return Z_OK;
557 }
558 
559 /* ========================================================================= */
560 int ZEXPORT deflatePending(strm, pending, bits)
561     unsigned *pending;
562     int *bits;
563     z_streamp strm;
564 {
565     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
566     if (pending != Z_NULL)
567         *pending = strm->state->pending;
568     if (bits != Z_NULL)
569         *bits = strm->state->bi_valid;
570     return Z_OK;
571 }
572 
573 /* ========================================================================= */
574 int ZEXPORT deflatePrime(strm, bits, value)
575     z_streamp strm;
576     int bits;
577     int value;
578 {
579     deflate_state *s;
580     int put;
581 
582     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
583     s = strm->state;
584     if (bits < 0 || bits > 16 ||
585         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
586         return Z_BUF_ERROR;
587     do {
588         put = Buf_size - s->bi_valid;
589         if (put > bits)
590             put = bits;
591         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
592         s->bi_valid += put;
593         _tr_flush_bits(s);
594         value >>= put;
595         bits -= put;
596     } while (bits);
597     return Z_OK;
598 }
599 
600 /* ========================================================================= */
601 int ZEXPORT deflateParams(strm, level, strategy)
602     z_streamp strm;
603     int level;
604     int strategy;
605 {
606     deflate_state *s;
607     compress_func func;
608 
609     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
610     s = strm->state;
611 
612 #ifdef FASTEST
613     if (level != 0) level = 1;
614 #else
615     if (level == Z_DEFAULT_COMPRESSION) level = 6;
616 #endif
617     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
618         return Z_STREAM_ERROR;
619     }
620     func = configuration_table[s->level].func;
621 
622     if ((strategy != s->strategy || func != configuration_table[level].func) &&
623         s->last_flush != -2) {
624         /* Flush the last buffer: */
625         int err = deflate(strm, Z_BLOCK);
626         if (err == Z_STREAM_ERROR)
627             return err;
628         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
629             return Z_BUF_ERROR;
630     }
631     if (s->level != level) {
632         if (s->level == 0 && s->matches != 0) {
633             if (s->matches == 1)
634                 slide_hash(s);
635             else
636                 CLEAR_HASH(s);
637             s->matches = 0;
638         }
639         s->level = level;
640         s->max_lazy_match   = configuration_table[level].max_lazy;
641         s->good_match       = configuration_table[level].good_length;
642         s->nice_match       = configuration_table[level].nice_length;
643         s->max_chain_length = configuration_table[level].max_chain;
644     }
645     s->strategy = strategy;
646     return Z_OK;
647 }
648 
649 /* ========================================================================= */
650 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
651     z_streamp strm;
652     int good_length;
653     int max_lazy;
654     int nice_length;
655     int max_chain;
656 {
657     deflate_state *s;
658 
659     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
660     s = strm->state;
661     s->good_match = (uInt)good_length;
662     s->max_lazy_match = (uInt)max_lazy;
663     s->nice_match = nice_length;
664     s->max_chain_length = (uInt)max_chain;
665     return Z_OK;
666 }
667 
668 /* =========================================================================
669  * For the default windowBits of 15 and memLevel of 8, this function returns a
670  * close to exact, as well as small, upper bound on the compressed size. This
671  * is an expansion of ~0.03%, plus a small constant.
672  *
673  * For any setting other than those defaults for windowBits and memLevel, one
674  * of two worst case bounds is returned. This is at most an expansion of ~4% or
675  * ~13%, plus a small constant.
676  *
677  * Both the 0.03% and 4% derive from the overhead of stored blocks. The first
678  * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
679  * is for stored blocks of 127 bytes (the worst case memLevel == 1). The
680  * expansion results from five bytes of header for each stored block.
681  *
682  * The larger expansion of 13% results from a window size less than or equal to
683  * the symbols buffer size (windowBits <= memLevel + 7). In that case some of
684  * the data being compressed may have slid out of the sliding window, impeding
685  * a stored block from being emitted. Then the only choice is a fixed or
686  * dynamic block, where a fixed block limits the maximum expansion to 9 bits
687  * per 8-bit byte, plus 10 bits for every block. The smallest block size for
688  * which this can occur is 255 (memLevel == 2).
689  *
690  * Shifts are used to approximate divisions, for speed.
691  */
692 uLong ZEXPORT deflateBound(strm, sourceLen)
693     z_streamp strm;
694     uLong sourceLen;
695 {
696     deflate_state *s;
697     uLong fixedlen, storelen, wraplen;
698 
699     /* upper bound for fixed blocks with 9-bit literals and length 255
700        (memLevel == 2, which is the lowest that may not use stored blocks) --
701        ~13% overhead plus a small constant */
702     fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
703                (sourceLen >> 9) + 4;
704 
705     /* upper bound for stored blocks with length 127 (memLevel == 1) --
706        ~4% overhead plus a small constant */
707     storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
708                (sourceLen >> 11) + 7;
709 
710     /* if can't get parameters, return larger bound plus a zlib wrapper */
711     if (deflateStateCheck(strm))
712         return (fixedlen > storelen ? fixedlen : storelen) + 6;
713 
714     /* compute wrapper length */
715     s = strm->state;
716     switch (s->wrap) {
717     case 0:                                 /* raw deflate */
718         wraplen = 0;
719         break;
720     case 1:                                 /* zlib wrapper */
721         wraplen = 6 + (s->strstart ? 4 : 0);
722         break;
723 #ifdef GZIP
724     case 2:                                 /* gzip wrapper */
725         wraplen = 18;
726         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
727             Bytef *str;
728             if (s->gzhead->extra != Z_NULL)
729                 wraplen += 2 + s->gzhead->extra_len;
730             str = s->gzhead->name;
731             if (str != Z_NULL)
732                 do {
733                     wraplen++;
734                 } while (*str++);
735             str = s->gzhead->comment;
736             if (str != Z_NULL)
737                 do {
738                     wraplen++;
739                 } while (*str++);
740             if (s->gzhead->hcrc)
741                 wraplen += 2;
742         }
743         break;
744 #endif
745     default:                                /* for compiler happiness */
746         wraplen = 6;
747     }
748 
749     /* if not default parameters, return one of the conservative bounds */
750     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
751         return (s->w_bits <= s->hash_bits ? fixedlen : storelen) + wraplen;
752 
753     /* default settings: return tight bound for that case -- ~0.03% overhead
754        plus a small constant */
755     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
756            (sourceLen >> 25) + 13 - 6 + wraplen;
757 }
758 
759 /* =========================================================================
760  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
761  * IN assertion: the stream state is correct and there is enough room in
762  * pending_buf.
763  */
764 local void putShortMSB(s, b)
765     deflate_state *s;
766     uInt b;
767 {
768     put_byte(s, (Byte)(b >> 8));
769     put_byte(s, (Byte)(b & 0xff));
770 }
771 
772 /* =========================================================================
773  * Flush as much pending output as possible. All deflate() output, except for
774  * some deflate_stored() output, goes through this function so some
775  * applications may wish to modify it to avoid allocating a large
776  * strm->next_out buffer and copying into it. (See also read_buf()).
777  */
778 local void flush_pending(strm)
779     z_streamp strm;
780 {
781     unsigned len;
782     deflate_state *s = strm->state;
783 
784     _tr_flush_bits(s);
785     len = s->pending;
786     if (len > strm->avail_out) len = strm->avail_out;
787     if (len == 0) return;
788 
789     zmemcpy(strm->next_out, s->pending_out, len);
790     strm->next_out  += len;
791     s->pending_out  += len;
792     strm->total_out += len;
793     strm->avail_out -= len;
794     s->pending      -= len;
795     if (s->pending == 0) {
796         s->pending_out = s->pending_buf;
797     }
798 }
799 
800 /* ===========================================================================
801  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
802  */
803 #define HCRC_UPDATE(beg) \
804     do { \
805         if (s->gzhead->hcrc && s->pending > (beg)) \
806             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
807                                 s->pending - (beg)); \
808     } while (0)
809 
810 /* ========================================================================= */
811 int ZEXPORT deflate(strm, flush)
812     z_streamp strm;
813     int flush;
814 {
815     int old_flush; /* value of flush param for previous deflate call */
816     deflate_state *s;
817 
818     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
819         return Z_STREAM_ERROR;
820     }
821     s = strm->state;
822 
823     if (strm->next_out == Z_NULL ||
824         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
825         (s->status == FINISH_STATE && flush != Z_FINISH)) {
826         ERR_RETURN(strm, Z_STREAM_ERROR);
827     }
828     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
829 
830     old_flush = s->last_flush;
831     s->last_flush = flush;
832 
833     /* Flush as much pending output as possible */
834     if (s->pending != 0) {
835         flush_pending(strm);
836         if (strm->avail_out == 0) {
837             /* Since avail_out is 0, deflate will be called again with
838              * more output space, but possibly with both pending and
839              * avail_in equal to zero. There won't be anything to do,
840              * but this is not an error situation so make sure we
841              * return OK instead of BUF_ERROR at next call of deflate:
842              */
843             s->last_flush = -1;
844             return Z_OK;
845         }
846 
847     /* Make sure there is something to do and avoid duplicate consecutive
848      * flushes. For repeated and useless calls with Z_FINISH, we keep
849      * returning Z_STREAM_END instead of Z_BUF_ERROR.
850      */
851     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
852                flush != Z_FINISH) {
853         ERR_RETURN(strm, Z_BUF_ERROR);
854     }
855 
856     /* User must not provide more input after the first FINISH: */
857     if (s->status == FINISH_STATE && strm->avail_in != 0) {
858         ERR_RETURN(strm, Z_BUF_ERROR);
859     }
860 
861     /* Write the header */
862     if (s->status == INIT_STATE && s->wrap == 0)
863         s->status = BUSY_STATE;
864     if (s->status == INIT_STATE) {
865         /* zlib header */
866         uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
867         uInt level_flags;
868 
869         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
870             level_flags = 0;
871         else if (s->level < 6)
872             level_flags = 1;
873         else if (s->level == 6)
874             level_flags = 2;
875         else
876             level_flags = 3;
877         header |= (level_flags << 6);
878         if (s->strstart != 0) header |= PRESET_DICT;
879         header += 31 - (header % 31);
880 
881         putShortMSB(s, header);
882 
883         /* Save the adler32 of the preset dictionary: */
884         if (s->strstart != 0) {
885             putShortMSB(s, (uInt)(strm->adler >> 16));
886             putShortMSB(s, (uInt)(strm->adler & 0xffff));
887         }
888         strm->adler = adler32(0L, Z_NULL, 0);
889         s->status = BUSY_STATE;
890 
891         /* Compression must start with an empty pending buffer */
892         flush_pending(strm);
893         if (s->pending != 0) {
894             s->last_flush = -1;
895             return Z_OK;
896         }
897     }
898 #ifdef GZIP
899     if (s->status == GZIP_STATE) {
900         /* gzip header */
901         strm->adler = crc32(0L, Z_NULL, 0);
902         put_byte(s, 31);
903         put_byte(s, 139);
904         put_byte(s, 8);
905         if (s->gzhead == Z_NULL) {
906             put_byte(s, 0);
907             put_byte(s, 0);
908             put_byte(s, 0);
909             put_byte(s, 0);
910             put_byte(s, 0);
911             put_byte(s, s->level == 9 ? 2 :
912                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
913                       4 : 0));
914             put_byte(s, OS_CODE);
915             s->status = BUSY_STATE;
916 
917             /* Compression must start with an empty pending buffer */
918             flush_pending(strm);
919             if (s->pending != 0) {
920                 s->last_flush = -1;
921                 return Z_OK;
922             }
923         }
924         else {
925             put_byte(s, (s->gzhead->text ? 1 : 0) +
926                      (s->gzhead->hcrc ? 2 : 0) +
927                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
928                      (s->gzhead->name == Z_NULL ? 0 : 8) +
929                      (s->gzhead->comment == Z_NULL ? 0 : 16)
930                      );
931             put_byte(s, (Byte)(s->gzhead->time & 0xff));
932             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
933             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
934             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
935             put_byte(s, s->level == 9 ? 2 :
936                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
937                       4 : 0));
938             put_byte(s, s->gzhead->os & 0xff);
939             if (s->gzhead->extra != Z_NULL) {
940                 put_byte(s, s->gzhead->extra_len & 0xff);
941                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
942             }
943             if (s->gzhead->hcrc)
944                 strm->adler = crc32(strm->adler, s->pending_buf,
945                                     s->pending);
946             s->gzindex = 0;
947             s->status = EXTRA_STATE;
948         }
949     }
950     if (s->status == EXTRA_STATE) {
951         if (s->gzhead->extra != Z_NULL) {
952             ulg beg = s->pending;   /* start of bytes to update crc */
953             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
954             while (s->pending + left > s->pending_buf_size) {
955                 uInt copy = s->pending_buf_size - s->pending;
956                 zmemcpy(s->pending_buf + s->pending,
957                         s->gzhead->extra + s->gzindex, copy);
958                 s->pending = s->pending_buf_size;
959                 HCRC_UPDATE(beg);
960                 s->gzindex += copy;
961                 flush_pending(strm);
962                 if (s->pending != 0) {
963                     s->last_flush = -1;
964                     return Z_OK;
965                 }
966                 beg = 0;
967                 left -= copy;
968             }
969             zmemcpy(s->pending_buf + s->pending,
970                     s->gzhead->extra + s->gzindex, left);
971             s->pending += left;
972             HCRC_UPDATE(beg);
973             s->gzindex = 0;
974         }
975         s->status = NAME_STATE;
976     }
977     if (s->status == NAME_STATE) {
978         if (s->gzhead->name != Z_NULL) {
979             ulg beg = s->pending;   /* start of bytes to update crc */
980             int val;
981             do {
982                 if (s->pending == s->pending_buf_size) {
983                     HCRC_UPDATE(beg);
984                     flush_pending(strm);
985                     if (s->pending != 0) {
986                         s->last_flush = -1;
987                         return Z_OK;
988                     }
989                     beg = 0;
990                 }
991                 val = s->gzhead->name[s->gzindex++];
992                 put_byte(s, val);
993             } while (val != 0);
994             HCRC_UPDATE(beg);
995             s->gzindex = 0;
996         }
997         s->status = COMMENT_STATE;
998     }
999     if (s->status == COMMENT_STATE) {
1000         if (s->gzhead->comment != Z_NULL) {
1001             ulg beg = s->pending;   /* start of bytes to update crc */
1002             int val;
1003             do {
1004                 if (s->pending == s->pending_buf_size) {
1005                     HCRC_UPDATE(beg);
1006                     flush_pending(strm);
1007                     if (s->pending != 0) {
1008                         s->last_flush = -1;
1009                         return Z_OK;
1010                     }
1011                     beg = 0;
1012                 }
1013                 val = s->gzhead->comment[s->gzindex++];
1014                 put_byte(s, val);
1015             } while (val != 0);
1016             HCRC_UPDATE(beg);
1017         }
1018         s->status = HCRC_STATE;
1019     }
1020     if (s->status == HCRC_STATE) {
1021         if (s->gzhead->hcrc) {
1022             if (s->pending + 2 > s->pending_buf_size) {
1023                 flush_pending(strm);
1024                 if (s->pending != 0) {
1025                     s->last_flush = -1;
1026                     return Z_OK;
1027                 }
1028             }
1029             put_byte(s, (Byte)(strm->adler & 0xff));
1030             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1031             strm->adler = crc32(0L, Z_NULL, 0);
1032         }
1033         s->status = BUSY_STATE;
1034 
1035         /* Compression must start with an empty pending buffer */
1036         flush_pending(strm);
1037         if (s->pending != 0) {
1038             s->last_flush = -1;
1039             return Z_OK;
1040         }
1041     }
1042 #endif
1043 
1044     /* Start a new block or continue the current one.
1045      */
1046     if (strm->avail_in != 0 || s->lookahead != 0 ||
1047         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1048         block_state bstate;
1049 
1050         bstate = s->level == 0 ? deflate_stored(s, flush) :
1051                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1052                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1053                  (*(configuration_table[s->level].func))(s, flush);
1054 
1055         if (bstate == finish_started || bstate == finish_done) {
1056             s->status = FINISH_STATE;
1057         }
1058         if (bstate == need_more || bstate == finish_started) {
1059             if (strm->avail_out == 0) {
1060                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1061             }
1062             return Z_OK;
1063             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1064              * of deflate should use the same flush parameter to make sure
1065              * that the flush is complete. So we don't have to output an
1066              * empty block here, this will be done at next call. This also
1067              * ensures that for a very small output buffer, we emit at most
1068              * one empty block.
1069              */
1070         }
1071         if (bstate == block_done) {
1072             if (flush == Z_PARTIAL_FLUSH) {
1073                 _tr_align(s);
1074             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1075                 _tr_stored_block(s, (char*)0, 0L, 0);
1076                 /* For a full flush, this empty block will be recognized
1077                  * as a special marker by inflate_sync().
1078                  */
1079                 if (flush == Z_FULL_FLUSH) {
1080                     CLEAR_HASH(s);             /* forget history */
1081                     if (s->lookahead == 0) {
1082                         s->strstart = 0;
1083                         s->block_start = 0L;
1084                         s->insert = 0;
1085                     }
1086                 }
1087             }
1088             flush_pending(strm);
1089             if (strm->avail_out == 0) {
1090               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1091               return Z_OK;
1092             }
1093         }
1094     }
1095 
1096     if (flush != Z_FINISH) return Z_OK;
1097     if (s->wrap <= 0) return Z_STREAM_END;
1098 
1099     /* Write the trailer */
1100 #ifdef GZIP
1101     if (s->wrap == 2) {
1102         put_byte(s, (Byte)(strm->adler & 0xff));
1103         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1104         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1105         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1106         put_byte(s, (Byte)(strm->total_in & 0xff));
1107         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1108         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1109         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1110     }
1111     else
1112 #endif
1113     {
1114         putShortMSB(s, (uInt)(strm->adler >> 16));
1115         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1116     }
1117     flush_pending(strm);
1118     /* If avail_out is zero, the application will call deflate again
1119      * to flush the rest.
1120      */
1121     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1122     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1123 }
1124 
1125 /* ========================================================================= */
1126 int ZEXPORT deflateEnd(strm)
1127     z_streamp strm;
1128 {
1129     int status;
1130 
1131     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1132 
1133     status = strm->state->status;
1134 
1135     /* Deallocate in reverse order of allocations: */
1136     TRY_FREE(strm, strm->state->pending_buf, strm->state->pending_buf_size);
1137     TRY_FREE(strm, strm->state->head, strm->state->hash_size * sizeof(Pos));
1138     TRY_FREE(strm, strm->state->prev, strm->state->w_size * sizeof(Pos));
1139     TRY_FREE(strm, strm->state->window, strm->state->w_size * 2 * sizeof(Byte));
1140 
1141     ZFREE(strm, strm->state, sizeof(deflate_state));
1142     strm->state = Z_NULL;
1143 
1144     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1145 }
1146 
1147 /* =========================================================================
1148  * Copy the source state to the destination state.
1149  * To simplify the source, this is not supported for 16-bit MSDOS (which
1150  * doesn't have enough memory anyway to duplicate compression states).
1151  */
1152 int ZEXPORT deflateCopy(dest, source)
1153     z_streamp dest;
1154     z_streamp source;
1155 {
1156 #ifdef MAXSEG_64K
1157     return Z_STREAM_ERROR;
1158 #else
1159     deflate_state *ds;
1160     deflate_state *ss;
1161 
1162 
1163     if (deflateStateCheck(source) || dest == Z_NULL) {
1164         return Z_STREAM_ERROR;
1165     }
1166 
1167     ss = source->state;
1168 
1169     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1170 
1171     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1172     if (ds == Z_NULL) return Z_MEM_ERROR;
1173     dest->state = (struct internal_state FAR *) ds;
1174     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1175     ds->strm = dest;
1176 
1177     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1178     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1179     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1180     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1181 
1182     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1183         ds->pending_buf == Z_NULL) {
1184         deflateEnd (dest);
1185         return Z_MEM_ERROR;
1186     }
1187     /* following zmemcpy do not work for 16-bit MSDOS */
1188     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1189     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1190     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1191     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1192 
1193     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1194     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1195 
1196     ds->l_desc.dyn_tree = ds->dyn_ltree;
1197     ds->d_desc.dyn_tree = ds->dyn_dtree;
1198     ds->bl_desc.dyn_tree = ds->bl_tree;
1199 
1200     return Z_OK;
1201 #endif /* MAXSEG_64K */
1202 }
1203 
1204 /* ===========================================================================
1205  * Read a new buffer from the current input stream, update the adler32
1206  * and total number of bytes read.  All deflate() input goes through
1207  * this function so some applications may wish to modify it to avoid
1208  * allocating a large strm->next_in buffer and copying from it.
1209  * (See also flush_pending()).
1210  */
1211 local unsigned read_buf(strm, buf, size)
1212     z_streamp strm;
1213     Bytef *buf;
1214     unsigned size;
1215 {
1216     unsigned len = strm->avail_in;
1217 
1218     if (len > size) len = size;
1219     if (len == 0) return 0;
1220 
1221     strm->avail_in  -= len;
1222 
1223     zmemcpy(buf, strm->next_in, len);
1224     if (strm->state->wrap == 1) {
1225         strm->adler = adler32(strm->adler, buf, len);
1226     }
1227 #ifdef GZIP
1228     else if (strm->state->wrap == 2) {
1229         strm->adler = crc32(strm->adler, buf, len);
1230     }
1231 #endif
1232     strm->next_in  += len;
1233     strm->total_in += len;
1234 
1235     return len;
1236 }
1237 
1238 /* ===========================================================================
1239  * Initialize the "longest match" routines for a new zlib stream
1240  */
1241 local void lm_init(s)
1242     deflate_state *s;
1243 {
1244     s->window_size = (ulg)2L*s->w_size;
1245 
1246     CLEAR_HASH(s);
1247 
1248     /* Set the default configuration parameters:
1249      */
1250     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1251     s->good_match       = configuration_table[s->level].good_length;
1252     s->nice_match       = configuration_table[s->level].nice_length;
1253     s->max_chain_length = configuration_table[s->level].max_chain;
1254 
1255     s->strstart = 0;
1256     s->block_start = 0L;
1257     s->lookahead = 0;
1258     s->insert = 0;
1259     s->match_length = s->prev_length = MIN_MATCH-1;
1260     s->match_available = 0;
1261     s->ins_h = 0;
1262 }
1263 
1264 #ifndef FASTEST
1265 /* ===========================================================================
1266  * Set match_start to the longest match starting at the given string and
1267  * return its length. Matches shorter or equal to prev_length are discarded,
1268  * in which case the result is equal to prev_length and match_start is
1269  * garbage.
1270  * IN assertions: cur_match is the head of the hash chain for the current
1271  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1272  * OUT assertion: the match length is not greater than s->lookahead.
1273  */
1274 local uInt longest_match(s, cur_match)
1275     deflate_state *s;
1276     IPos cur_match;                             /* current match */
1277 {
1278     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1279     register Bytef *scan = s->window + s->strstart; /* current string */
1280     register Bytef *match;                      /* matched string */
1281     register int len;                           /* length of current match */
1282     int best_len = (int)s->prev_length;         /* best match length so far */
1283     int nice_match = s->nice_match;             /* stop if match long enough */
1284     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1285         s->strstart - (IPos)MAX_DIST(s) : NIL;
1286     /* Stop when cur_match becomes <= limit. To simplify the code,
1287      * we prevent matches with the string of window index 0.
1288      */
1289     Posf *prev = s->prev;
1290     uInt wmask = s->w_mask;
1291 
1292 #ifdef UNALIGNED_OK
1293     /* Compare two bytes at a time. Note: this is not always beneficial.
1294      * Try with and without -DUNALIGNED_OK to check.
1295      */
1296     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1297     register ush scan_start = *(ushf*)scan;
1298     register ush scan_end   = *(ushf*)(scan + best_len - 1);
1299 #else
1300     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1301     register Byte scan_end1  = scan[best_len - 1];
1302     register Byte scan_end   = scan[best_len];
1303 #endif
1304 
1305     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1306      * It is easy to get rid of this optimization if necessary.
1307      */
1308     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1309 
1310     /* Do not waste too much time if we already have a good match: */
1311     if (s->prev_length >= s->good_match) {
1312         chain_length >>= 2;
1313     }
1314     /* Do not look for matches beyond the end of the input. This is necessary
1315      * to make deflate deterministic.
1316      */
1317     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1318 
1319     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1320            "need lookahead");
1321 
1322     do {
1323         Assert(cur_match < s->strstart, "no future");
1324         match = s->window + cur_match;
1325 
1326         /* Skip to next match if the match length cannot increase
1327          * or if the match length is less than 2.  Note that the checks below
1328          * for insufficient lookahead only occur occasionally for performance
1329          * reasons.  Therefore uninitialized memory will be accessed, and
1330          * conditional jumps will be made that depend on those values.
1331          * However the length of the match is limited to the lookahead, so
1332          * the output of deflate is not affected by the uninitialized values.
1333          */
1334 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1335         /* This code assumes sizeof(unsigned short) == 2. Do not use
1336          * UNALIGNED_OK if your compiler uses a different size.
1337          */
1338         if (*(ushf*)(match + best_len - 1) != scan_end ||
1339             *(ushf*)match != scan_start) continue;
1340 
1341         /* It is not necessary to compare scan[2] and match[2] since they are
1342          * always equal when the other bytes match, given that the hash keys
1343          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1344          * strstart + 3, + 5, up to strstart + 257. We check for insufficient
1345          * lookahead only every 4th comparison; the 128th check will be made
1346          * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1347          * necessary to put more guard bytes at the end of the window, or
1348          * to check more often for insufficient lookahead.
1349          */
1350         Assert(scan[2] == match[2], "scan[2]?");
1351         scan++, match++;
1352         do {
1353         } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1354                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1355                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1356                  *(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1357                  scan < strend);
1358         /* The funny "do {}" generates better code on most compilers */
1359 
1360         /* Here, scan <= window + strstart + 257 */
1361         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1362                "wild scan");
1363         if (*scan == *match) scan++;
1364 
1365         len = (MAX_MATCH - 1) - (int)(strend - scan);
1366         scan = strend - (MAX_MATCH-1);
1367 
1368 #else /* UNALIGNED_OK */
1369 
1370         if (match[best_len]     != scan_end  ||
1371             match[best_len - 1] != scan_end1 ||
1372             *match              != *scan     ||
1373             *++match            != scan[1])      continue;
1374 
1375         /* The check at best_len - 1 can be removed because it will be made
1376          * again later. (This heuristic is not always a win.)
1377          * It is not necessary to compare scan[2] and match[2] since they
1378          * are always equal when the other bytes match, given that
1379          * the hash keys are equal and that HASH_BITS >= 8.
1380          */
1381         scan += 2, match++;
1382         Assert(*scan == *match, "match[2]?");
1383 
1384         /* We check for insufficient lookahead only every 8th comparison;
1385          * the 256th check will be made at strstart + 258.
1386          */
1387         do {
1388         } while (*++scan == *++match && *++scan == *++match &&
1389                  *++scan == *++match && *++scan == *++match &&
1390                  *++scan == *++match && *++scan == *++match &&
1391                  *++scan == *++match && *++scan == *++match &&
1392                  scan < strend);
1393 
1394         Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1395                "wild scan");
1396 
1397         len = MAX_MATCH - (int)(strend - scan);
1398         scan = strend - MAX_MATCH;
1399 
1400 #endif /* UNALIGNED_OK */
1401 
1402         if (len > best_len) {
1403             s->match_start = cur_match;
1404             best_len = len;
1405             if (len >= nice_match) break;
1406 #ifdef UNALIGNED_OK
1407             scan_end = *(ushf*)(scan + best_len - 1);
1408 #else
1409             scan_end1  = scan[best_len - 1];
1410             scan_end   = scan[best_len];
1411 #endif
1412         }
1413     } while ((cur_match = prev[cur_match & wmask]) > limit
1414              && --chain_length != 0);
1415 
1416     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1417     return s->lookahead;
1418 }
1419 
1420 #else /* FASTEST */
1421 
1422 /* ---------------------------------------------------------------------------
1423  * Optimized version for FASTEST only
1424  */
1425 local uInt longest_match(s, cur_match)
1426     deflate_state *s;
1427     IPos cur_match;                             /* current match */
1428 {
1429     register Bytef *scan = s->window + s->strstart; /* current string */
1430     register Bytef *match;                       /* matched string */
1431     register int len;                           /* length of current match */
1432     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1433 
1434     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1435      * It is easy to get rid of this optimization if necessary.
1436      */
1437     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1438 
1439     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1440            "need lookahead");
1441 
1442     Assert(cur_match < s->strstart, "no future");
1443 
1444     match = s->window + cur_match;
1445 
1446     /* Return failure if the match length is less than 2:
1447      */
1448     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1449 
1450     /* The check at best_len - 1 can be removed because it will be made
1451      * again later. (This heuristic is not always a win.)
1452      * It is not necessary to compare scan[2] and match[2] since they
1453      * are always equal when the other bytes match, given that
1454      * the hash keys are equal and that HASH_BITS >= 8.
1455      */
1456     scan += 2, match += 2;
1457     Assert(*scan == *match, "match[2]?");
1458 
1459     /* We check for insufficient lookahead only every 8th comparison;
1460      * the 256th check will be made at strstart + 258.
1461      */
1462     do {
1463     } while (*++scan == *++match && *++scan == *++match &&
1464              *++scan == *++match && *++scan == *++match &&
1465              *++scan == *++match && *++scan == *++match &&
1466              *++scan == *++match && *++scan == *++match &&
1467              scan < strend);
1468 
1469     Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1470 
1471     len = MAX_MATCH - (int)(strend - scan);
1472 
1473     if (len < MIN_MATCH) return MIN_MATCH - 1;
1474 
1475     s->match_start = cur_match;
1476     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1477 }
1478 
1479 #endif /* FASTEST */
1480 
1481 #ifdef ZLIB_DEBUG
1482 
1483 #define EQUAL 0
1484 /* result of memcmp for equal strings */
1485 
1486 /* ===========================================================================
1487  * Check that the match at match_start is indeed a match.
1488  */
1489 local void check_match(s, start, match, length)
1490     deflate_state *s;
1491     IPos start, match;
1492     int length;
1493 {
1494     /* check that the match is indeed a match */
1495     if (zmemcmp(s->window + match,
1496                 s->window + start, length) != EQUAL) {
1497         fprintf(stderr, " start %u, match %u, length %d\n",
1498                 start, match, length);
1499         do {
1500             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1501         } while (--length != 0);
1502         z_error("invalid match");
1503     }
1504     if (z_verbose > 1) {
1505         fprintf(stderr,"\\[%d,%d]", start - match, length);
1506         do { putc(s->window[start++], stderr); } while (--length != 0);
1507     }
1508 }
1509 #else
1510 #  define check_match(s, start, match, length)
1511 #endif /* ZLIB_DEBUG */
1512 
1513 /* ===========================================================================
1514  * Fill the window when the lookahead becomes insufficient.
1515  * Updates strstart and lookahead.
1516  *
1517  * IN assertion: lookahead < MIN_LOOKAHEAD
1518  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1519  *    At least one byte has been read, or avail_in == 0; reads are
1520  *    performed for at least two bytes (required for the zip translate_eol
1521  *    option -- not supported here).
1522  */
1523 local void fill_window(s)
1524     deflate_state *s;
1525 {
1526     unsigned n;
1527     unsigned more;    /* Amount of free space at the end of the window. */
1528     uInt wsize = s->w_size;
1529 
1530     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1531 
1532     do {
1533         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1534 
1535         /* Deal with !@#$% 64K limit: */
1536         if (sizeof(int) <= 2) {
1537             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1538                 more = wsize;
1539 
1540             } else if (more == (unsigned)(-1)) {
1541                 /* Very unlikely, but possible on 16 bit machine if
1542                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1543                  */
1544                 more--;
1545             }
1546         }
1547 
1548         /* If the window is almost full and there is insufficient lookahead,
1549          * move the upper half to the lower one to make room in the upper half.
1550          */
1551         if (s->strstart >= wsize + MAX_DIST(s)) {
1552 
1553             zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
1554             s->match_start -= wsize;
1555             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1556             s->block_start -= (long) wsize;
1557             if (s->insert > s->strstart)
1558                 s->insert = s->strstart;
1559             slide_hash(s);
1560             more += wsize;
1561         }
1562         if (s->strm->avail_in == 0) break;
1563 
1564         /* If there was no sliding:
1565          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1566          *    more == window_size - lookahead - strstart
1567          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1568          * => more >= window_size - 2*WSIZE + 2
1569          * In the BIG_MEM or MMAP case (not yet supported),
1570          *   window_size == input_size + MIN_LOOKAHEAD  &&
1571          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1572          * Otherwise, window_size == 2*WSIZE so more >= 2.
1573          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1574          */
1575         Assert(more >= 2, "more < 2");
1576 
1577         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1578         s->lookahead += n;
1579 
1580         /* Initialize the hash value now that we have some input: */
1581         if (s->lookahead + s->insert >= MIN_MATCH) {
1582             uInt str = s->strstart - s->insert;
1583             s->ins_h = s->window[str];
1584             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1585 #if MIN_MATCH != 3
1586             Call UPDATE_HASH() MIN_MATCH-3 more times
1587 #endif
1588             while (s->insert) {
1589                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1590 #ifndef FASTEST
1591                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1592 #endif
1593                 s->head[s->ins_h] = (Pos)str;
1594                 str++;
1595                 s->insert--;
1596                 if (s->lookahead + s->insert < MIN_MATCH)
1597                     break;
1598             }
1599         }
1600         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1601          * but this is not important since only literal bytes will be emitted.
1602          */
1603 
1604     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1605 
1606     /* If the WIN_INIT bytes after the end of the current data have never been
1607      * written, then zero those bytes in order to avoid memory check reports of
1608      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1609      * the longest match routines.  Update the high water mark for the next
1610      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1611      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1612      */
1613     if (s->high_water < s->window_size) {
1614         ulg curr = s->strstart + (ulg)(s->lookahead);
1615         ulg init;
1616 
1617         if (s->high_water < curr) {
1618             /* Previous high water mark below current data -- zero WIN_INIT
1619              * bytes or up to end of window, whichever is less.
1620              */
1621             init = s->window_size - curr;
1622             if (init > WIN_INIT)
1623                 init = WIN_INIT;
1624             zmemzero(s->window + curr, (unsigned)init);
1625             s->high_water = curr + init;
1626         }
1627         else if (s->high_water < (ulg)curr + WIN_INIT) {
1628             /* High water mark at or above current data, but below current data
1629              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1630              * to end of window, whichever is less.
1631              */
1632             init = (ulg)curr + WIN_INIT - s->high_water;
1633             if (init > s->window_size - s->high_water)
1634                 init = s->window_size - s->high_water;
1635             zmemzero(s->window + s->high_water, (unsigned)init);
1636             s->high_water += init;
1637         }
1638     }
1639 
1640     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1641            "not enough room for search");
1642 }
1643 
1644 /* ===========================================================================
1645  * Flush the current block, with given end-of-file flag.
1646  * IN assertion: strstart is set to the end of the current match.
1647  */
1648 #define FLUSH_BLOCK_ONLY(s, last) { \
1649    _tr_flush_block(s, (s->block_start >= 0L ? \
1650                    (charf *)&s->window[(unsigned)s->block_start] : \
1651                    (charf *)Z_NULL), \
1652                 (ulg)((long)s->strstart - s->block_start), \
1653                 (last)); \
1654    s->block_start = s->strstart; \
1655    flush_pending(s->strm); \
1656    Tracev((stderr,"[FLUSH]")); \
1657 }
1658 
1659 /* Same but force premature exit if necessary. */
1660 #define FLUSH_BLOCK(s, last) { \
1661    FLUSH_BLOCK_ONLY(s, last); \
1662    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1663 }
1664 
1665 /* Maximum stored block length in deflate format (not including header). */
1666 #define MAX_STORED 65535
1667 
1668 #ifndef MIN
1669 /* Minimum of a and b. */
1670 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1671 #endif
1672 
1673 /* ===========================================================================
1674  * Copy without compression as much as possible from the input stream, return
1675  * the current block state.
1676  *
1677  * In case deflateParams() is used to later switch to a non-zero compression
1678  * level, s->matches (otherwise unused when storing) keeps track of the number
1679  * of hash table slides to perform. If s->matches is 1, then one hash table
1680  * slide will be done when switching. If s->matches is 2, the maximum value
1681  * allowed here, then the hash table will be cleared, since two or more slides
1682  * is the same as a clear.
1683  *
1684  * deflate_stored() is written to minimize the number of times an input byte is
1685  * copied. It is most efficient with large input and output buffers, which
1686  * maximizes the opportunities to have a single copy from next_in to next_out.
1687  */
1688 local block_state deflate_stored(s, flush)
1689     deflate_state *s;
1690     int flush;
1691 {
1692     /* Smallest worthy block size when not flushing or finishing. By default
1693      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1694      * large input and output buffers, the stored block size will be larger.
1695      */
1696     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1697 
1698     /* Copy as many min_block or larger stored blocks directly to next_out as
1699      * possible. If flushing, copy the remaining available input to next_out as
1700      * stored blocks, if there is enough space.
1701      */
1702     unsigned len, left, have, last = 0;
1703     unsigned used = s->strm->avail_in;
1704     do {
1705         /* Set len to the maximum size block that we can copy directly with the
1706          * available input data and output space. Set left to how much of that
1707          * would be copied from what's left in the window.
1708          */
1709         len = MAX_STORED;       /* maximum deflate stored block length */
1710         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1711         if (s->strm->avail_out < have)          /* need room for header */
1712             break;
1713             /* maximum stored block length that will fit in avail_out: */
1714         have = s->strm->avail_out - have;
1715         left = s->strstart - s->block_start;    /* bytes left in window */
1716         if (len > (ulg)left + s->strm->avail_in)
1717             len = left + s->strm->avail_in;     /* limit len to the input */
1718         if (len > have)
1719             len = have;                         /* limit len to the output */
1720 
1721         /* If the stored block would be less than min_block in length, or if
1722          * unable to copy all of the available input when flushing, then try
1723          * copying to the window and the pending buffer instead. Also don't
1724          * write an empty block when flushing -- deflate() does that.
1725          */
1726         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1727                                 flush == Z_NO_FLUSH ||
1728                                 len != left + s->strm->avail_in))
1729             break;
1730 
1731         /* Make a dummy stored block in pending to get the header bytes,
1732          * including any pending bits. This also updates the debugging counts.
1733          */
1734         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1735         _tr_stored_block(s, (char *)0, 0L, last);
1736 
1737         /* Replace the lengths in the dummy stored block with len. */
1738         s->pending_buf[s->pending - 4] = len;
1739         s->pending_buf[s->pending - 3] = len >> 8;
1740         s->pending_buf[s->pending - 2] = ~len;
1741         s->pending_buf[s->pending - 1] = ~len >> 8;
1742 
1743         /* Write the stored block header bytes. */
1744         flush_pending(s->strm);
1745 
1746 #ifdef ZLIB_DEBUG
1747         /* Update debugging counts for the data about to be copied. */
1748         s->compressed_len += len << 3;
1749         s->bits_sent += len << 3;
1750 #endif
1751 
1752         /* Copy uncompressed bytes from the window to next_out. */
1753         if (left) {
1754             if (left > len)
1755                 left = len;
1756             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1757             s->strm->next_out += left;
1758             s->strm->avail_out -= left;
1759             s->strm->total_out += left;
1760             s->block_start += left;
1761             len -= left;
1762         }
1763 
1764         /* Copy uncompressed bytes directly from next_in to next_out, updating
1765          * the check value.
1766          */
1767         if (len) {
1768             read_buf(s->strm, s->strm->next_out, len);
1769             s->strm->next_out += len;
1770             s->strm->avail_out -= len;
1771             s->strm->total_out += len;
1772         }
1773     } while (last == 0);
1774 
1775     /* Update the sliding window with the last s->w_size bytes of the copied
1776      * data, or append all of the copied data to the existing window if less
1777      * than s->w_size bytes were copied. Also update the number of bytes to
1778      * insert in the hash tables, in the event that deflateParams() switches to
1779      * a non-zero compression level.
1780      */
1781     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1782     if (used) {
1783         /* If any input was used, then no unused input remains in the window,
1784          * therefore s->block_start == s->strstart.
1785          */
1786         if (used >= s->w_size) {    /* supplant the previous history */
1787             s->matches = 2;         /* clear hash */
1788             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1789             s->strstart = s->w_size;
1790             s->insert = s->strstart;
1791         }
1792         else {
1793             if (s->window_size - s->strstart <= used) {
1794                 /* Slide the window down. */
1795                 s->strstart -= s->w_size;
1796                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1797                 if (s->matches < 2)
1798                     s->matches++;   /* add a pending slide_hash() */
1799                 if (s->insert > s->strstart)
1800                     s->insert = s->strstart;
1801             }
1802             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1803             s->strstart += used;
1804             s->insert += MIN(used, s->w_size - s->insert);
1805         }
1806         s->block_start = s->strstart;
1807     }
1808     if (s->high_water < s->strstart)
1809         s->high_water = s->strstart;
1810 
1811     /* If the last block was written to next_out, then done. */
1812     if (last)
1813         return finish_done;
1814 
1815     /* If flushing and all input has been consumed, then done. */
1816     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1817         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1818         return block_done;
1819 
1820     /* Fill the window with any remaining input. */
1821     have = s->window_size - s->strstart;
1822     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1823         /* Slide the window down. */
1824         s->block_start -= s->w_size;
1825         s->strstart -= s->w_size;
1826         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1827         if (s->matches < 2)
1828             s->matches++;           /* add a pending slide_hash() */
1829         have += s->w_size;          /* more space now */
1830         if (s->insert > s->strstart)
1831             s->insert = s->strstart;
1832     }
1833     if (have > s->strm->avail_in)
1834         have = s->strm->avail_in;
1835     if (have) {
1836         read_buf(s->strm, s->window + s->strstart, have);
1837         s->strstart += have;
1838         s->insert += MIN(have, s->w_size - s->insert);
1839     }
1840     if (s->high_water < s->strstart)
1841         s->high_water = s->strstart;
1842 
1843     /* There was not enough avail_out to write a complete worthy or flushed
1844      * stored block to next_out. Write a stored block to pending instead, if we
1845      * have enough input for a worthy block, or if flushing and there is enough
1846      * room for the remaining input as a stored block in the pending buffer.
1847      */
1848     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1849         /* maximum stored block length that will fit in pending: */
1850     have = MIN(s->pending_buf_size - have, MAX_STORED);
1851     min_block = MIN(have, s->w_size);
1852     left = s->strstart - s->block_start;
1853     if (left >= min_block ||
1854         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1855          s->strm->avail_in == 0 && left <= have)) {
1856         len = MIN(left, have);
1857         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1858                len == left ? 1 : 0;
1859         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1860         s->block_start += len;
1861         flush_pending(s->strm);
1862     }
1863 
1864     /* We've done all we can with the available input and output. */
1865     return last ? finish_started : need_more;
1866 }
1867 
1868 /* ===========================================================================
1869  * Compress as much as possible from the input stream, return the current
1870  * block state.
1871  * This function does not perform lazy evaluation of matches and inserts
1872  * new strings in the dictionary only for unmatched strings or for short
1873  * matches. It is used only for the fast compression options.
1874  */
1875 local block_state deflate_fast(s, flush)
1876     deflate_state *s;
1877     int flush;
1878 {
1879     IPos hash_head;       /* head of the hash chain */
1880     int bflush;           /* set if current block must be flushed */
1881 
1882     for (;;) {
1883         /* Make sure that we always have enough lookahead, except
1884          * at the end of the input file. We need MAX_MATCH bytes
1885          * for the next match, plus MIN_MATCH bytes to insert the
1886          * string following the next match.
1887          */
1888         if (s->lookahead < MIN_LOOKAHEAD) {
1889             fill_window(s);
1890             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1891                 return need_more;
1892             }
1893             if (s->lookahead == 0) break; /* flush the current block */
1894         }
1895 
1896         /* Insert the string window[strstart .. strstart + 2] in the
1897          * dictionary, and set hash_head to the head of the hash chain:
1898          */
1899         hash_head = NIL;
1900         if (s->lookahead >= MIN_MATCH) {
1901             INSERT_STRING(s, s->strstart, hash_head);
1902         }
1903 
1904         /* Find the longest match, discarding those <= prev_length.
1905          * At this point we have always match_length < MIN_MATCH
1906          */
1907         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1908             /* To simplify the code, we prevent matches with the string
1909              * of window index 0 (in particular we have to avoid a match
1910              * of the string with itself at the start of the input file).
1911              */
1912             s->match_length = longest_match (s, hash_head);
1913             /* longest_match() sets match_start */
1914         }
1915         if (s->match_length >= MIN_MATCH) {
1916             check_match(s, s->strstart, s->match_start, s->match_length);
1917 
1918             _tr_tally_dist(s, s->strstart - s->match_start,
1919                            s->match_length - MIN_MATCH, bflush);
1920 
1921             s->lookahead -= s->match_length;
1922 
1923             /* Insert new strings in the hash table only if the match length
1924              * is not too large. This saves time but degrades compression.
1925              */
1926 #ifndef FASTEST
1927             if (s->match_length <= s->max_insert_length &&
1928                 s->lookahead >= MIN_MATCH) {
1929                 s->match_length--; /* string at strstart already in table */
1930                 do {
1931                     s->strstart++;
1932                     INSERT_STRING(s, s->strstart, hash_head);
1933                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1934                      * always MIN_MATCH bytes ahead.
1935                      */
1936                 } while (--s->match_length != 0);
1937                 s->strstart++;
1938             } else
1939 #endif
1940             {
1941                 s->strstart += s->match_length;
1942                 s->match_length = 0;
1943                 s->ins_h = s->window[s->strstart];
1944                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1945 #if MIN_MATCH != 3
1946                 Call UPDATE_HASH() MIN_MATCH-3 more times
1947 #endif
1948                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1949                  * matter since it will be recomputed at next deflate call.
1950                  */
1951             }
1952         } else {
1953             /* No match, output a literal byte */
1954             Tracevv((stderr,"%c", s->window[s->strstart]));
1955             _tr_tally_lit(s, s->window[s->strstart], bflush);
1956             s->lookahead--;
1957             s->strstart++;
1958         }
1959         if (bflush) FLUSH_BLOCK(s, 0);
1960     }
1961     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1962     if (flush == Z_FINISH) {
1963         FLUSH_BLOCK(s, 1);
1964         return finish_done;
1965     }
1966     if (s->sym_next)
1967         FLUSH_BLOCK(s, 0);
1968     return block_done;
1969 }
1970 
1971 #ifndef FASTEST
1972 /* ===========================================================================
1973  * Same as above, but achieves better compression. We use a lazy
1974  * evaluation for matches: a match is finally adopted only if there is
1975  * no better match at the next window position.
1976  */
1977 local block_state deflate_slow(s, flush)
1978     deflate_state *s;
1979     int flush;
1980 {
1981     IPos hash_head;          /* head of hash chain */
1982     int bflush;              /* set if current block must be flushed */
1983 
1984     /* Process the input block. */
1985     for (;;) {
1986         /* Make sure that we always have enough lookahead, except
1987          * at the end of the input file. We need MAX_MATCH bytes
1988          * for the next match, plus MIN_MATCH bytes to insert the
1989          * string following the next match.
1990          */
1991         if (s->lookahead < MIN_LOOKAHEAD) {
1992             fill_window(s);
1993             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1994                 return need_more;
1995             }
1996             if (s->lookahead == 0) break; /* flush the current block */
1997         }
1998 
1999         /* Insert the string window[strstart .. strstart + 2] in the
2000          * dictionary, and set hash_head to the head of the hash chain:
2001          */
2002         hash_head = NIL;
2003         if (s->lookahead >= MIN_MATCH) {
2004             INSERT_STRING(s, s->strstart, hash_head);
2005         }
2006 
2007         /* Find the longest match, discarding those <= prev_length.
2008          */
2009         s->prev_length = s->match_length, s->prev_match = s->match_start;
2010         s->match_length = MIN_MATCH-1;
2011 
2012         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2013             s->strstart - hash_head <= MAX_DIST(s)) {
2014             /* To simplify the code, we prevent matches with the string
2015              * of window index 0 (in particular we have to avoid a match
2016              * of the string with itself at the start of the input file).
2017              */
2018             s->match_length = longest_match (s, hash_head);
2019             /* longest_match() sets match_start */
2020 
2021             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2022 #if TOO_FAR <= 32767
2023                 || (s->match_length == MIN_MATCH &&
2024                     s->strstart - s->match_start > TOO_FAR)
2025 #endif
2026                 )) {
2027 
2028                 /* If prev_match is also MIN_MATCH, match_start is garbage
2029                  * but we will ignore the current match anyway.
2030                  */
2031                 s->match_length = MIN_MATCH-1;
2032             }
2033         }
2034         /* If there was a match at the previous step and the current
2035          * match is not better, output the previous match:
2036          */
2037         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2038             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2039             /* Do not insert strings in hash table beyond this. */
2040 
2041             check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
2042 
2043             _tr_tally_dist(s, s->strstart - 1 - s->prev_match,
2044                            s->prev_length - MIN_MATCH, bflush);
2045 
2046             /* Insert in hash table all strings up to the end of the match.
2047              * strstart - 1 and strstart are already inserted. If there is not
2048              * enough lookahead, the last two strings are not inserted in
2049              * the hash table.
2050              */
2051             s->lookahead -= s->prev_length - 1;
2052             s->prev_length -= 2;
2053             do {
2054                 if (++s->strstart <= max_insert) {
2055                     INSERT_STRING(s, s->strstart, hash_head);
2056                 }
2057             } while (--s->prev_length != 0);
2058             s->match_available = 0;
2059             s->match_length = MIN_MATCH-1;
2060             s->strstart++;
2061 
2062             if (bflush) FLUSH_BLOCK(s, 0);
2063 
2064         } else if (s->match_available) {
2065             /* If there was no match at the previous position, output a
2066              * single literal. If there was a match but the current match
2067              * is longer, truncate the previous match to a single literal.
2068              */
2069             Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2070             _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2071             if (bflush) {
2072                 FLUSH_BLOCK_ONLY(s, 0);
2073             }
2074             s->strstart++;
2075             s->lookahead--;
2076             if (s->strm->avail_out == 0) return need_more;
2077         } else {
2078             /* There is no previous match to compare with, wait for
2079              * the next step to decide.
2080              */
2081             s->match_available = 1;
2082             s->strstart++;
2083             s->lookahead--;
2084         }
2085     }
2086     Assert (flush != Z_NO_FLUSH, "no flush?");
2087     if (s->match_available) {
2088         Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2089         _tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2090         s->match_available = 0;
2091     }
2092     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2093     if (flush == Z_FINISH) {
2094         FLUSH_BLOCK(s, 1);
2095         return finish_done;
2096     }
2097     if (s->sym_next)
2098         FLUSH_BLOCK(s, 0);
2099     return block_done;
2100 }
2101 #endif /* FASTEST */
2102 
2103 /* ===========================================================================
2104  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2105  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2106  * deflate switches away from Z_RLE.)
2107  */
2108 local block_state deflate_rle(s, flush)
2109     deflate_state *s;
2110     int flush;
2111 {
2112     int bflush;             /* set if current block must be flushed */
2113     uInt prev;              /* byte at distance one to match */
2114     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2115 
2116     for (;;) {
2117         /* Make sure that we always have enough lookahead, except
2118          * at the end of the input file. We need MAX_MATCH bytes
2119          * for the longest run, plus one for the unrolled loop.
2120          */
2121         if (s->lookahead <= MAX_MATCH) {
2122             fill_window(s);
2123             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2124                 return need_more;
2125             }
2126             if (s->lookahead == 0) break; /* flush the current block */
2127         }
2128 
2129         /* See how many times the previous byte repeats */
2130         s->match_length = 0;
2131         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2132             scan = s->window + s->strstart - 1;
2133             prev = *scan;
2134             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2135                 strend = s->window + s->strstart + MAX_MATCH;
2136                 do {
2137                 } while (prev == *++scan && prev == *++scan &&
2138                          prev == *++scan && prev == *++scan &&
2139                          prev == *++scan && prev == *++scan &&
2140                          prev == *++scan && prev == *++scan &&
2141                          scan < strend);
2142                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2143                 if (s->match_length > s->lookahead)
2144                     s->match_length = s->lookahead;
2145             }
2146             Assert(scan <= s->window + (uInt)(s->window_size - 1),
2147                    "wild scan");
2148         }
2149 
2150         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2151         if (s->match_length >= MIN_MATCH) {
2152             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2153 
2154             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2155 
2156             s->lookahead -= s->match_length;
2157             s->strstart += s->match_length;
2158             s->match_length = 0;
2159         } else {
2160             /* No match, output a literal byte */
2161             Tracevv((stderr,"%c", s->window[s->strstart]));
2162             _tr_tally_lit(s, s->window[s->strstart], bflush);
2163             s->lookahead--;
2164             s->strstart++;
2165         }
2166         if (bflush) FLUSH_BLOCK(s, 0);
2167     }
2168     s->insert = 0;
2169     if (flush == Z_FINISH) {
2170         FLUSH_BLOCK(s, 1);
2171         return finish_done;
2172     }
2173     if (s->sym_next)
2174         FLUSH_BLOCK(s, 0);
2175     return block_done;
2176 }
2177 
2178 /* ===========================================================================
2179  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2180  * (It will be regenerated if this run of deflate switches away from Huffman.)
2181  */
2182 local block_state deflate_huff(s, flush)
2183     deflate_state *s;
2184     int flush;
2185 {
2186     int bflush;             /* set if current block must be flushed */
2187 
2188     for (;;) {
2189         /* Make sure that we have a literal to write. */
2190         if (s->lookahead == 0) {
2191             fill_window(s);
2192             if (s->lookahead == 0) {
2193                 if (flush == Z_NO_FLUSH)
2194                     return need_more;
2195                 break;      /* flush the current block */
2196             }
2197         }
2198 
2199         /* Output a literal byte */
2200         s->match_length = 0;
2201         Tracevv((stderr,"%c", s->window[s->strstart]));
2202         _tr_tally_lit(s, s->window[s->strstart], bflush);
2203         s->lookahead--;
2204         s->strstart++;
2205         if (bflush) FLUSH_BLOCK(s, 0);
2206     }
2207     s->insert = 0;
2208     if (flush == Z_FINISH) {
2209         FLUSH_BLOCK(s, 1);
2210         return finish_done;
2211     }
2212     if (s->sym_next)
2213         FLUSH_BLOCK(s, 0);
2214     return block_done;
2215 }
2216