1 /* $OpenBSD: vfs_bio.c,v 1.107 2008/06/14 00:49:35 art Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /*- 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/resourcevar.h> 57 #include <sys/conf.h> 58 #include <sys/kernel.h> 59 60 #include <uvm/uvm_extern.h> 61 62 #include <miscfs/specfs/specdev.h> 63 64 /* 65 * Definitions for the buffer hash lists. 66 */ 67 #define BUFHASH(dvp, lbn) \ 68 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) 69 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 70 u_long bufhash; 71 72 /* 73 * Insq/Remq for the buffer hash lists. 74 */ 75 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 76 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 77 78 /* 79 * Definitions for the buffer free lists. 80 */ 81 #define BQUEUES 2 /* number of free buffer queues */ 82 83 #define BQ_DIRTY 0 /* LRU queue with dirty buffers */ 84 #define BQ_CLEAN 1 /* LRU queue with clean buffers */ 85 86 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 87 int needbuffer; 88 struct bio_ops bioops; 89 90 /* 91 * Buffer pool for I/O buffers. 92 */ 93 struct pool bufpool; 94 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 95 struct buf *buf_get(size_t); 96 struct buf *buf_stub(struct vnode *, daddr64_t); 97 void buf_put(struct buf *); 98 99 /* 100 * Insq/Remq for the buffer free lists. 101 */ 102 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 103 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 104 105 struct buf *bio_doread(struct vnode *, daddr64_t, int, int); 106 struct buf *getnewbuf(size_t, int, int, int *); 107 void buf_init(struct buf *); 108 void bread_cluster_callback(struct buf *); 109 110 /* 111 * We keep a few counters to monitor the utilization of the buffer cache 112 * 113 * numbufpages - number of pages totally allocated. 114 * numdirtypages - number of pages on BQ_DIRTY queue. 115 * lodirtypages - low water mark for buffer cleaning daemon. 116 * hidirtypages - high water mark for buffer cleaning daemon. 117 * numcleanpages - number of pages on BQ_CLEAN queue. 118 * Used to track the need to speedup the cleaner and 119 * as a reserve for special processes like syncer. 120 * maxcleanpages - the highest page count on BQ_CLEAN. 121 */ 122 123 struct bcachestats bcstats; 124 long lodirtypages; 125 long hidirtypages; 126 long locleanpages; 127 long hicleanpages; 128 long maxcleanpages; 129 130 /* XXX - should be defined here. */ 131 extern int bufcachepercent; 132 133 vsize_t bufkvm; 134 135 struct proc *cleanerproc; 136 int bd_req; /* Sleep point for cleaner daemon. */ 137 138 void 139 bremfree(struct buf *bp) 140 { 141 struct bqueues *dp = NULL; 142 143 splassert(IPL_BIO); 144 145 /* 146 * We only calculate the head of the freelist when removing 147 * the last element of the list as that is the only time that 148 * it is needed (e.g. to reset the tail pointer). 149 * 150 * NB: This makes an assumption about how tailq's are implemented. 151 */ 152 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 153 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 154 if (dp->tqh_last == &TAILQ_NEXT(bp, b_freelist)) 155 break; 156 if (dp == &bufqueues[BQUEUES]) 157 panic("bremfree: lost tail"); 158 } 159 if (!ISSET(bp->b_flags, B_DELWRI)) { 160 bcstats.numcleanpages -= atop(bp->b_bufsize); 161 } else { 162 bcstats.numdirtypages -= atop(bp->b_bufsize); 163 } 164 TAILQ_REMOVE(dp, bp, b_freelist); 165 bcstats.freebufs--; 166 } 167 168 void 169 buf_init(struct buf *bp) 170 { 171 splassert(IPL_BIO); 172 173 bzero((char *)bp, sizeof *bp); 174 bp->b_vnbufs.le_next = NOLIST; 175 bp->b_freelist.tqe_next = NOLIST; 176 bp->b_synctime = time_uptime + 300; 177 bp->b_dev = NODEV; 178 LIST_INIT(&bp->b_dep); 179 } 180 181 /* 182 * This is a non-sleeping expanded equivalent of getblk() that allocates only 183 * the buffer structure, and not its contents. 184 */ 185 struct buf * 186 buf_stub(struct vnode *vp, daddr64_t lblkno) 187 { 188 struct buf *bp; 189 int s; 190 191 s = splbio(); 192 bp = pool_get(&bufpool, PR_NOWAIT); 193 splx(s); 194 195 if (bp == NULL) 196 return (NULL); 197 198 bzero((char *)bp, sizeof *bp); 199 bp->b_vnbufs.le_next = NOLIST; 200 bp->b_freelist.tqe_next = NOLIST; 201 bp->b_synctime = time_uptime + 300; 202 bp->b_dev = NODEV; 203 bp->b_bufsize = 0; 204 bp->b_data = NULL; 205 bp->b_flags = 0; 206 bp->b_dev = NODEV; 207 bp->b_blkno = bp->b_lblkno = lblkno; 208 bp->b_iodone = NULL; 209 bp->b_error = 0; 210 bp->b_resid = 0; 211 bp->b_bcount = 0; 212 bp->b_dirtyoff = bp->b_dirtyend = 0; 213 bp->b_validoff = bp->b_validend = 0; 214 215 LIST_INIT(&bp->b_dep); 216 217 buf_acquire_unmapped(bp); 218 219 s = splbio(); 220 LIST_INSERT_HEAD(&bufhead, bp, b_list); 221 bcstats.numbufs++; 222 bgetvp(vp, bp); 223 splx(s); 224 225 return (bp); 226 } 227 228 struct buf * 229 buf_get(size_t size) 230 { 231 struct buf *bp; 232 int npages; 233 234 splassert(IPL_BIO); 235 236 KASSERT(size > 0); 237 238 size = round_page(size); 239 npages = atop(size); 240 241 if (bcstats.numbufpages + npages > bufpages) 242 return (NULL); 243 244 bp = pool_get(&bufpool, PR_WAITOK); 245 246 buf_init(bp); 247 bp->b_flags = B_INVAL; 248 buf_alloc_pages(bp, size); 249 bp->b_data = NULL; 250 binsheadfree(bp, &bufqueues[BQ_CLEAN]); 251 binshash(bp, &invalhash); 252 LIST_INSERT_HEAD(&bufhead, bp, b_list); 253 bcstats.numbufs++; 254 bcstats.freebufs++; 255 bcstats.numcleanpages += atop(bp->b_bufsize); 256 257 return (bp); 258 } 259 260 void 261 buf_put(struct buf *bp) 262 { 263 splassert(IPL_BIO); 264 #ifdef DIAGNOSTIC 265 if (bp->b_pobj != NULL) 266 KASSERT(bp->b_bufsize > 0); 267 #endif 268 #ifdef DIAGNOSTIC 269 if (bp->b_freelist.tqe_next != NOLIST && 270 bp->b_freelist.tqe_next != (void *)-1) 271 panic("buf_put: still on the free list"); 272 273 if (bp->b_vnbufs.le_next != NOLIST && 274 bp->b_vnbufs.le_next != (void *)-1) 275 panic("buf_put: still on the vnode list"); 276 #endif 277 #ifdef DIAGNOSTIC 278 if (!LIST_EMPTY(&bp->b_dep)) 279 panic("buf_put: b_dep is not empty"); 280 #endif 281 LIST_REMOVE(bp, b_list); 282 bcstats.numbufs--; 283 284 if (buf_dealloc_mem(bp) != 0) 285 return; 286 pool_put(&bufpool, bp); 287 } 288 289 /* 290 * Initialize buffers and hash links for buffers. 291 */ 292 void 293 bufinit(void) 294 { 295 struct bqueues *dp; 296 297 /* XXX - for now */ 298 bufpages = bufcachepercent = bufkvm = 0; 299 300 /* 301 * If MD code doesn't say otherwise, use 10% of kvm for mappings and 302 * 10% physmem for pages. 303 */ 304 if (bufcachepercent == 0) 305 bufcachepercent = 10; 306 if (bufpages == 0) 307 bufpages = physmem * bufcachepercent / 100; 308 309 if (bufkvm == 0) 310 bufkvm = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 10; 311 312 /* 313 * Don't use more than twice the amount of bufpages for mappings. 314 * It's twice since we map things sparsely. 315 */ 316 if (bufkvm > bufpages * PAGE_SIZE) 317 bufkvm = bufpages * PAGE_SIZE; 318 /* 319 * Round bufkvm to MAXPHYS because we allocate chunks of va space 320 * in MAXPHYS chunks. 321 */ 322 bufkvm &= ~(MAXPHYS - 1); 323 324 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 325 pool_setipl(&bufpool, IPL_BIO); 326 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 327 TAILQ_INIT(dp); 328 329 /* 330 * hmm - bufkvm is an argument because it's static, while 331 * bufpages is global because it can change while running. 332 */ 333 buf_mem_init(bufkvm); 334 335 bufhashtbl = hashinit(bufpages / 4, M_CACHE, M_WAITOK, &bufhash); 336 hidirtypages = (bufpages / 4) * 3; 337 lodirtypages = bufpages / 2; 338 339 /* 340 * When we hit 95% of pages being clean, we bring them down to 341 * 90% to have some slack. 342 */ 343 hicleanpages = bufpages - (bufpages / 20); 344 locleanpages = bufpages - (bufpages / 10); 345 346 maxcleanpages = locleanpages; 347 } 348 349 struct buf * 350 bio_doread(struct vnode *vp, daddr64_t blkno, int size, int async) 351 { 352 struct buf *bp; 353 struct mount *mp; 354 355 bp = getblk(vp, blkno, size, 0, 0); 356 357 /* 358 * If buffer does not have valid data, start a read. 359 * Note that if buffer is B_INVAL, getblk() won't return it. 360 * Therefore, it's valid if its I/O has completed or been delayed. 361 */ 362 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 363 SET(bp->b_flags, B_READ | async); 364 bcstats.pendingreads++; 365 bcstats.numreads++; 366 VOP_STRATEGY(bp); 367 /* Pay for the read. */ 368 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 369 } else if (async) { 370 brelse(bp); 371 } 372 373 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 374 375 /* 376 * Collect statistics on synchronous and asynchronous reads. 377 * Reads from block devices are charged to their associated 378 * filesystem (if any). 379 */ 380 if (mp != NULL) { 381 if (async == 0) 382 mp->mnt_stat.f_syncreads++; 383 else 384 mp->mnt_stat.f_asyncreads++; 385 } 386 387 return (bp); 388 } 389 390 /* 391 * Read a disk block. 392 * This algorithm described in Bach (p.54). 393 */ 394 int 395 bread(struct vnode *vp, daddr64_t blkno, int size, struct ucred *cred, 396 struct buf **bpp) 397 { 398 struct buf *bp; 399 400 /* Get buffer for block. */ 401 bp = *bpp = bio_doread(vp, blkno, size, 0); 402 403 /* Wait for the read to complete, and return result. */ 404 return (biowait(bp)); 405 } 406 407 /* 408 * Read-ahead multiple disk blocks. The first is sync, the rest async. 409 * Trivial modification to the breada algorithm presented in Bach (p.55). 410 */ 411 int 412 breadn(struct vnode *vp, daddr64_t blkno, int size, daddr64_t rablks[], 413 int rasizes[], int nrablks, struct ucred *cred, struct buf **bpp) 414 { 415 struct buf *bp; 416 int i; 417 418 bp = *bpp = bio_doread(vp, blkno, size, 0); 419 420 /* 421 * For each of the read-ahead blocks, start a read, if necessary. 422 */ 423 for (i = 0; i < nrablks; i++) { 424 /* If it's in the cache, just go on to next one. */ 425 if (incore(vp, rablks[i])) 426 continue; 427 428 /* Get a buffer for the read-ahead block */ 429 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 430 } 431 432 /* Otherwise, we had to start a read for it; wait until it's valid. */ 433 return (biowait(bp)); 434 } 435 436 /* 437 * Called from interrupt context. 438 */ 439 void 440 bread_cluster_callback(struct buf *bp) 441 { 442 int i; 443 struct buf **xbpp; 444 445 xbpp = (struct buf **)bp->b_saveaddr; 446 447 for (i = 0; xbpp[i] != 0; i++) { 448 if (ISSET(bp->b_flags, B_ERROR)) 449 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 450 biodone(xbpp[i]); 451 } 452 453 free(xbpp, M_TEMP); 454 bp->b_pobj = NULL; 455 buf_put(bp); 456 } 457 458 int 459 bread_cluster(struct vnode *vp, daddr64_t blkno, int size, struct buf **rbpp) 460 { 461 struct buf *bp, **xbpp; 462 int howmany, maxra, i, inc; 463 daddr64_t sblkno; 464 465 *rbpp = bio_doread(vp, blkno, size, 0); 466 467 if (size != round_page(size)) 468 return (biowait(*rbpp)); 469 470 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 471 return (biowait(*rbpp)); 472 473 maxra++; 474 if (sblkno == -1 || maxra < 2) 475 return (biowait(*rbpp)); 476 477 howmany = MAXPHYS / size; 478 if (howmany > maxra) 479 howmany = maxra; 480 481 xbpp = malloc((howmany + 1) * sizeof(struct buf *), M_TEMP, M_NOWAIT); 482 if (xbpp == NULL) 483 return (biowait(*rbpp)); 484 485 for (i = 0; i < howmany; i++) { 486 if (incore(vp, blkno + i + 1)) { 487 for (--i; i >= 0; i--) { 488 SET(xbpp[i]->b_flags, B_INVAL); 489 brelse(xbpp[i]); 490 } 491 free(xbpp, M_TEMP); 492 return (biowait(*rbpp)); 493 } 494 xbpp[i] = buf_stub(vp, blkno + i + 1); 495 if (xbpp[i] == NULL) { 496 for (--i; i >= 0; i--) { 497 SET(xbpp[i]->b_flags, B_INVAL); 498 brelse(xbpp[i]); 499 } 500 free(xbpp, M_TEMP); 501 return (biowait(*rbpp)); 502 } 503 } 504 505 xbpp[howmany] = 0; 506 507 bp = getnewbuf(howmany * size, 0, 0, NULL); 508 if (bp == NULL) { 509 for (i = 0; i < howmany; i++) { 510 SET(xbpp[i]->b_flags, B_INVAL); 511 brelse(xbpp[i]); 512 } 513 free(xbpp, M_TEMP); 514 return (biowait(*rbpp)); 515 } 516 517 inc = btodb(size); 518 519 for (i = 0; i < howmany; i++) { 520 bcstats.pendingreads++; 521 bcstats.numreads++; 522 SET(xbpp[i]->b_flags, B_READ | B_ASYNC); 523 binshash(xbpp[i], BUFHASH(vp, xbpp[i]->b_lblkno)); 524 xbpp[i]->b_blkno = sblkno + (i * inc); 525 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 526 xbpp[i]->b_data = NULL; 527 xbpp[i]->b_pobj = bp->b_pobj; 528 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 529 buf_acquire_unmapped(xbpp[i]); 530 } 531 532 bp->b_blkno = sblkno; 533 bp->b_lblkno = blkno + 1; 534 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 535 bp->b_saveaddr = (void *)xbpp; 536 bp->b_iodone = bread_cluster_callback; 537 bp->b_vp = vp; 538 bcstats.pendingreads++; 539 bcstats.numreads++; 540 VOP_STRATEGY(bp); 541 curproc->p_stats->p_ru.ru_inblock++; 542 543 return (biowait(*rbpp)); 544 } 545 546 /* 547 * Block write. Described in Bach (p.56) 548 */ 549 int 550 bwrite(struct buf *bp) 551 { 552 int rv, async, wasdelayed, s; 553 struct vnode *vp; 554 struct mount *mp; 555 556 vp = bp->b_vp; 557 if (vp != NULL) 558 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 559 else 560 mp = NULL; 561 562 /* 563 * Remember buffer type, to switch on it later. If the write was 564 * synchronous, but the file system was mounted with MNT_ASYNC, 565 * convert it to a delayed write. 566 * XXX note that this relies on delayed tape writes being converted 567 * to async, not sync writes (which is safe, but ugly). 568 */ 569 async = ISSET(bp->b_flags, B_ASYNC); 570 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 571 bdwrite(bp); 572 return (0); 573 } 574 575 /* 576 * Collect statistics on synchronous and asynchronous writes. 577 * Writes to block devices are charged to their associated 578 * filesystem (if any). 579 */ 580 if (mp != NULL) { 581 if (async) 582 mp->mnt_stat.f_asyncwrites++; 583 else 584 mp->mnt_stat.f_syncwrites++; 585 } 586 bcstats.pendingwrites++; 587 bcstats.numwrites++; 588 589 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 590 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 591 592 s = splbio(); 593 594 /* 595 * If not synchronous, pay for the I/O operation and make 596 * sure the buf is on the correct vnode queue. We have 597 * to do this now, because if we don't, the vnode may not 598 * be properly notified that its I/O has completed. 599 */ 600 if (wasdelayed) { 601 reassignbuf(bp); 602 } else 603 curproc->p_stats->p_ru.ru_oublock++; 604 605 606 /* Initiate disk write. Make sure the appropriate party is charged. */ 607 bp->b_vp->v_numoutput++; 608 splx(s); 609 SET(bp->b_flags, B_WRITEINPROG); 610 VOP_STRATEGY(bp); 611 612 if (async) 613 return (0); 614 615 /* 616 * If I/O was synchronous, wait for it to complete. 617 */ 618 rv = biowait(bp); 619 620 /* Release the buffer. */ 621 brelse(bp); 622 623 return (rv); 624 } 625 626 627 /* 628 * Delayed write. 629 * 630 * The buffer is marked dirty, but is not queued for I/O. 631 * This routine should be used when the buffer is expected 632 * to be modified again soon, typically a small write that 633 * partially fills a buffer. 634 * 635 * NB: magnetic tapes cannot be delayed; they must be 636 * written in the order that the writes are requested. 637 * 638 * Described in Leffler, et al. (pp. 208-213). 639 */ 640 void 641 bdwrite(struct buf *bp) 642 { 643 int s; 644 645 /* 646 * If the block hasn't been seen before: 647 * (1) Mark it as having been seen, 648 * (2) Charge for the write. 649 * (3) Make sure it's on its vnode's correct block list, 650 * (4) If a buffer is rewritten, move it to end of dirty list 651 */ 652 if (!ISSET(bp->b_flags, B_DELWRI)) { 653 SET(bp->b_flags, B_DELWRI); 654 bp->b_synctime = time_uptime + 35; 655 s = splbio(); 656 reassignbuf(bp); 657 splx(s); 658 curproc->p_stats->p_ru.ru_oublock++; /* XXX */ 659 } else { 660 /* 661 * see if this buffer has slacked through the syncer 662 * and enforce an async write upon it. 663 */ 664 if (bp->b_synctime < time_uptime) { 665 bawrite(bp); 666 return; 667 } 668 } 669 670 /* If this is a tape block, write the block now. */ 671 if (major(bp->b_dev) < nblkdev && 672 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 673 bawrite(bp); 674 return; 675 } 676 677 /* Otherwise, the "write" is done, so mark and release the buffer. */ 678 CLR(bp->b_flags, B_NEEDCOMMIT); 679 SET(bp->b_flags, B_DONE); 680 brelse(bp); 681 } 682 683 /* 684 * Asynchronous block write; just an asynchronous bwrite(). 685 */ 686 void 687 bawrite(struct buf *bp) 688 { 689 690 SET(bp->b_flags, B_ASYNC); 691 VOP_BWRITE(bp); 692 } 693 694 /* 695 * Must be called at splbio() 696 */ 697 void 698 buf_dirty(struct buf *bp) 699 { 700 splassert(IPL_BIO); 701 702 #ifdef DIAGNOSTIC 703 if (!ISSET(bp->b_flags, B_BUSY)) 704 panic("Trying to dirty buffer on freelist!"); 705 #endif 706 707 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 708 SET(bp->b_flags, B_DELWRI); 709 bp->b_synctime = time_uptime + 35; 710 reassignbuf(bp); 711 } 712 } 713 714 /* 715 * Must be called at splbio() 716 */ 717 void 718 buf_undirty(struct buf *bp) 719 { 720 splassert(IPL_BIO); 721 722 #ifdef DIAGNOSTIC 723 if (!ISSET(bp->b_flags, B_BUSY)) 724 panic("Trying to undirty buffer on freelist!"); 725 #endif 726 if (ISSET(bp->b_flags, B_DELWRI)) { 727 CLR(bp->b_flags, B_DELWRI); 728 reassignbuf(bp); 729 } 730 } 731 732 /* 733 * Release a buffer on to the free lists. 734 * Described in Bach (p. 46). 735 */ 736 void 737 brelse(struct buf *bp) 738 { 739 struct bqueues *bufq; 740 int s; 741 742 /* Block disk interrupts. */ 743 s = splbio(); 744 745 if (bp->b_data != NULL) 746 KASSERT(bp->b_bufsize > 0); 747 748 /* 749 * Determine which queue the buffer should be on, then put it there. 750 */ 751 752 /* If it's not cacheable, or an error, mark it invalid. */ 753 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 754 SET(bp->b_flags, B_INVAL); 755 756 if (ISSET(bp->b_flags, B_INVAL)) { 757 /* 758 * If the buffer is invalid, place it in the clean queue, so it 759 * can be reused. 760 */ 761 if (LIST_FIRST(&bp->b_dep) != NULL) 762 buf_deallocate(bp); 763 764 if (ISSET(bp->b_flags, B_DELWRI)) { 765 CLR(bp->b_flags, B_DELWRI); 766 } 767 768 if (bp->b_vp) 769 brelvp(bp); 770 771 /* 772 * If the buffer has no associated data, place it back in the 773 * pool. 774 */ 775 if (bp->b_data == NULL && bp->b_pobj == NULL) { 776 /* 777 * Wake up any processes waiting for _this_ buffer to 778 * become free. They are not allowed to grab it 779 * since it will be freed. But the only sleeper is 780 * getblk and it's restarting the operation after 781 * sleep. 782 */ 783 if (ISSET(bp->b_flags, B_WANTED)) { 784 CLR(bp->b_flags, B_WANTED); 785 wakeup(bp); 786 } 787 buf_put(bp); 788 splx(s); 789 return; 790 } 791 792 bcstats.numcleanpages += atop(bp->b_bufsize); 793 if (maxcleanpages < bcstats.numcleanpages) 794 maxcleanpages = bcstats.numcleanpages; 795 binsheadfree(bp, &bufqueues[BQ_CLEAN]); 796 } else { 797 /* 798 * It has valid data. Put it on the end of the appropriate 799 * queue, so that it'll stick around for as long as possible. 800 */ 801 802 if (!ISSET(bp->b_flags, B_DELWRI)) { 803 bcstats.numcleanpages += atop(bp->b_bufsize); 804 if (maxcleanpages < bcstats.numcleanpages) 805 maxcleanpages = bcstats.numcleanpages; 806 bufq = &bufqueues[BQ_CLEAN]; 807 } else { 808 bcstats.numdirtypages += atop(bp->b_bufsize); 809 bufq = &bufqueues[BQ_DIRTY]; 810 } 811 if (ISSET(bp->b_flags, B_AGE)) { 812 binsheadfree(bp, bufq); 813 bp->b_synctime = time_uptime + 30; 814 } else { 815 binstailfree(bp, bufq); 816 bp->b_synctime = time_uptime + 300; 817 } 818 } 819 820 /* Unlock the buffer. */ 821 bcstats.freebufs++; 822 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 823 buf_release(bp); 824 825 /* Wake up any processes waiting for any buffer to become free. */ 826 if (needbuffer) { 827 needbuffer--; 828 wakeup_one(&needbuffer); 829 } 830 831 /* Wake up any processes waiting for _this_ buffer to become free. */ 832 if (ISSET(bp->b_flags, B_WANTED)) { 833 CLR(bp->b_flags, B_WANTED); 834 wakeup(bp); 835 } 836 837 splx(s); 838 } 839 840 /* 841 * Determine if a block is in the cache. Just look on what would be its hash 842 * chain. If it's there, return a pointer to it, unless it's marked invalid. 843 */ 844 struct buf * 845 incore(struct vnode *vp, daddr64_t blkno) 846 { 847 struct buf *bp; 848 849 /* Search hash chain */ 850 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 851 if (bp->b_lblkno == blkno && bp->b_vp == vp && 852 !ISSET(bp->b_flags, B_INVAL)) 853 return (bp); 854 } 855 856 return (NULL); 857 } 858 859 /* 860 * Get a block of requested size that is associated with 861 * a given vnode and block offset. If it is found in the 862 * block cache, mark it as having been found, make it busy 863 * and return it. Otherwise, return an empty block of the 864 * correct size. It is up to the caller to ensure that the 865 * cached blocks be of the correct size. 866 */ 867 struct buf * 868 getblk(struct vnode *vp, daddr64_t blkno, int size, int slpflag, int slptimeo) 869 { 870 struct bufhashhdr *bh; 871 struct buf *bp, *nb = NULL; 872 int s, error; 873 874 /* 875 * XXX 876 * The following is an inlined version of 'incore()', but with 877 * the 'invalid' test moved to after the 'busy' test. It's 878 * necessary because there are some cases in which the NFS 879 * code sets B_INVAL prior to writing data to the server, but 880 * in which the buffers actually contain valid data. In this 881 * case, we can't allow the system to allocate a new buffer for 882 * the block until the write is finished. 883 */ 884 bh = BUFHASH(vp, blkno); 885 start: 886 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 887 if (bp->b_lblkno != blkno || bp->b_vp != vp) 888 continue; 889 890 s = splbio(); 891 if (ISSET(bp->b_flags, B_BUSY)) { 892 if (nb != NULL) { 893 SET(nb->b_flags, B_INVAL); 894 binshash(nb, &invalhash); 895 brelse(nb); 896 nb = NULL; 897 } 898 SET(bp->b_flags, B_WANTED); 899 error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 900 slptimeo); 901 splx(s); 902 if (error) 903 return (NULL); 904 goto start; 905 } 906 907 if (!ISSET(bp->b_flags, B_INVAL)) { 908 bcstats.cachehits++; 909 bremfree(bp); 910 SET(bp->b_flags, B_CACHE); 911 buf_acquire(bp); 912 splx(s); 913 break; 914 } 915 splx(s); 916 } 917 if (nb && bp) { 918 SET(nb->b_flags, B_INVAL); 919 binshash(nb, &invalhash); 920 brelse(nb); 921 nb = NULL; 922 } 923 if (bp == NULL && nb == NULL) { 924 nb = getnewbuf(size, slpflag, slptimeo, &error); 925 if (nb == NULL) { 926 if (error == ERESTART || error == EINTR) 927 return (NULL); 928 } 929 goto start; 930 } 931 if (nb) { 932 bp = nb; 933 binshash(bp, bh); 934 bp->b_blkno = bp->b_lblkno = blkno; 935 s = splbio(); 936 bgetvp(vp, bp); 937 splx(s); 938 } 939 #ifdef DIAGNOSTIC 940 if (!ISSET(bp->b_flags, B_BUSY)) 941 panic("getblk buffer not B_BUSY"); 942 #endif 943 return (bp); 944 } 945 946 /* 947 * Get an empty, disassociated buffer of given size. 948 */ 949 struct buf * 950 geteblk(int size) 951 { 952 struct buf *bp; 953 954 while ((bp = getnewbuf(size, 0, 0, NULL)) == NULL) 955 ; 956 SET(bp->b_flags, B_INVAL); 957 binshash(bp, &invalhash); 958 959 return (bp); 960 } 961 962 /* 963 * Find a buffer which is available for use. 964 */ 965 struct buf * 966 getnewbuf(size_t size, int slpflag, int slptimeo, int *ep) 967 { 968 struct buf *bp; 969 int s; 970 971 #if 0 /* we would really like this but sblock update kills it */ 972 KASSERT(curproc != syncerproc && curproc != cleanerproc); 973 #endif 974 975 s = splbio(); 976 /* 977 * Wake up cleaner if we're getting low on pages. 978 */ 979 if (bcstats.numdirtypages >= hidirtypages || bcstats.numcleanpages <= locleanpages) 980 wakeup(&bd_req); 981 982 /* 983 * If we're above the high water mark for clean pages, 984 * free down to the low water mark. 985 */ 986 if (bcstats.numcleanpages > hicleanpages) { 987 while (bcstats.numcleanpages > locleanpages) { 988 bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN]); 989 bremfree(bp); 990 if (bp->b_vp) 991 brelvp(bp); 992 bremhash(bp); 993 buf_put(bp); 994 } 995 } 996 997 /* we just ask. it can say no.. */ 998 getsome: 999 bp = buf_get(size); 1000 if (bp == NULL) { 1001 int freemax = 5; 1002 int i = freemax; 1003 while ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) && i--) { 1004 bremfree(bp); 1005 if (bp->b_vp) 1006 brelvp(bp); 1007 bremhash(bp); 1008 buf_put(bp); 1009 } 1010 if (freemax != i) 1011 goto getsome; 1012 splx(s); 1013 return (NULL); 1014 } 1015 1016 bremfree(bp); 1017 /* Buffer is no longer on free lists. */ 1018 bp->b_flags = 0; 1019 buf_acquire(bp); 1020 1021 #ifdef DIAGNOSTIC 1022 if (ISSET(bp->b_flags, B_DELWRI)) 1023 panic("Dirty buffer on BQ_CLEAN"); 1024 #endif 1025 1026 /* disassociate us from our vnode, if we had one... */ 1027 if (bp->b_vp) 1028 brelvp(bp); 1029 1030 splx(s); 1031 1032 #ifdef DIAGNOSTIC 1033 /* CLEAN buffers must have no dependencies */ 1034 if (LIST_FIRST(&bp->b_dep) != NULL) 1035 panic("BQ_CLEAN has buffer with dependencies"); 1036 #endif 1037 1038 /* clear out various other fields */ 1039 bp->b_dev = NODEV; 1040 bp->b_blkno = bp->b_lblkno = 0; 1041 bp->b_iodone = NULL; 1042 bp->b_error = 0; 1043 bp->b_resid = 0; 1044 bp->b_bcount = size; 1045 bp->b_dirtyoff = bp->b_dirtyend = 0; 1046 bp->b_validoff = bp->b_validend = 0; 1047 1048 bremhash(bp); 1049 return (bp); 1050 } 1051 1052 /* 1053 * Buffer cleaning daemon. 1054 */ 1055 void 1056 buf_daemon(struct proc *p) 1057 { 1058 struct timeval starttime, timediff; 1059 struct buf *bp; 1060 int s; 1061 1062 cleanerproc = curproc; 1063 1064 s = splbio(); 1065 for (;;) { 1066 if (bcstats.numdirtypages < hidirtypages) 1067 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 1068 1069 getmicrouptime(&starttime); 1070 1071 while ((bp = TAILQ_FIRST(&bufqueues[BQ_DIRTY]))) { 1072 struct timeval tv; 1073 1074 if (bcstats.numdirtypages < lodirtypages) 1075 break; 1076 1077 bremfree(bp); 1078 buf_acquire(bp); 1079 splx(s); 1080 1081 if (ISSET(bp->b_flags, B_INVAL)) { 1082 brelse(bp); 1083 s = splbio(); 1084 continue; 1085 } 1086 #ifdef DIAGNOSTIC 1087 if (!ISSET(bp->b_flags, B_DELWRI)) 1088 panic("Clean buffer on BQ_DIRTY"); 1089 #endif 1090 if (LIST_FIRST(&bp->b_dep) != NULL && 1091 !ISSET(bp->b_flags, B_DEFERRED) && 1092 buf_countdeps(bp, 0, 0)) { 1093 SET(bp->b_flags, B_DEFERRED); 1094 s = splbio(); 1095 bcstats.numdirtypages += atop(bp->b_bufsize); 1096 binstailfree(bp, &bufqueues[BQ_DIRTY]); 1097 bcstats.freebufs++; 1098 buf_release(bp); 1099 continue; 1100 } 1101 1102 bawrite(bp); 1103 1104 /* Never allow processing to run for more than 1 sec */ 1105 getmicrouptime(&tv); 1106 timersub(&tv, &starttime, &timediff); 1107 s = splbio(); 1108 if (timediff.tv_sec) 1109 break; 1110 1111 } 1112 } 1113 } 1114 1115 /* 1116 * Wait for operations on the buffer to complete. 1117 * When they do, extract and return the I/O's error value. 1118 */ 1119 int 1120 biowait(struct buf *bp) 1121 { 1122 int s; 1123 1124 KASSERT(!(bp->b_flags & B_ASYNC)); 1125 1126 s = splbio(); 1127 while (!ISSET(bp->b_flags, B_DONE)) 1128 tsleep(bp, PRIBIO + 1, "biowait", 0); 1129 splx(s); 1130 1131 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1132 if (ISSET(bp->b_flags, B_EINTR)) { 1133 CLR(bp->b_flags, B_EINTR); 1134 return (EINTR); 1135 } 1136 1137 if (ISSET(bp->b_flags, B_ERROR)) 1138 return (bp->b_error ? bp->b_error : EIO); 1139 else 1140 return (0); 1141 } 1142 1143 /* 1144 * Mark I/O complete on a buffer. 1145 * 1146 * If a callback has been requested, e.g. the pageout 1147 * daemon, do so. Otherwise, awaken waiting processes. 1148 * 1149 * [ Leffler, et al., says on p.247: 1150 * "This routine wakes up the blocked process, frees the buffer 1151 * for an asynchronous write, or, for a request by the pagedaemon 1152 * process, invokes a procedure specified in the buffer structure" ] 1153 * 1154 * In real life, the pagedaemon (or other system processes) wants 1155 * to do async stuff to, and doesn't want the buffer brelse()'d. 1156 * (for swap pager, that puts swap buffers on the free lists (!!!), 1157 * for the vn device, that puts malloc'd buffers on the free lists!) 1158 * 1159 * Must be called at splbio(). 1160 */ 1161 void 1162 biodone(struct buf *bp) 1163 { 1164 splassert(IPL_BIO); 1165 1166 if (ISSET(bp->b_flags, B_DONE)) 1167 panic("biodone already"); 1168 SET(bp->b_flags, B_DONE); /* note that it's done */ 1169 1170 if (LIST_FIRST(&bp->b_dep) != NULL) 1171 buf_complete(bp); 1172 1173 if (!ISSET(bp->b_flags, B_READ)) { 1174 CLR(bp->b_flags, B_WRITEINPROG); 1175 bcstats.pendingwrites--; 1176 vwakeup(bp->b_vp); 1177 } else if (bcstats.numbufs && 1178 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) 1179 bcstats.pendingreads--; 1180 1181 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1182 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1183 (*bp->b_iodone)(bp); 1184 } else { 1185 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1186 brelse(bp); 1187 } else { /* or just wakeup the buffer */ 1188 CLR(bp->b_flags, B_WANTED); 1189 wakeup(bp); 1190 } 1191 } 1192 } 1193