1 /* $OpenBSD: vfs_bio.c,v 1.38 2001/05/05 20:57:01 art Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /*- 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 43 */ 44 45 /* 46 * Some references: 47 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 48 * Leffler, et al.: The Design and Implementation of the 4.3BSD 49 * UNIX Operating System (Addison Welley, 1989) 50 */ 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/proc.h> 55 #include <sys/buf.h> 56 #include <sys/vnode.h> 57 #include <sys/mount.h> 58 #include <sys/malloc.h> 59 #include <sys/resourcevar.h> 60 #include <sys/conf.h> 61 #include <sys/kernel.h> 62 63 #include <vm/vm.h> 64 65 #include <miscfs/specfs/specdev.h> 66 67 /* Macros to clear/set/test flags. */ 68 #define SET(t, f) (t) |= (f) 69 #define CLR(t, f) (t) &= ~(f) 70 #define ISSET(t, f) ((t) & (f)) 71 72 /* 73 * Definitions for the buffer hash lists. 74 */ 75 #define BUFHASH(dvp, lbn) \ 76 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) 77 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 78 u_long bufhash; 79 80 /* 81 * Insq/Remq for the buffer hash lists. 82 */ 83 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 84 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 85 86 /* 87 * Definitions for the buffer free lists. 88 */ 89 #define BQUEUES 4 /* number of free buffer queues */ 90 91 #define BQ_LOCKED 0 /* super-blocks &c */ 92 #define BQ_LRU 1 /* lru, useful buffers */ 93 #define BQ_AGE 2 /* rubbish */ 94 #define BQ_EMPTY 3 /* buffer headers with no memory */ 95 96 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 97 int needbuffer; 98 int syncer_needbuffer; 99 struct bio_ops bioops; 100 101 /* 102 * Insq/Remq for the buffer free lists. 103 */ 104 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 105 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 106 107 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int, 108 struct ucred *, int)); 109 int count_lock_queue __P((void)); 110 111 /* 112 * We keep a few counters to monitor the utilization of the buffer cache 113 * 114 * numdirtybufs - number of dirty (B_DELWRI) buffers. unused. 115 * lodirtybufs - ? unused. 116 * hidirtybufs - ? unused. 117 * numfreebufs - number of buffers on BQ_LRU and BQ_AGE. unused. 118 * numcleanbufs - number of clean (!B_DELWRI) buffers on BQ_LRU and BQ_AGE. 119 * Used to track the need to speedup the syncer and for the syncer reserve. 120 * numemptybufs - number of buffers on BQ_EMPTY. unused. 121 * mincleanbufs - the lowest number of clean buffers this far. 122 */ 123 int numdirtybufs; /* number of all dirty buffers */ 124 int lodirtybufs, hidirtybufs; 125 int numfreebufs; /* number of buffers on LRU+AGE free lists */ 126 int numcleanbufs; /* number of clean buffers on LRU+AGE free lists */ 127 int numemptybufs; /* number of buffers on EMPTY list */ 128 int locleanbufs; 129 #ifdef DEBUG 130 int mincleanbufs; 131 #endif 132 133 void 134 bremfree(bp) 135 struct buf *bp; 136 { 137 struct bqueues *dp = NULL; 138 139 /* 140 * We only calculate the head of the freelist when removing 141 * the last element of the list as that is the only time that 142 * it is needed (e.g. to reset the tail pointer). 143 * 144 * NB: This makes an assumption about how tailq's are implemented. 145 */ 146 if (bp->b_freelist.tqe_next == NULL) { 147 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 148 if (dp->tqh_last == &bp->b_freelist.tqe_next) 149 break; 150 if (dp == &bufqueues[BQUEUES]) 151 panic("bremfree: lost tail"); 152 } 153 if (bp->b_bufsize <= 0) { 154 numemptybufs--; 155 } else if (!ISSET(bp->b_flags, B_LOCKED)) { 156 numfreebufs--; 157 if (!ISSET(bp->b_flags, B_DELWRI)) { 158 numcleanbufs--; 159 #ifdef DEBUG 160 if (mincleanbufs > numcleanbufs) 161 mincleanbufs = numcleanbufs; 162 #endif 163 } 164 } 165 TAILQ_REMOVE(dp, bp, b_freelist); 166 } 167 168 /* 169 * Initialize buffers and hash links for buffers. 170 */ 171 void 172 bufinit() 173 { 174 register struct buf *bp; 175 struct bqueues *dp; 176 register int i; 177 int base, residual; 178 179 numfreebufs = 0; 180 numcleanbufs = 0; 181 numemptybufs = 0; 182 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 183 TAILQ_INIT(dp); 184 bufhashtbl = hashinit(nbuf, M_CACHE, M_WAITOK, &bufhash); 185 base = bufpages / nbuf; 186 residual = bufpages % nbuf; 187 for (i = 0; i < nbuf; i++) { 188 bp = &buf[i]; 189 bzero((char *)bp, sizeof *bp); 190 bp->b_dev = NODEV; 191 bp->b_rcred = NOCRED; 192 bp->b_wcred = NOCRED; 193 bp->b_vnbufs.le_next = NOLIST; 194 bp->b_data = buffers + i * MAXBSIZE; 195 LIST_INIT(&bp->b_dep); 196 if (i < residual) 197 bp->b_bufsize = (base + 1) * PAGE_SIZE; 198 else 199 bp->b_bufsize = base * PAGE_SIZE; 200 bp->b_flags = B_INVAL; 201 if (bp->b_bufsize) { 202 dp = &bufqueues[BQ_AGE]; 203 numfreebufs++; 204 numcleanbufs++; 205 } else { 206 dp = &bufqueues[BQ_EMPTY]; 207 numemptybufs++; 208 } 209 binsheadfree(bp, dp); 210 binshash(bp, &invalhash); 211 } 212 213 hidirtybufs = nbuf / 4 + 20; 214 numdirtybufs = 0; 215 lodirtybufs = hidirtybufs / 2; 216 217 /* 218 * Reserve 5% of bufs for syncer's needs, 219 * but not more than 25% and if possible 220 * not less then 16 bufs. locleanbufs 221 * value must be not too small, but probably 222 * there are no reason to set it more than 32. 223 */ 224 locleanbufs = nbuf / 20; 225 if (locleanbufs < 16) 226 locleanbufs = 16; 227 if (locleanbufs > nbuf/4) 228 locleanbufs = nbuf / 4; 229 #ifdef DEBUG 230 mincleanbufs = locleanbufs; 231 #endif 232 } 233 234 static __inline struct buf * 235 bio_doread(vp, blkno, size, cred, async) 236 struct vnode *vp; 237 daddr_t blkno; 238 int size; 239 struct ucred *cred; 240 int async; 241 { 242 register struct buf *bp; 243 244 bp = getblk(vp, blkno, size, 0, 0); 245 246 /* 247 * If buffer does not have data valid, start a read. 248 * Note that if buffer is B_INVAL, getblk() won't return it. 249 * Therefore, it's valid if it's I/O has completed or been delayed. 250 */ 251 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 252 /* Start I/O for the buffer (keeping credentials). */ 253 SET(bp->b_flags, B_READ | async); 254 if (cred != NOCRED && bp->b_rcred == NOCRED) { 255 crhold(cred); 256 bp->b_rcred = cred; 257 } 258 VOP_STRATEGY(bp); 259 260 /* Pay for the read. */ 261 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 262 } else if (async) { 263 brelse(bp); 264 } 265 266 return (bp); 267 } 268 269 /* 270 * Read a disk block. 271 * This algorithm described in Bach (p.54). 272 */ 273 int 274 bread(vp, blkno, size, cred, bpp) 275 struct vnode *vp; 276 daddr_t blkno; 277 int size; 278 struct ucred *cred; 279 struct buf **bpp; 280 { 281 register struct buf *bp; 282 283 /* Get buffer for block. */ 284 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 285 286 /* Wait for the read to complete, and return result. */ 287 return (biowait(bp)); 288 } 289 290 /* 291 * Read-ahead multiple disk blocks. The first is sync, the rest async. 292 * Trivial modification to the breada algorithm presented in Bach (p.55). 293 */ 294 int 295 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp) 296 struct vnode *vp; 297 daddr_t blkno; int size; 298 daddr_t rablks[]; int rasizes[]; 299 int nrablks; 300 struct ucred *cred; 301 struct buf **bpp; 302 { 303 register struct buf *bp; 304 int i; 305 306 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 307 308 /* 309 * For each of the read-ahead blocks, start a read, if necessary. 310 */ 311 for (i = 0; i < nrablks; i++) { 312 /* If it's in the cache, just go on to next one. */ 313 if (incore(vp, rablks[i])) 314 continue; 315 316 /* Get a buffer for the read-ahead block */ 317 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 318 } 319 320 /* Otherwise, we had to start a read for it; wait until it's valid. */ 321 return (biowait(bp)); 322 } 323 324 /* 325 * Read with single-block read-ahead. Defined in Bach (p.55), but 326 * implemented as a call to breadn(). 327 * XXX for compatibility with old file systems. 328 */ 329 int 330 breada(vp, blkno, size, rablkno, rabsize, cred, bpp) 331 struct vnode *vp; 332 daddr_t blkno; int size; 333 daddr_t rablkno; int rabsize; 334 struct ucred *cred; 335 struct buf **bpp; 336 { 337 338 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 339 } 340 341 /* 342 * Block write. Described in Bach (p.56) 343 */ 344 int 345 bwrite(bp) 346 struct buf *bp; 347 { 348 int rv, async, wasdelayed, s; 349 struct vnode *vp; 350 struct mount *mp; 351 352 /* 353 * Remember buffer type, to switch on it later. If the write was 354 * synchronous, but the file system was mounted with MNT_ASYNC, 355 * convert it to a delayed write. 356 * XXX note that this relies on delayed tape writes being converted 357 * to async, not sync writes (which is safe, but ugly). 358 */ 359 async = ISSET(bp->b_flags, B_ASYNC); 360 if (!async && bp->b_vp && bp->b_vp->v_mount && 361 ISSET(bp->b_vp->v_mount->mnt_flag, MNT_ASYNC)) { 362 bdwrite(bp); 363 return (0); 364 } 365 366 /* 367 * Collect statistics on synchronous and asynchronous writes. 368 * Writes to block devices are charged to their associated 369 * filesystem (if any). 370 */ 371 if ((vp = bp->b_vp) != NULL) { 372 if (vp->v_type == VBLK) 373 mp = vp->v_specmountpoint; 374 else 375 mp = vp->v_mount; 376 if (mp != NULL) { 377 if (async) 378 mp->mnt_stat.f_asyncwrites++; 379 else 380 mp->mnt_stat.f_syncwrites++; 381 } 382 } 383 384 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 385 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 386 387 s = splbio(); 388 389 /* 390 * If not synchronous, pay for the I/O operation and make 391 * sure the buf is on the correct vnode queue. We have 392 * to do this now, because if we don't, the vnode may not 393 * be properly notified that its I/O has completed. 394 */ 395 if (wasdelayed) { 396 --numdirtybufs; 397 reassignbuf(bp); 398 } else 399 curproc->p_stats->p_ru.ru_oublock++; 400 401 402 /* Initiate disk write. Make sure the appropriate party is charged. */ 403 bp->b_vp->v_numoutput++; 404 splx(s); 405 SET(bp->b_flags, B_WRITEINPROG); 406 VOP_STRATEGY(bp); 407 408 if (async) 409 return (0); 410 411 /* 412 * If I/O was synchronous, wait for it to complete. 413 */ 414 rv = biowait(bp); 415 416 /* Release the buffer. */ 417 brelse(bp); 418 419 return (rv); 420 } 421 422 423 /* 424 * Delayed write. 425 * 426 * The buffer is marked dirty, but is not queued for I/O. 427 * This routine should be used when the buffer is expected 428 * to be modified again soon, typically a small write that 429 * partially fills a buffer. 430 * 431 * NB: magnetic tapes cannot be delayed; they must be 432 * written in the order that the writes are requested. 433 * 434 * Described in Leffler, et al. (pp. 208-213). 435 */ 436 void 437 bdwrite(bp) 438 struct buf *bp; 439 { 440 int s; 441 442 /* 443 * If the block hasn't been seen before: 444 * (1) Mark it as having been seen, 445 * (2) Charge for the write. 446 * (3) Make sure it's on its vnode's correct block list, 447 * (4) If a buffer is rewritten, move it to end of dirty list 448 */ 449 if (!ISSET(bp->b_flags, B_DELWRI)) { 450 SET(bp->b_flags, B_DELWRI); 451 s = splbio(); 452 reassignbuf(bp); 453 ++numdirtybufs; 454 splx(s); 455 curproc->p_stats->p_ru.ru_oublock++; /* XXX */ 456 } 457 458 /* If this is a tape block, write the block now. */ 459 if (major(bp->b_dev) < nblkdev && 460 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 461 bawrite(bp); 462 return; 463 } 464 465 /* Otherwise, the "write" is done, so mark and release the buffer. */ 466 CLR(bp->b_flags, B_NEEDCOMMIT); 467 SET(bp->b_flags, B_DONE); 468 brelse(bp); 469 } 470 471 /* 472 * Asynchronous block write; just an asynchronous bwrite(). 473 */ 474 void 475 bawrite(bp) 476 struct buf *bp; 477 { 478 479 SET(bp->b_flags, B_ASYNC); 480 VOP_BWRITE(bp); 481 } 482 483 /* 484 * Must be called at splbio() 485 */ 486 void 487 buf_dirty(bp) 488 struct buf *bp; 489 { 490 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 491 SET(bp->b_flags, B_DELWRI); 492 reassignbuf(bp); 493 ++numdirtybufs; 494 #ifdef DIAGNOSTIC 495 if (numdirtybufs > nbuf) 496 panic("buf_dirty: incorrect number of dirty bufs"); 497 #endif 498 } 499 } 500 501 /* 502 * Must be called at splbio() 503 */ 504 void 505 buf_undirty(bp) 506 struct buf *bp; 507 { 508 if (ISSET(bp->b_flags, B_DELWRI)) { 509 CLR(bp->b_flags, B_DELWRI); 510 reassignbuf(bp); 511 --numdirtybufs; 512 #ifdef DIAGNOSTIC 513 if (numdirtybufs < 0) 514 panic("buf_undirty: incorrect number of dirty bufs"); 515 #endif 516 } 517 } 518 519 /* 520 * Release a buffer on to the free lists. 521 * Described in Bach (p. 46). 522 */ 523 void 524 brelse(bp) 525 struct buf *bp; 526 { 527 struct bqueues *bufq; 528 int s; 529 530 /* Block disk interrupts. */ 531 s = splbio(); 532 533 /* 534 * Determine which queue the buffer should be on, then put it there. 535 */ 536 537 /* If it's locked, don't report an error; try again later. */ 538 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 539 CLR(bp->b_flags, B_ERROR); 540 541 /* If it's not cacheable, or an error, mark it invalid. */ 542 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 543 SET(bp->b_flags, B_INVAL); 544 545 if (ISSET(bp->b_flags, B_VFLUSH)) { 546 /* 547 * This is a delayed write buffer that was just flushed to 548 * disk. It is still on the LRU queue. If it's become 549 * invalid, then we need to move it to a different queue; 550 * otherwise leave it in its current position. 551 */ 552 CLR(bp->b_flags, B_VFLUSH); 553 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) 554 goto already_queued; 555 else 556 bremfree(bp); 557 } 558 559 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 560 /* 561 * If it's invalid or empty, dissociate it from its vnode 562 * and put on the head of the appropriate queue. 563 */ 564 if (LIST_FIRST(&bp->b_dep) != NULL) 565 buf_deallocate(bp); 566 567 if (ISSET(bp->b_flags, B_DELWRI)) { 568 --numdirtybufs; 569 CLR(bp->b_flags, B_DELWRI); 570 } 571 572 if (bp->b_vp) { 573 reassignbuf(bp); 574 brelvp(bp); 575 } 576 if (bp->b_bufsize <= 0) { 577 /* no data */ 578 bufq = &bufqueues[BQ_EMPTY]; 579 numemptybufs++; 580 } else { 581 /* invalid data */ 582 bufq = &bufqueues[BQ_AGE]; 583 numfreebufs++; 584 numcleanbufs++; 585 } 586 binsheadfree(bp, bufq); 587 } else { 588 /* 589 * It has valid data. Put it on the end of the appropriate 590 * queue, so that it'll stick around for as long as possible. 591 * If buf is AGE, but has dependencies, must put it on last 592 * bufqueue to be scanned, ie LRU. This protects against the 593 * livelock where BQ_AGE only has buffers with dependencies, 594 * and we thus never get to the dependent buffers in BQ_LRU. 595 */ 596 if (ISSET(bp->b_flags, B_LOCKED)) 597 /* locked in core */ 598 bufq = &bufqueues[BQ_LOCKED]; 599 else { 600 numfreebufs++; 601 if (!ISSET(bp->b_flags, B_DELWRI)) 602 numcleanbufs++; 603 if (ISSET(bp->b_flags, B_AGE)) 604 /* stale but valid data */ 605 bufq = buf_countdeps(bp, 0, 1) ? 606 &bufqueues[BQ_LRU] : &bufqueues[BQ_AGE]; 607 else 608 /* valid data */ 609 bufq = &bufqueues[BQ_LRU]; 610 } 611 binstailfree(bp, bufq); 612 } 613 614 already_queued: 615 /* Unlock the buffer. */ 616 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_BUSY | B_NOCACHE)); 617 618 /* Allow disk interrupts. */ 619 splx(s); 620 621 /* Wake up syncer process waiting for buffers */ 622 if (syncer_needbuffer) { 623 wakeup(&syncer_needbuffer); 624 syncer_needbuffer = 0; 625 } 626 627 /* Wake up any processes waiting for any buffer to become free. */ 628 if (needbuffer && (numcleanbufs > locleanbufs)) { 629 needbuffer--; 630 wakeup_one(&needbuffer); 631 } 632 633 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 634 if (ISSET(bp->b_flags, B_WANTED)) { 635 CLR(bp->b_flags, B_WANTED); 636 wakeup(bp); 637 } 638 } 639 640 /* 641 * Determine if a block is in the cache. 642 * Just look on what would be its hash chain. If it's there, return 643 * a pointer to it, unless it's marked invalid. If it's marked invalid, 644 * we normally don't return the buffer, unless the caller explicitly 645 * wants us to. 646 */ 647 struct buf * 648 incore(vp, blkno) 649 struct vnode *vp; 650 daddr_t blkno; 651 { 652 struct buf *bp; 653 654 bp = BUFHASH(vp, blkno)->lh_first; 655 656 /* Search hash chain */ 657 for (; bp != NULL; bp = bp->b_hash.le_next) { 658 if (bp->b_lblkno == blkno && bp->b_vp == vp && 659 !ISSET(bp->b_flags, B_INVAL)) 660 return (bp); 661 } 662 663 return (0); 664 } 665 666 /* 667 * Get a block of requested size that is associated with 668 * a given vnode and block offset. If it is found in the 669 * block cache, mark it as having been found, make it busy 670 * and return it. Otherwise, return an empty block of the 671 * correct size. It is up to the caller to insure that the 672 * cached blocks be of the correct size. 673 */ 674 struct buf * 675 getblk(vp, blkno, size, slpflag, slptimeo) 676 register struct vnode *vp; 677 daddr_t blkno; 678 int size, slpflag, slptimeo; 679 { 680 struct bufhashhdr *bh; 681 struct buf *bp; 682 int s, err; 683 684 /* 685 * XXX 686 * The following is an inlined version of 'incore()', but with 687 * the 'invalid' test moved to after the 'busy' test. It's 688 * necessary because there are some cases in which the NFS 689 * code sets B_INVAL prior to writing data to the server, but 690 * in which the buffers actually contain valid data. In this 691 * case, we can't allow the system to allocate a new buffer for 692 * the block until the write is finished. 693 */ 694 bh = BUFHASH(vp, blkno); 695 start: 696 bp = bh->lh_first; 697 for (; bp != NULL; bp = bp->b_hash.le_next) { 698 if (bp->b_lblkno != blkno || bp->b_vp != vp) 699 continue; 700 701 s = splbio(); 702 if (ISSET(bp->b_flags, B_BUSY)) { 703 SET(bp->b_flags, B_WANTED); 704 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 705 slptimeo); 706 splx(s); 707 if (err) 708 return (NULL); 709 goto start; 710 } 711 712 if (!ISSET(bp->b_flags, B_INVAL)) { 713 SET(bp->b_flags, (B_BUSY | B_CACHE)); 714 bremfree(bp); 715 splx(s); 716 break; 717 } 718 splx(s); 719 } 720 721 if (bp == NULL) { 722 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL) 723 goto start; 724 binshash(bp, bh); 725 bp->b_blkno = bp->b_lblkno = blkno; 726 s = splbio(); 727 bgetvp(vp, bp); 728 splx(s); 729 } 730 allocbuf(bp, size); 731 732 return (bp); 733 } 734 735 /* 736 * Get an empty, disassociated buffer of given size. 737 */ 738 struct buf * 739 geteblk(size) 740 int size; 741 { 742 struct buf *bp; 743 744 while ((bp = getnewbuf(0, 0)) == 0) 745 ; 746 SET(bp->b_flags, B_INVAL); 747 binshash(bp, &invalhash); 748 allocbuf(bp, size); 749 750 return (bp); 751 } 752 753 /* 754 * Expand or contract the actual memory allocated to a buffer. 755 * 756 * If the buffer shrinks, data is lost, so it's up to the 757 * caller to have written it out *first*; this routine will not 758 * start a write. If the buffer grows, it's the callers 759 * responsibility to fill out the buffer's additional contents. 760 */ 761 void 762 allocbuf(bp, size) 763 struct buf *bp; 764 int size; 765 { 766 struct buf *nbp; 767 vsize_t desired_size; 768 int s; 769 770 desired_size = round_page(size); 771 if (desired_size > MAXBSIZE) 772 panic("allocbuf: buffer larger than MAXBSIZE requested"); 773 774 if (bp->b_bufsize == desired_size) 775 goto out; 776 777 /* 778 * If the buffer is smaller than the desired size, we need to snarf 779 * it from other buffers. Get buffers (via getnewbuf()), and 780 * steal their pages. 781 */ 782 while (bp->b_bufsize < desired_size) { 783 int amt; 784 785 /* find a buffer */ 786 while ((nbp = getnewbuf(0, 0)) == NULL) 787 ; 788 SET(nbp->b_flags, B_INVAL); 789 binshash(nbp, &invalhash); 790 791 /* and steal its pages, up to the amount we need */ 792 amt = MIN(nbp->b_bufsize, (desired_size - bp->b_bufsize)); 793 pagemove((nbp->b_data + nbp->b_bufsize - amt), 794 bp->b_data + bp->b_bufsize, amt); 795 bp->b_bufsize += amt; 796 nbp->b_bufsize -= amt; 797 798 /* reduce transfer count if we stole some data */ 799 if (nbp->b_bcount > nbp->b_bufsize) 800 nbp->b_bcount = nbp->b_bufsize; 801 802 #ifdef DIAGNOSTIC 803 if (nbp->b_bufsize < 0) 804 panic("allocbuf: negative bufsize"); 805 #endif 806 807 brelse(nbp); 808 } 809 810 /* 811 * If we want a buffer smaller than the current size, 812 * shrink this buffer. Grab a buf head from the EMPTY queue, 813 * move a page onto it, and put it on front of the AGE queue. 814 * If there are no free buffer headers, leave the buffer alone. 815 */ 816 if (bp->b_bufsize > desired_size) { 817 s = splbio(); 818 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) { 819 /* No free buffer head */ 820 splx(s); 821 goto out; 822 } 823 bremfree(nbp); 824 SET(nbp->b_flags, B_BUSY); 825 splx(s); 826 827 /* move the page to it and note this change */ 828 pagemove(bp->b_data + desired_size, 829 nbp->b_data, bp->b_bufsize - desired_size); 830 nbp->b_bufsize = bp->b_bufsize - desired_size; 831 bp->b_bufsize = desired_size; 832 nbp->b_bcount = 0; 833 SET(nbp->b_flags, B_INVAL); 834 835 /* release the newly-filled buffer and leave */ 836 brelse(nbp); 837 } 838 839 out: 840 bp->b_bcount = size; 841 } 842 843 /* 844 * Find a buffer which is available for use. 845 * Select something from a free list. 846 * Preference is to AGE list, then LRU list. 847 */ 848 struct buf * 849 getnewbuf(slpflag, slptimeo) 850 int slpflag, slptimeo; 851 { 852 register struct buf *bp; 853 int s; 854 855 start: 856 s = splbio(); 857 /* 858 * If we're getting low on buffers kick the syncer to work harder. 859 */ 860 if (numcleanbufs < locleanbufs + min(locleanbufs, 4)) 861 speedup_syncer(); 862 863 if ((numcleanbufs <= locleanbufs) && curproc != syncerproc) { 864 /* wait for a free buffer of any kind */ 865 needbuffer++; 866 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo); 867 splx(s); 868 return (0); 869 } 870 if ((bp = bufqueues[BQ_AGE].tqh_first) == NULL && 871 (bp = bufqueues[BQ_LRU].tqh_first) == NULL) { 872 /* wait for a free buffer of any kind */ 873 syncer_needbuffer = 1; 874 tsleep(&syncer_needbuffer, slpflag|(PRIBIO-3), "getnewbuf", 875 slptimeo); 876 splx(s); 877 return (0); 878 } 879 880 bremfree(bp); 881 882 if (ISSET(bp->b_flags, B_VFLUSH)) { 883 /* 884 * This is a delayed write buffer being flushed to disk. Make 885 * sure it gets aged out of the queue when it's finished, and 886 * leave it off the LRU queue. 887 */ 888 CLR(bp->b_flags, B_VFLUSH); 889 SET(bp->b_flags, B_AGE); 890 splx(s); 891 goto start; 892 } 893 894 /* Buffer is no longer on free lists. */ 895 SET(bp->b_flags, B_BUSY); 896 897 /* If buffer was a delayed write, start it, and go back to the top. */ 898 if (ISSET(bp->b_flags, B_DELWRI)) { 899 splx(s); 900 /* 901 * This buffer has gone through the LRU, so make sure it gets 902 * reused ASAP. 903 */ 904 SET(bp->b_flags, B_AGE); 905 bawrite(bp); 906 return (0); 907 } 908 909 /* disassociate us from our vnode, if we had one... */ 910 if (bp->b_vp) 911 brelvp(bp); 912 913 splx(s); 914 915 if (LIST_FIRST(&bp->b_dep) != NULL) 916 buf_deallocate(bp); 917 918 /* clear out various other fields */ 919 bp->b_flags = B_BUSY; 920 bp->b_dev = NODEV; 921 bp->b_blkno = bp->b_lblkno = 0; 922 bp->b_iodone = 0; 923 bp->b_error = 0; 924 bp->b_resid = 0; 925 bp->b_bcount = 0; 926 bp->b_dirtyoff = bp->b_dirtyend = 0; 927 bp->b_validoff = bp->b_validend = 0; 928 929 /* nuke any credentials we were holding */ 930 if (bp->b_rcred != NOCRED) { 931 crfree(bp->b_rcred); 932 bp->b_rcred = NOCRED; 933 } 934 if (bp->b_wcred != NOCRED) { 935 crfree(bp->b_wcred); 936 bp->b_wcred = NOCRED; 937 } 938 939 bremhash(bp); 940 return (bp); 941 } 942 943 /* 944 * Wait for operations on the buffer to complete. 945 * When they do, extract and return the I/O's error value. 946 */ 947 int 948 biowait(bp) 949 struct buf *bp; 950 { 951 int s; 952 953 s = splbio(); 954 while (!ISSET(bp->b_flags, B_DONE)) 955 tsleep(bp, PRIBIO + 1, "biowait", 0); 956 splx(s); 957 958 /* check for interruption of I/O (e.g. via NFS), then errors. */ 959 if (ISSET(bp->b_flags, B_EINTR)) { 960 CLR(bp->b_flags, B_EINTR); 961 return (EINTR); 962 } 963 964 if (ISSET(bp->b_flags, B_ERROR)) 965 return (bp->b_error ? bp->b_error : EIO); 966 else 967 return (0); 968 } 969 970 /* 971 * Mark I/O complete on a buffer. 972 * 973 * If a callback has been requested, e.g. the pageout 974 * daemon, do so. Otherwise, awaken waiting processes. 975 * 976 * [ Leffler, et al., says on p.247: 977 * "This routine wakes up the blocked process, frees the buffer 978 * for an asynchronous write, or, for a request by the pagedaemon 979 * process, invokes a procedure specified in the buffer structure" ] 980 * 981 * In real life, the pagedaemon (or other system processes) wants 982 * to do async stuff to, and doesn't want the buffer brelse()'d. 983 * (for swap pager, that puts swap buffers on the free lists (!!!), 984 * for the vn device, that puts malloc'd buffers on the free lists!) 985 */ 986 void 987 biodone(bp) 988 struct buf *bp; 989 { 990 if (ISSET(bp->b_flags, B_DONE)) 991 panic("biodone already"); 992 SET(bp->b_flags, B_DONE); /* note that it's done */ 993 994 if (LIST_FIRST(&bp->b_dep) != NULL) 995 buf_complete(bp); 996 997 if (!ISSET(bp->b_flags, B_READ)) { 998 CLR(bp->b_flags, B_WRITEINPROG); 999 vwakeup(bp->b_vp); 1000 } 1001 1002 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1003 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1004 (*bp->b_iodone)(bp); 1005 } else { 1006 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1007 brelse(bp); 1008 } else { /* or just wakeup the buffer */ 1009 CLR(bp->b_flags, B_WANTED); 1010 wakeup(bp); 1011 } 1012 } 1013 } 1014 1015 #ifdef DEBUG 1016 /* 1017 * Return a count of buffers on the "locked" queue. 1018 */ 1019 int 1020 count_lock_queue() 1021 { 1022 register struct buf *bp; 1023 register int n = 0; 1024 1025 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp; 1026 bp = bp->b_freelist.tqe_next) 1027 n++; 1028 return (n); 1029 } 1030 #endif /* DEBUG */ 1031 1032 #ifdef DEBUG 1033 /* 1034 * Print out statistics on the current allocation of the buffer pool. 1035 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1036 * in vfs_syscalls.c using sysctl. 1037 */ 1038 void 1039 vfs_bufstats() 1040 { 1041 int s, i, j, count; 1042 register struct buf *bp; 1043 register struct bqueues *dp; 1044 int counts[MAXBSIZE/PAGE_SIZE+1]; 1045 int totals[BQUEUES]; 1046 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" }; 1047 1048 s = splbio(); 1049 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1050 count = 0; 1051 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1052 counts[j] = 0; 1053 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) { 1054 counts[bp->b_bufsize/PAGE_SIZE]++; 1055 count++; 1056 } 1057 totals[i] = count; 1058 printf("%s: total-%d", bname[i], count); 1059 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1060 if (counts[j] != 0) 1061 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1062 printf("\n"); 1063 } 1064 if (totals[BQ_EMPTY] != numemptybufs) 1065 printf("numemptybufs counter wrong: %d != %d\n", 1066 totals[BQ_EMPTY], numemptybufs); 1067 if ((totals[BQ_LRU] + totals[BQ_AGE]) != numfreebufs) 1068 printf("numfreebufs counter wrong: %d != %d\n", 1069 totals[BQ_LRU] + totals[BQ_AGE], numemptybufs); 1070 if ((totals[BQ_LRU] + totals[BQ_AGE]) < numcleanbufs || 1071 (numcleanbufs < 0)) 1072 printf("numcleanbufs counter wrong: %d < %d\n", 1073 totals[BQ_LRU] + totals[BQ_AGE], numcleanbufs); 1074 printf("numcleanbufs: %d\n", numcleanbufs); 1075 printf("syncer eating up to %d bufs from %d reserved\n", 1076 locleanbufs - mincleanbufs, locleanbufs); 1077 printf("numdirtybufs: %d\n", numdirtybufs); 1078 splx(s); 1079 } 1080 #endif /* DEBUG */ 1081