1 /* $OpenBSD: crc32.c,v 1.13 2021/07/04 14:24:49 tb Exp $ */ 2 /* crc32.c -- compute the CRC-32 of a data stream 3 * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 * 6 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster 7 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing 8 * tables for updating the shift register in one step with three exclusive-ors 9 * instead of four steps with four exclusive-ors. This results in about a 10 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. 11 */ 12 13 /* 14 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore 15 protection on the static variables used to control the first-use generation 16 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should 17 first call get_crc_table() to initialize the tables before allowing more than 18 one thread to use crc32(). 19 20 DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h. 21 */ 22 23 #ifdef MAKECRCH 24 # include <stdio.h> 25 # ifndef DYNAMIC_CRC_TABLE 26 # define DYNAMIC_CRC_TABLE 27 # endif /* !DYNAMIC_CRC_TABLE */ 28 #endif /* MAKECRCH */ 29 30 #include "zutil.h" /* for STDC and FAR definitions */ 31 32 /* Definitions for doing the crc four data bytes at a time. */ 33 #if !defined(NOBYFOUR) && defined(Z_U4) 34 # define BYFOUR 35 #endif 36 #ifdef BYFOUR 37 local unsigned long crc32_little OF((unsigned long, 38 const unsigned char FAR *, z_size_t)); 39 local unsigned long crc32_big OF((unsigned long, 40 const unsigned char FAR *, z_size_t)); 41 # define TBLS 8 42 #else 43 # define TBLS 1 44 #endif /* BYFOUR */ 45 46 /* Local functions for crc concatenation */ 47 local unsigned long gf2_matrix_times OF((unsigned long *mat, 48 unsigned long vec)); 49 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); 50 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2)); 51 52 53 #ifdef DYNAMIC_CRC_TABLE 54 55 local volatile int crc_table_empty = 1; 56 local z_crc_t FAR crc_table[TBLS][256]; 57 local void make_crc_table OF((void)); 58 #ifdef MAKECRCH 59 local void write_table OF((FILE *, const z_crc_t FAR *)); 60 #endif /* MAKECRCH */ 61 /* 62 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: 63 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. 64 65 Polynomials over GF(2) are represented in binary, one bit per coefficient, 66 with the lowest powers in the most significant bit. Then adding polynomials 67 is just exclusive-or, and multiplying a polynomial by x is a right shift by 68 one. If we call the above polynomial p, and represent a byte as the 69 polynomial q, also with the lowest power in the most significant bit (so the 70 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, 71 where a mod b means the remainder after dividing a by b. 72 73 This calculation is done using the shift-register method of multiplying and 74 taking the remainder. The register is initialized to zero, and for each 75 incoming bit, x^32 is added mod p to the register if the bit is a one (where 76 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by 77 x (which is shifting right by one and adding x^32 mod p if the bit shifted 78 out is a one). We start with the highest power (least significant bit) of 79 q and repeat for all eight bits of q. 80 81 The first table is simply the CRC of all possible eight bit values. This is 82 all the information needed to generate CRCs on data a byte at a time for all 83 combinations of CRC register values and incoming bytes. The remaining tables 84 allow for word-at-a-time CRC calculation for both big-endian and little- 85 endian machines, where a word is four bytes. 86 */ 87 local void make_crc_table() 88 { 89 z_crc_t c; 90 int n, k; 91 z_crc_t poly; /* polynomial exclusive-or pattern */ 92 /* terms of polynomial defining this crc (except x^32): */ 93 static volatile int first = 1; /* flag to limit concurrent making */ 94 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; 95 96 /* See if another task is already doing this (not thread-safe, but better 97 than nothing -- significantly reduces duration of vulnerability in 98 case the advice about DYNAMIC_CRC_TABLE is ignored) */ 99 if (first) { 100 first = 0; 101 102 /* make exclusive-or pattern from polynomial (0xedb88320UL) */ 103 poly = 0; 104 for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++) 105 poly |= (z_crc_t)1 << (31 - p[n]); 106 107 /* generate a crc for every 8-bit value */ 108 for (n = 0; n < 256; n++) { 109 c = (z_crc_t)n; 110 for (k = 0; k < 8; k++) 111 c = c & 1 ? poly ^ (c >> 1) : c >> 1; 112 crc_table[0][n] = c; 113 } 114 115 #ifdef BYFOUR 116 /* generate crc for each value followed by one, two, and three zeros, 117 and then the byte reversal of those as well as the first table */ 118 for (n = 0; n < 256; n++) { 119 c = crc_table[0][n]; 120 crc_table[4][n] = ZSWAP32(c); 121 for (k = 1; k < 4; k++) { 122 c = crc_table[0][c & 0xff] ^ (c >> 8); 123 crc_table[k][n] = c; 124 crc_table[k + 4][n] = ZSWAP32(c); 125 } 126 } 127 #endif /* BYFOUR */ 128 129 crc_table_empty = 0; 130 } 131 else { /* not first */ 132 /* wait for the other guy to finish (not efficient, but rare) */ 133 while (crc_table_empty) 134 ; 135 } 136 137 #ifdef MAKECRCH 138 /* write out CRC tables to crc32.h */ 139 { 140 FILE *out; 141 142 out = fopen("crc32.h", "w"); 143 if (out == NULL) return; 144 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); 145 fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); 146 fprintf(out, "local const z_crc_t FAR "); 147 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); 148 write_table(out, crc_table[0]); 149 # ifdef BYFOUR 150 fprintf(out, "#ifdef BYFOUR\n"); 151 for (k = 1; k < 8; k++) { 152 fprintf(out, " },\n {\n"); 153 write_table(out, crc_table[k]); 154 } 155 fprintf(out, "#endif\n"); 156 # endif /* BYFOUR */ 157 fprintf(out, " }\n};\n"); 158 fclose(out); 159 } 160 #endif /* MAKECRCH */ 161 } 162 163 #ifdef MAKECRCH 164 local void write_table(out, table) 165 FILE *out; 166 const z_crc_t FAR *table; 167 { 168 int n; 169 170 for (n = 0; n < 256; n++) 171 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", 172 (unsigned long)(table[n]), 173 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); 174 } 175 #endif /* MAKECRCH */ 176 177 #else /* !DYNAMIC_CRC_TABLE */ 178 /* ======================================================================== 179 * Tables of CRC-32s of all single-byte values, made by make_crc_table(). 180 */ 181 #include "crc32.h" 182 #endif /* DYNAMIC_CRC_TABLE */ 183 184 /* ========================================================================= 185 * This function can be used by asm versions of crc32() 186 */ 187 const z_crc_t FAR * ZEXPORT get_crc_table() 188 { 189 #ifdef DYNAMIC_CRC_TABLE 190 if (crc_table_empty) 191 make_crc_table(); 192 #endif /* DYNAMIC_CRC_TABLE */ 193 return (const z_crc_t FAR *)crc_table; 194 } 195 196 /* ========================================================================= */ 197 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) 198 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 199 200 /* ========================================================================= */ 201 unsigned long ZEXPORT crc32_z(crc, buf, len) 202 unsigned long crc; 203 const unsigned char FAR *buf; 204 z_size_t len; 205 { 206 if (buf == Z_NULL) return 0UL; 207 208 #ifdef DYNAMIC_CRC_TABLE 209 if (crc_table_empty) 210 make_crc_table(); 211 #endif /* DYNAMIC_CRC_TABLE */ 212 213 #ifdef BYFOUR 214 if (sizeof(void *) == sizeof(ptrdiff_t)) { 215 z_crc_t endian; 216 217 endian = 1; 218 if (*((unsigned char *)(&endian))) 219 return crc32_little(crc, buf, len); 220 else 221 return crc32_big(crc, buf, len); 222 } 223 #endif /* BYFOUR */ 224 crc = crc ^ 0xffffffffUL; 225 while (len >= 8) { 226 DO8; 227 len -= 8; 228 } 229 if (len) do { 230 DO1; 231 } while (--len); 232 return crc ^ 0xffffffffUL; 233 } 234 235 /* ========================================================================= */ 236 unsigned long ZEXPORT crc32(crc, buf, len) 237 unsigned long crc; 238 const unsigned char FAR *buf; 239 uInt len; 240 { 241 return crc32_z(crc, buf, len); 242 } 243 244 #ifdef BYFOUR 245 246 /* 247 This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit 248 integer pointer type. This violates the strict aliasing rule, where a 249 compiler can assume, for optimization purposes, that two pointers to 250 fundamentally different types won't ever point to the same memory. This can 251 manifest as a problem only if one of the pointers is written to. This code 252 only reads from those pointers. So long as this code remains isolated in 253 this compilation unit, there won't be a problem. For this reason, this code 254 should not be copied and pasted into a compilation unit in which other code 255 writes to the buffer that is passed to these routines. 256 */ 257 258 /* ========================================================================= */ 259 #define DOLIT4 c ^= *buf4++; \ 260 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ 261 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] 262 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 263 264 /* ========================================================================= */ 265 local unsigned long crc32_little(crc, buf, len) 266 unsigned long crc; 267 const unsigned char FAR *buf; 268 z_size_t len; 269 { 270 register z_crc_t c; 271 register const z_crc_t FAR *buf4; 272 273 c = (z_crc_t)crc; 274 c = ~c; 275 while (len && ((ptrdiff_t)buf & 3)) { 276 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); 277 len--; 278 } 279 280 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; 281 while (len >= 32) { 282 DOLIT32; 283 len -= 32; 284 } 285 while (len >= 4) { 286 DOLIT4; 287 len -= 4; 288 } 289 buf = (const unsigned char FAR *)buf4; 290 291 if (len) do { 292 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); 293 } while (--len); 294 c = ~c; 295 return (unsigned long)c; 296 } 297 298 /* ========================================================================= */ 299 #define DOBIG4 c ^= *buf4++; \ 300 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ 301 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] 302 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 303 304 /* ========================================================================= */ 305 local unsigned long crc32_big(crc, buf, len) 306 unsigned long crc; 307 const unsigned char FAR *buf; 308 z_size_t len; 309 { 310 register z_crc_t c; 311 register const z_crc_t FAR *buf4; 312 313 c = ZSWAP32((z_crc_t)crc); 314 c = ~c; 315 while (len && ((ptrdiff_t)buf & 3)) { 316 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); 317 len--; 318 } 319 320 buf4 = (const z_crc_t FAR *)(const void FAR *)buf; 321 while (len >= 32) { 322 DOBIG32; 323 len -= 32; 324 } 325 while (len >= 4) { 326 DOBIG4; 327 len -= 4; 328 } 329 buf = (const unsigned char FAR *)buf4; 330 331 if (len) do { 332 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); 333 } while (--len); 334 c = ~c; 335 return (unsigned long)(ZSWAP32(c)); 336 } 337 338 #endif /* BYFOUR */ 339 340 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ 341 342 /* ========================================================================= */ 343 local unsigned long gf2_matrix_times(mat, vec) 344 unsigned long *mat; 345 unsigned long vec; 346 { 347 unsigned long sum; 348 349 sum = 0; 350 while (vec) { 351 if (vec & 1) 352 sum ^= *mat; 353 vec >>= 1; 354 mat++; 355 } 356 return sum; 357 } 358 359 /* ========================================================================= */ 360 local void gf2_matrix_square(square, mat) 361 unsigned long *square; 362 unsigned long *mat; 363 { 364 int n; 365 366 for (n = 0; n < GF2_DIM; n++) 367 square[n] = gf2_matrix_times(mat, mat[n]); 368 } 369 370 /* ========================================================================= */ 371 local uLong crc32_combine_(crc1, crc2, len2) 372 uLong crc1; 373 uLong crc2; 374 z_off64_t len2; 375 { 376 int n; 377 unsigned long row; 378 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ 379 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ 380 381 /* degenerate case (also disallow negative lengths) */ 382 if (len2 <= 0) 383 return crc1; 384 385 /* put operator for one zero bit in odd */ 386 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ 387 row = 1; 388 for (n = 1; n < GF2_DIM; n++) { 389 odd[n] = row; 390 row <<= 1; 391 } 392 393 /* put operator for two zero bits in even */ 394 gf2_matrix_square(even, odd); 395 396 /* put operator for four zero bits in odd */ 397 gf2_matrix_square(odd, even); 398 399 /* apply len2 zeros to crc1 (first square will put the operator for one 400 zero byte, eight zero bits, in even) */ 401 do { 402 /* apply zeros operator for this bit of len2 */ 403 gf2_matrix_square(even, odd); 404 if (len2 & 1) 405 crc1 = gf2_matrix_times(even, crc1); 406 len2 >>= 1; 407 408 /* if no more bits set, then done */ 409 if (len2 == 0) 410 break; 411 412 /* another iteration of the loop with odd and even swapped */ 413 gf2_matrix_square(odd, even); 414 if (len2 & 1) 415 crc1 = gf2_matrix_times(odd, crc1); 416 len2 >>= 1; 417 418 /* if no more bits set, then done */ 419 } while (len2 != 0); 420 421 /* return combined crc */ 422 crc1 ^= crc2; 423 return crc1; 424 } 425 426 /* ========================================================================= */ 427 uLong ZEXPORT crc32_combine(crc1, crc2, len2) 428 uLong crc1; 429 uLong crc2; 430 z_off_t len2; 431 { 432 return crc32_combine_(crc1, crc2, len2); 433 } 434 435 uLong ZEXPORT crc32_combine64(crc1, crc2, len2) 436 uLong crc1; 437 uLong crc2; 438 z_off64_t len2; 439 { 440 return crc32_combine_(crc1, crc2, len2); 441 } 442