xref: /openbsd-src/sys/lib/libz/adler32.c (revision 3374c67d44f9b75b98444cbf63020f777792342e)
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 
8 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
9 
10 #define BASE 65521U     /* largest prime smaller than 65536 */
11 #define NMAX 5552
12 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13 
14 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
15 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
16 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
17 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
18 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
19 
20 /* use NO_DIVIDE if your processor does not do division in hardware --
21    try it both ways to see which is faster */
22 #ifdef NO_DIVIDE
23 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
24    (thank you to John Reiser for pointing this out) */
25 #  define CHOP(a) \
26     do { \
27         unsigned long tmp = a >> 16; \
28         a &= 0xffffUL; \
29         a += (tmp << 4) - tmp; \
30     } while (0)
31 #  define MOD28(a) \
32     do { \
33         CHOP(a); \
34         if (a >= BASE) a -= BASE; \
35     } while (0)
36 #  define MOD(a) \
37     do { \
38         CHOP(a); \
39         MOD28(a); \
40     } while (0)
41 #  define MOD63(a) \
42     do { /* this assumes a is not negative */ \
43         z_off64_t tmp = a >> 32; \
44         a &= 0xffffffffL; \
45         a += (tmp << 8) - (tmp << 5) + tmp; \
46         tmp = a >> 16; \
47         a &= 0xffffL; \
48         a += (tmp << 4) - tmp; \
49         tmp = a >> 16; \
50         a &= 0xffffL; \
51         a += (tmp << 4) - tmp; \
52         if (a >= BASE) a -= BASE; \
53     } while (0)
54 #else
55 #  define MOD(a) a %= BASE
56 #  define MOD28(a) a %= BASE
57 #  define MOD63(a) a %= BASE
58 #endif
59 
60 /* ========================================================================= */
61 uLong ZEXPORT adler32_z(adler, buf, len)
62     uLong adler;
63     const Bytef *buf;
64     z_size_t len;
65 {
66     unsigned long sum2;
67     unsigned n;
68 
69     /* split Adler-32 into component sums */
70     sum2 = (adler >> 16) & 0xffff;
71     adler &= 0xffff;
72 
73     /* in case user likes doing a byte at a time, keep it fast */
74     if (len == 1) {
75         adler += buf[0];
76         if (adler >= BASE)
77             adler -= BASE;
78         sum2 += adler;
79         if (sum2 >= BASE)
80             sum2 -= BASE;
81         return adler | (sum2 << 16);
82     }
83 
84     /* initial Adler-32 value (deferred check for len == 1 speed) */
85     if (buf == Z_NULL)
86         return 1L;
87 
88     /* in case short lengths are provided, keep it somewhat fast */
89     if (len < 16) {
90         while (len--) {
91             adler += *buf++;
92             sum2 += adler;
93         }
94         if (adler >= BASE)
95             adler -= BASE;
96         MOD28(sum2);            /* only added so many BASE's */
97         return adler | (sum2 << 16);
98     }
99 
100     /* do length NMAX blocks -- requires just one modulo operation */
101     while (len >= NMAX) {
102         len -= NMAX;
103         n = NMAX / 16;          /* NMAX is divisible by 16 */
104         do {
105             DO16(buf);          /* 16 sums unrolled */
106             buf += 16;
107         } while (--n);
108         MOD(adler);
109         MOD(sum2);
110     }
111 
112     /* do remaining bytes (less than NMAX, still just one modulo) */
113     if (len) {                  /* avoid modulos if none remaining */
114         while (len >= 16) {
115             len -= 16;
116             DO16(buf);
117             buf += 16;
118         }
119         while (len--) {
120             adler += *buf++;
121             sum2 += adler;
122         }
123         MOD(adler);
124         MOD(sum2);
125     }
126 
127     /* return recombined sums */
128     return adler | (sum2 << 16);
129 }
130 
131 /* ========================================================================= */
132 uLong ZEXPORT adler32(adler, buf, len)
133     uLong adler;
134     const Bytef *buf;
135     uInt len;
136 {
137     return adler32_z(adler, buf, len);
138 }
139 
140 /* ========================================================================= */
141 local uLong adler32_combine_(adler1, adler2, len2)
142     uLong adler1;
143     uLong adler2;
144     z_off64_t len2;
145 {
146     unsigned long sum1;
147     unsigned long sum2;
148     unsigned rem;
149 
150     /* for negative len, return invalid adler32 as a clue for debugging */
151     if (len2 < 0)
152         return 0xffffffffUL;
153 
154     /* the derivation of this formula is left as an exercise for the reader */
155     MOD63(len2);                /* assumes len2 >= 0 */
156     rem = (unsigned)len2;
157     sum1 = adler1 & 0xffff;
158     sum2 = rem * sum1;
159     MOD(sum2);
160     sum1 += (adler2 & 0xffff) + BASE - 1;
161     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
162     if (sum1 >= BASE) sum1 -= BASE;
163     if (sum1 >= BASE) sum1 -= BASE;
164     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
165     if (sum2 >= BASE) sum2 -= BASE;
166     return sum1 | (sum2 << 16);
167 }
168 
169 /* ========================================================================= */
170 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
171     uLong adler1;
172     uLong adler2;
173     z_off_t len2;
174 {
175     return adler32_combine_(adler1, adler2, len2);
176 }
177 
178 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
179     uLong adler1;
180     uLong adler2;
181     z_off64_t len2;
182 {
183     return adler32_combine_(adler1, adler2, len2);
184 }
185