xref: /openbsd-src/sys/kern/vfs_sync.c (revision 08107a0b7d66fc523db27a131ca819e179fb022c)
1 /*       $OpenBSD: vfs_sync.c,v 1.59 2018/05/27 06:02:14 visa Exp $  */
2 
3 /*
4  *  Portions of this code are:
5  *
6  * Copyright (c) 1989, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * Syncer daemon
41  */
42 
43 #include <sys/queue.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/mount.h>
48 #include <sys/vnode.h>
49 #include <sys/lock.h>
50 #include <sys/malloc.h>
51 
52 #include <sys/kernel.h>
53 #include <sys/sched.h>
54 
55 #ifdef FFS_SOFTUPDATES
56 int   softdep_process_worklist(struct mount *);
57 #endif
58 
59 /*
60  * The workitem queue.
61  */
62 #define SYNCER_MAXDELAY	32		/* maximum sync delay time */
63 #define SYNCER_DEFAULT 30		/* default sync delay time */
64 int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
65 int syncdelay = SYNCER_DEFAULT;		/* time to delay syncing vnodes */
66 
67 int rushjob = 0;			/* number of slots to run ASAP */
68 int stat_rush_requests = 0;		/* number of rush requests */
69 
70 int syncer_delayno = 0;
71 long syncer_mask;
72 LIST_HEAD(synclist, vnode);
73 static struct synclist *syncer_workitem_pending;
74 
75 struct proc *syncerproc;
76 
77 /*
78  * The workitem queue.
79  *
80  * It is useful to delay writes of file data and filesystem metadata
81  * for tens of seconds so that quickly created and deleted files need
82  * not waste disk bandwidth being created and removed. To realize this,
83  * we append vnodes to a "workitem" queue. When running with a soft
84  * updates implementation, most pending metadata dependencies should
85  * not wait for more than a few seconds. Thus, mounted block devices
86  * are delayed only about half the time that file data is delayed.
87  * Similarly, directory updates are more critical, so are only delayed
88  * about a third the time that file data is delayed. Thus, there are
89  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
90  * one each second (driven off the filesystem syncer process). The
91  * syncer_delayno variable indicates the next queue that is to be processed.
92  * Items that need to be processed soon are placed in this queue:
93  *
94  *	syncer_workitem_pending[syncer_delayno]
95  *
96  * A delay of fifteen seconds is done by placing the request fifteen
97  * entries later in the queue:
98  *
99  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
100  *
101  */
102 
103 void
104 vn_initialize_syncerd(void)
105 {
106 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, M_WAITOK,
107 	    &syncer_mask);
108 	syncer_maxdelay = syncer_mask + 1;
109 }
110 
111 /*
112  * Add an item to the syncer work queue.
113  */
114 void
115 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
116 {
117 	int s, slot;
118 
119 	if (delay > syncer_maxdelay - 2)
120 		delay = syncer_maxdelay - 2;
121 	slot = (syncer_delayno + delay) & syncer_mask;
122 
123 	s = splbio();
124 	if (vp->v_bioflag & VBIOONSYNCLIST)
125 		LIST_REMOVE(vp, v_synclist);
126 
127 	vp->v_bioflag |= VBIOONSYNCLIST;
128 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
129 	splx(s);
130 }
131 
132 /*
133  * System filesystem synchronizer daemon.
134  */
135 void
136 sched_sync(struct proc *p)
137 {
138 	struct synclist *slp;
139 	struct vnode *vp;
140 	time_t starttime;
141 	int s;
142 
143 	syncerproc = curproc;
144 
145 	for (;;) {
146 		starttime = time_second;
147 
148 		/*
149 		 * Push files whose dirty time has expired.
150 		 */
151 		s = splbio();
152 		slp = &syncer_workitem_pending[syncer_delayno];
153 
154 		syncer_delayno += 1;
155 		if (syncer_delayno == syncer_maxdelay)
156 			syncer_delayno = 0;
157 
158 		while ((vp = LIST_FIRST(slp)) != NULL) {
159 			if (vget(vp, LK_EXCLUSIVE | LK_NOWAIT)) {
160 				/*
161 				 * If we fail to get the lock, we move this
162 				 * vnode one second ahead in time.
163 				 * XXX - no good, but the best we can do.
164 				 */
165 				vn_syncer_add_to_worklist(vp, 1);
166 				continue;
167 			}
168 			splx(s);
169 			(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
170 			vput(vp);
171 			s = splbio();
172 			if (LIST_FIRST(slp) == vp) {
173 				/*
174 				 * Note: disk vps can remain on the
175 				 * worklist too with no dirty blocks, but
176 				 * since sync_fsync() moves it to a different
177 				 * slot we are safe.
178 				 */
179 #ifdef DIAGNOSTIC
180 				if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
181 				    vp->v_type != VBLK) {
182 					vprint("fsync failed", vp);
183 					if (vp->v_mount != NULL)
184 						printf("mounted on: %s\n",
185 						    vp->v_mount->mnt_stat.f_mntonname);
186 					panic("sched_sync: fsync failed");
187 				}
188 #endif /* DIAGNOSTIC */
189 				/*
190 				 * Put us back on the worklist.  The worklist
191 				 * routine will remove us from our current
192 				 * position and then add us back in at a later
193 				 * position.
194 				 */
195 				vn_syncer_add_to_worklist(vp, syncdelay);
196 			}
197 
198 			sched_pause(yield);
199 		}
200 
201 		splx(s);
202 
203 #ifdef FFS_SOFTUPDATES
204 		/*
205 		 * Do soft update processing.
206 		 */
207 		softdep_process_worklist(NULL);
208 #endif
209 
210 		/*
211 		 * The variable rushjob allows the kernel to speed up the
212 		 * processing of the filesystem syncer process. A rushjob
213 		 * value of N tells the filesystem syncer to process the next
214 		 * N seconds worth of work on its queue ASAP. Currently rushjob
215 		 * is used by the soft update code to speed up the filesystem
216 		 * syncer process when the incore state is getting so far
217 		 * ahead of the disk that the kernel memory pool is being
218 		 * threatened with exhaustion.
219 		 */
220 		if (rushjob > 0) {
221 			rushjob -= 1;
222 			continue;
223 		}
224 		/*
225 		 * If it has taken us less than a second to process the
226 		 * current work, then wait. Otherwise start right over
227 		 * again. We can still lose time if any single round
228 		 * takes more than two seconds, but it does not really
229 		 * matter as we are just trying to generally pace the
230 		 * filesystem activity.
231 		 */
232 		if (time_second == starttime)
233 			tsleep(&lbolt, PPAUSE, "syncer", 0);
234 	}
235 }
236 
237 /*
238  * Request the syncer daemon to speed up its work.
239  * We never push it to speed up more than half of its
240  * normal turn time, otherwise it could take over the cpu.
241  */
242 int
243 speedup_syncer(void)
244 {
245 	int s;
246 
247 	SCHED_LOCK(s);
248 	if (syncerproc && syncerproc->p_wchan == &lbolt)
249 		setrunnable(syncerproc);
250 	SCHED_UNLOCK(s);
251 	if (rushjob < syncdelay / 2) {
252 		rushjob += 1;
253 		stat_rush_requests += 1;
254 		return 1;
255 	}
256 	return 0;
257 }
258 
259 /* Routine to create and manage a filesystem syncer vnode. */
260 int   sync_fsync(void *);
261 int   sync_inactive(void *);
262 int   sync_print(void *);
263 
264 struct vops sync_vops = {
265 	.vop_close	= nullop,
266 	.vop_fsync	= sync_fsync,
267 	.vop_inactive	= sync_inactive,
268 	.vop_reclaim	= nullop,
269 	.vop_lock	= vop_generic_lock,
270 	.vop_unlock	= vop_generic_unlock,
271 	.vop_islocked	= vop_generic_islocked,
272 	.vop_print	= sync_print
273 };
274 
275 /*
276  * Create a new filesystem syncer vnode for the specified mount point.
277  */
278 int
279 vfs_allocate_syncvnode(struct mount *mp)
280 {
281 	struct vnode *vp;
282 	static long start, incr, next;
283 	int error;
284 
285 	/* Allocate a new vnode */
286 	if ((error = getnewvnode(VT_VFS, mp, &sync_vops, &vp)) != 0) {
287 		mp->mnt_syncer = NULL;
288 		return (error);
289 	}
290 	vp->v_writecount = 1;
291 	vp->v_type = VNON;
292 	/*
293 	 * Place the vnode onto the syncer worklist. We attempt to
294 	 * scatter them about on the list so that they will go off
295 	 * at evenly distributed times even if all the filesystems
296 	 * are mounted at once.
297 	 */
298 	next += incr;
299 	if (next == 0 || next > syncer_maxdelay) {
300 		start /= 2;
301 		incr /= 2;
302 		if (start == 0) {
303 			start = syncer_maxdelay / 2;
304 			incr = syncer_maxdelay;
305 		}
306 		next = start;
307 	}
308 	vn_syncer_add_to_worklist(vp, next);
309 	mp->mnt_syncer = vp;
310 	return (0);
311 }
312 
313 /*
314  * Do a lazy sync of the filesystem.
315  */
316 int
317 sync_fsync(void *v)
318 {
319 	struct vop_fsync_args *ap = v;
320 	struct vnode *syncvp = ap->a_vp;
321 	struct mount *mp = syncvp->v_mount;
322 	int asyncflag;
323 
324 	/*
325 	 * We only need to do something if this is a lazy evaluation.
326 	 */
327 	if (ap->a_waitfor != MNT_LAZY)
328 		return (0);
329 
330 	/*
331 	 * Move ourselves to the back of the sync list.
332 	 */
333 	vn_syncer_add_to_worklist(syncvp, syncdelay);
334 
335 	/*
336 	 * Walk the list of vnodes pushing all that are dirty and
337 	 * not already on the sync list.
338 	 */
339 	if (vfs_busy(mp, VB_READ|VB_NOWAIT) == 0) {
340 		asyncflag = mp->mnt_flag & MNT_ASYNC;
341 		mp->mnt_flag &= ~MNT_ASYNC;
342 		VFS_SYNC(mp, MNT_LAZY, 0, ap->a_cred, ap->a_p);
343 		if (asyncflag)
344 			mp->mnt_flag |= MNT_ASYNC;
345 		vfs_unbusy(mp);
346 	}
347 
348 	return (0);
349 }
350 
351 /*
352  * The syncer vnode is no longer needed and is being decommissioned.
353  */
354 int
355 sync_inactive(void *v)
356 {
357 	struct vop_inactive_args *ap = v;
358 
359 	struct vnode *vp = ap->a_vp;
360 	int s;
361 
362 	if (vp->v_usecount == 0) {
363 		VOP_UNLOCK(vp);
364 		return (0);
365 	}
366 
367 	vp->v_mount->mnt_syncer = NULL;
368 
369 	s = splbio();
370 
371 	LIST_REMOVE(vp, v_synclist);
372 	vp->v_bioflag &= ~VBIOONSYNCLIST;
373 
374 	splx(s);
375 
376 	vp->v_writecount = 0;
377 	vput(vp);
378 
379 	return (0);
380 }
381 
382 /*
383  * Print out a syncer vnode.
384  */
385 int
386 sync_print(void *v)
387 {
388 	printf("syncer vnode\n");
389 
390 	return (0);
391 }
392