xref: /openbsd-src/sys/lib/libz/crc32.c (revision 24bb5fcea3ed904bc467217bdaadb5dfc618d5bf)
1 /*	$OpenBSD: crc32.c,v 1.13 2021/07/04 14:24:49 tb Exp $ */
2 /* crc32.c -- compute the CRC-32 of a data stream
3  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  *
6  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
7  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
8  * tables for updating the shift register in one step with three exclusive-ors
9  * instead of four steps with four exclusive-ors.  This results in about a
10  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
11  */
12 
13 /*
14   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
15   protection on the static variables used to control the first-use generation
16   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
17   first call get_crc_table() to initialize the tables before allowing more than
18   one thread to use crc32().
19 
20   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
21  */
22 
23 #ifdef MAKECRCH
24 #  include <stdio.h>
25 #  ifndef DYNAMIC_CRC_TABLE
26 #    define DYNAMIC_CRC_TABLE
27 #  endif /* !DYNAMIC_CRC_TABLE */
28 #endif /* MAKECRCH */
29 
30 #include "zutil.h"      /* for STDC and FAR definitions */
31 
32 /* Definitions for doing the crc four data bytes at a time. */
33 #if !defined(NOBYFOUR) && defined(Z_U4)
34 #  define BYFOUR
35 #endif
36 #ifdef BYFOUR
37    local unsigned long crc32_little OF((unsigned long,
38                         const unsigned char FAR *, z_size_t));
39    local unsigned long crc32_big OF((unsigned long,
40                         const unsigned char FAR *, z_size_t));
41 #  define TBLS 8
42 #else
43 #  define TBLS 1
44 #endif /* BYFOUR */
45 
46 /* Local functions for crc concatenation */
47 local unsigned long gf2_matrix_times OF((unsigned long *mat,
48                                          unsigned long vec));
49 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
50 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
51 
52 
53 #ifdef DYNAMIC_CRC_TABLE
54 
55 local volatile int crc_table_empty = 1;
56 local z_crc_t FAR crc_table[TBLS][256];
57 local void make_crc_table OF((void));
58 #ifdef MAKECRCH
59    local void write_table OF((FILE *, const z_crc_t FAR *));
60 #endif /* MAKECRCH */
61 /*
62   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
63   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
64 
65   Polynomials over GF(2) are represented in binary, one bit per coefficient,
66   with the lowest powers in the most significant bit.  Then adding polynomials
67   is just exclusive-or, and multiplying a polynomial by x is a right shift by
68   one.  If we call the above polynomial p, and represent a byte as the
69   polynomial q, also with the lowest power in the most significant bit (so the
70   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
71   where a mod b means the remainder after dividing a by b.
72 
73   This calculation is done using the shift-register method of multiplying and
74   taking the remainder.  The register is initialized to zero, and for each
75   incoming bit, x^32 is added mod p to the register if the bit is a one (where
76   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
77   x (which is shifting right by one and adding x^32 mod p if the bit shifted
78   out is a one).  We start with the highest power (least significant bit) of
79   q and repeat for all eight bits of q.
80 
81   The first table is simply the CRC of all possible eight bit values.  This is
82   all the information needed to generate CRCs on data a byte at a time for all
83   combinations of CRC register values and incoming bytes.  The remaining tables
84   allow for word-at-a-time CRC calculation for both big-endian and little-
85   endian machines, where a word is four bytes.
86 */
87 local void make_crc_table()
88 {
89     z_crc_t c;
90     int n, k;
91     z_crc_t poly;                       /* polynomial exclusive-or pattern */
92     /* terms of polynomial defining this crc (except x^32): */
93     static volatile int first = 1;      /* flag to limit concurrent making */
94     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
95 
96     /* See if another task is already doing this (not thread-safe, but better
97        than nothing -- significantly reduces duration of vulnerability in
98        case the advice about DYNAMIC_CRC_TABLE is ignored) */
99     if (first) {
100         first = 0;
101 
102         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
103         poly = 0;
104         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
105             poly |= (z_crc_t)1 << (31 - p[n]);
106 
107         /* generate a crc for every 8-bit value */
108         for (n = 0; n < 256; n++) {
109             c = (z_crc_t)n;
110             for (k = 0; k < 8; k++)
111                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
112             crc_table[0][n] = c;
113         }
114 
115 #ifdef BYFOUR
116         /* generate crc for each value followed by one, two, and three zeros,
117            and then the byte reversal of those as well as the first table */
118         for (n = 0; n < 256; n++) {
119             c = crc_table[0][n];
120             crc_table[4][n] = ZSWAP32(c);
121             for (k = 1; k < 4; k++) {
122                 c = crc_table[0][c & 0xff] ^ (c >> 8);
123                 crc_table[k][n] = c;
124                 crc_table[k + 4][n] = ZSWAP32(c);
125             }
126         }
127 #endif /* BYFOUR */
128 
129         crc_table_empty = 0;
130     }
131     else {      /* not first */
132         /* wait for the other guy to finish (not efficient, but rare) */
133         while (crc_table_empty)
134             ;
135     }
136 
137 #ifdef MAKECRCH
138     /* write out CRC tables to crc32.h */
139     {
140         FILE *out;
141 
142         out = fopen("crc32.h", "w");
143         if (out == NULL) return;
144         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
145         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
146         fprintf(out, "local const z_crc_t FAR ");
147         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
148         write_table(out, crc_table[0]);
149 #  ifdef BYFOUR
150         fprintf(out, "#ifdef BYFOUR\n");
151         for (k = 1; k < 8; k++) {
152             fprintf(out, "  },\n  {\n");
153             write_table(out, crc_table[k]);
154         }
155         fprintf(out, "#endif\n");
156 #  endif /* BYFOUR */
157         fprintf(out, "  }\n};\n");
158         fclose(out);
159     }
160 #endif /* MAKECRCH */
161 }
162 
163 #ifdef MAKECRCH
164 local void write_table(out, table)
165     FILE *out;
166     const z_crc_t FAR *table;
167 {
168     int n;
169 
170     for (n = 0; n < 256; n++)
171         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
172                 (unsigned long)(table[n]),
173                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
174 }
175 #endif /* MAKECRCH */
176 
177 #else /* !DYNAMIC_CRC_TABLE */
178 /* ========================================================================
179  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
180  */
181 #include "crc32.h"
182 #endif /* DYNAMIC_CRC_TABLE */
183 
184 /* =========================================================================
185  * This function can be used by asm versions of crc32()
186  */
187 const z_crc_t FAR * ZEXPORT get_crc_table()
188 {
189 #ifdef DYNAMIC_CRC_TABLE
190     if (crc_table_empty)
191         make_crc_table();
192 #endif /* DYNAMIC_CRC_TABLE */
193     return (const z_crc_t FAR *)crc_table;
194 }
195 
196 /* ========================================================================= */
197 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
198 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
199 
200 /* ========================================================================= */
201 unsigned long ZEXPORT crc32_z(crc, buf, len)
202     unsigned long crc;
203     const unsigned char FAR *buf;
204     z_size_t len;
205 {
206     if (buf == Z_NULL) return 0UL;
207 
208 #ifdef DYNAMIC_CRC_TABLE
209     if (crc_table_empty)
210         make_crc_table();
211 #endif /* DYNAMIC_CRC_TABLE */
212 
213 #ifdef BYFOUR
214     if (sizeof(void *) == sizeof(ptrdiff_t)) {
215         z_crc_t endian;
216 
217         endian = 1;
218         if (*((unsigned char *)(&endian)))
219             return crc32_little(crc, buf, len);
220         else
221             return crc32_big(crc, buf, len);
222     }
223 #endif /* BYFOUR */
224     crc = crc ^ 0xffffffffUL;
225     while (len >= 8) {
226         DO8;
227         len -= 8;
228     }
229     if (len) do {
230         DO1;
231     } while (--len);
232     return crc ^ 0xffffffffUL;
233 }
234 
235 /* ========================================================================= */
236 unsigned long ZEXPORT crc32(crc, buf, len)
237     unsigned long crc;
238     const unsigned char FAR *buf;
239     uInt len;
240 {
241     return crc32_z(crc, buf, len);
242 }
243 
244 #ifdef BYFOUR
245 
246 /*
247    This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
248    integer pointer type. This violates the strict aliasing rule, where a
249    compiler can assume, for optimization purposes, that two pointers to
250    fundamentally different types won't ever point to the same memory. This can
251    manifest as a problem only if one of the pointers is written to. This code
252    only reads from those pointers. So long as this code remains isolated in
253    this compilation unit, there won't be a problem. For this reason, this code
254    should not be copied and pasted into a compilation unit in which other code
255    writes to the buffer that is passed to these routines.
256  */
257 
258 /* ========================================================================= */
259 #define DOLIT4 c ^= *buf4++; \
260         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
261             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
262 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
263 
264 /* ========================================================================= */
265 local unsigned long crc32_little(crc, buf, len)
266     unsigned long crc;
267     const unsigned char FAR *buf;
268     z_size_t len;
269 {
270     register z_crc_t c;
271     register const z_crc_t FAR *buf4;
272 
273     c = (z_crc_t)crc;
274     c = ~c;
275     while (len && ((ptrdiff_t)buf & 3)) {
276         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
277         len--;
278     }
279 
280     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
281     while (len >= 32) {
282         DOLIT32;
283         len -= 32;
284     }
285     while (len >= 4) {
286         DOLIT4;
287         len -= 4;
288     }
289     buf = (const unsigned char FAR *)buf4;
290 
291     if (len) do {
292         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
293     } while (--len);
294     c = ~c;
295     return (unsigned long)c;
296 }
297 
298 /* ========================================================================= */
299 #define DOBIG4 c ^= *buf4++; \
300         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
301             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
302 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
303 
304 /* ========================================================================= */
305 local unsigned long crc32_big(crc, buf, len)
306     unsigned long crc;
307     const unsigned char FAR *buf;
308     z_size_t len;
309 {
310     register z_crc_t c;
311     register const z_crc_t FAR *buf4;
312 
313     c = ZSWAP32((z_crc_t)crc);
314     c = ~c;
315     while (len && ((ptrdiff_t)buf & 3)) {
316         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
317         len--;
318     }
319 
320     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
321     while (len >= 32) {
322         DOBIG32;
323         len -= 32;
324     }
325     while (len >= 4) {
326         DOBIG4;
327         len -= 4;
328     }
329     buf = (const unsigned char FAR *)buf4;
330 
331     if (len) do {
332         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
333     } while (--len);
334     c = ~c;
335     return (unsigned long)(ZSWAP32(c));
336 }
337 
338 #endif /* BYFOUR */
339 
340 #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
341 
342 /* ========================================================================= */
343 local unsigned long gf2_matrix_times(mat, vec)
344     unsigned long *mat;
345     unsigned long vec;
346 {
347     unsigned long sum;
348 
349     sum = 0;
350     while (vec) {
351         if (vec & 1)
352             sum ^= *mat;
353         vec >>= 1;
354         mat++;
355     }
356     return sum;
357 }
358 
359 /* ========================================================================= */
360 local void gf2_matrix_square(square, mat)
361     unsigned long *square;
362     unsigned long *mat;
363 {
364     int n;
365 
366     for (n = 0; n < GF2_DIM; n++)
367         square[n] = gf2_matrix_times(mat, mat[n]);
368 }
369 
370 /* ========================================================================= */
371 local uLong crc32_combine_(crc1, crc2, len2)
372     uLong crc1;
373     uLong crc2;
374     z_off64_t len2;
375 {
376     int n;
377     unsigned long row;
378     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
379     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
380 
381     /* degenerate case (also disallow negative lengths) */
382     if (len2 <= 0)
383         return crc1;
384 
385     /* put operator for one zero bit in odd */
386     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
387     row = 1;
388     for (n = 1; n < GF2_DIM; n++) {
389         odd[n] = row;
390         row <<= 1;
391     }
392 
393     /* put operator for two zero bits in even */
394     gf2_matrix_square(even, odd);
395 
396     /* put operator for four zero bits in odd */
397     gf2_matrix_square(odd, even);
398 
399     /* apply len2 zeros to crc1 (first square will put the operator for one
400        zero byte, eight zero bits, in even) */
401     do {
402         /* apply zeros operator for this bit of len2 */
403         gf2_matrix_square(even, odd);
404         if (len2 & 1)
405             crc1 = gf2_matrix_times(even, crc1);
406         len2 >>= 1;
407 
408         /* if no more bits set, then done */
409         if (len2 == 0)
410             break;
411 
412         /* another iteration of the loop with odd and even swapped */
413         gf2_matrix_square(odd, even);
414         if (len2 & 1)
415             crc1 = gf2_matrix_times(odd, crc1);
416         len2 >>= 1;
417 
418         /* if no more bits set, then done */
419     } while (len2 != 0);
420 
421     /* return combined crc */
422     crc1 ^= crc2;
423     return crc1;
424 }
425 
426 /* ========================================================================= */
427 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
428     uLong crc1;
429     uLong crc2;
430     z_off_t len2;
431 {
432     return crc32_combine_(crc1, crc2, len2);
433 }
434 
435 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
436     uLong crc1;
437     uLong crc2;
438     z_off64_t len2;
439 {
440     return crc32_combine_(crc1, crc2, len2);
441 }
442