1 /* $OpenBSD: vfs_bio.c,v 1.160 2014/07/13 15:48:41 tedu Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /* 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/resourcevar.h> 57 #include <sys/conf.h> 58 #include <sys/kernel.h> 59 #include <sys/specdev.h> 60 61 #ifdef HIBERNATE 62 #include <sys/hibernate.h> 63 #endif /* HIBERNATE */ 64 65 int nobuffers; 66 int needbuffer; 67 struct bio_ops bioops; 68 69 /* 70 * Buffer pool for I/O buffers. 71 */ 72 struct pool bufpool; 73 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 74 void buf_put(struct buf *); 75 76 struct buf *bio_doread(struct vnode *, daddr_t, int, int); 77 struct buf *buf_get(struct vnode *, daddr_t, size_t); 78 void bread_cluster_callback(struct buf *); 79 80 struct bcachestats bcstats; /* counters */ 81 long lodirtypages; /* dirty page count low water mark */ 82 long hidirtypages; /* dirty page count high water mark */ 83 long targetpages; /* target number of pages for cache size */ 84 long buflowpages; /* smallest size cache allowed */ 85 long bufhighpages; /* largerst size cache allowed */ 86 long bufbackpages; /* minimum number of pages we shrink when asked to */ 87 88 vsize_t bufkvm; 89 90 struct proc *cleanerproc; 91 int bd_req; /* Sleep point for cleaner daemon. */ 92 93 void 94 buf_put(struct buf *bp) 95 { 96 splassert(IPL_BIO); 97 98 #ifdef DIAGNOSTIC 99 if (bp->b_pobj != NULL) 100 KASSERT(bp->b_bufsize > 0); 101 if (ISSET(bp->b_flags, B_DELWRI)) 102 panic("buf_put: releasing dirty buffer"); 103 if (bp->b_freelist.tqe_next != NOLIST && 104 bp->b_freelist.tqe_next != (void *)-1) 105 panic("buf_put: still on the free list"); 106 if (bp->b_vnbufs.le_next != NOLIST && 107 bp->b_vnbufs.le_next != (void *)-1) 108 panic("buf_put: still on the vnode list"); 109 if (!LIST_EMPTY(&bp->b_dep)) 110 panic("buf_put: b_dep is not empty"); 111 #endif 112 113 LIST_REMOVE(bp, b_list); 114 bcstats.numbufs--; 115 116 if (buf_dealloc_mem(bp) != 0) 117 return; 118 pool_put(&bufpool, bp); 119 } 120 121 /* 122 * Initialize buffers and hash links for buffers. 123 */ 124 void 125 bufinit(void) 126 { 127 u_int64_t dmapages; 128 129 dmapages = uvm_pagecount(&dma_constraint); 130 /* take away a guess at how much of this the kernel will consume */ 131 dmapages -= (atop(physmem) - atop(uvmexp.free)); 132 133 /* 134 * If MD code doesn't say otherwise, use up to 10% of DMA'able 135 * memory for buffers. 136 */ 137 if (bufcachepercent == 0) 138 bufcachepercent = 10; 139 140 /* 141 * XXX these values and their same use in kern_sysctl 142 * need to move into buf.h 143 */ 144 KASSERT(bufcachepercent <= 90); 145 KASSERT(bufcachepercent >= 5); 146 if (bufpages == 0) 147 bufpages = dmapages * bufcachepercent / 100; 148 if (bufpages < BCACHE_MIN) 149 bufpages = BCACHE_MIN; 150 KASSERT(bufpages < dmapages); 151 152 bufhighpages = bufpages; 153 154 /* 155 * Set the base backoff level for the buffer cache. We will 156 * not allow uvm to steal back more than this number of pages. 157 */ 158 buflowpages = dmapages * 5 / 100; 159 if (buflowpages < BCACHE_MIN) 160 buflowpages = BCACHE_MIN; 161 162 /* 163 * set bufbackpages to 100 pages, or 10 percent of the low water mark 164 * if we don't have that many pages. 165 */ 166 167 bufbackpages = buflowpages * 10 / 100; 168 if (bufbackpages > 100) 169 bufbackpages = 100; 170 171 /* 172 * If the MD code does not say otherwise, reserve 10% of kva 173 * space for mapping buffers. 174 */ 175 if (bufkvm == 0) 176 bufkvm = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 10; 177 178 /* 179 * Don't use more than twice the amount of bufpages for mappings. 180 * It's twice since we map things sparsely. 181 */ 182 if (bufkvm > bufpages * PAGE_SIZE) 183 bufkvm = bufpages * PAGE_SIZE; 184 /* 185 * Round bufkvm to MAXPHYS because we allocate chunks of va space 186 * in MAXPHYS chunks. 187 */ 188 bufkvm &= ~(MAXPHYS - 1); 189 190 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 191 pool_setipl(&bufpool, IPL_BIO); 192 193 bufcache_init(); 194 195 /* 196 * hmm - bufkvm is an argument because it's static, while 197 * bufpages is global because it can change while running. 198 */ 199 buf_mem_init(bufkvm); 200 201 /* 202 * Set the dirty page high water mark to be less than the low 203 * water mark for pages in the buffer cache. This ensures we 204 * can always back off by throwing away clean pages, and give 205 * ourselves a chance to write out the dirty pages eventually. 206 */ 207 hidirtypages = (buflowpages / 4) * 3; 208 lodirtypages = buflowpages / 2; 209 210 /* 211 * We are allowed to use up to the reserve. 212 */ 213 targetpages = bufpages - RESERVE_PAGES; 214 } 215 216 /* 217 * Change cachepct 218 */ 219 void 220 bufadjust(int newbufpages) 221 { 222 struct buf *bp; 223 int s; 224 225 if (newbufpages < buflowpages) 226 newbufpages = buflowpages; 227 228 s = splbio(); 229 bufpages = newbufpages; 230 231 /* 232 * We are allowed to use up to the reserve 233 */ 234 targetpages = bufpages - RESERVE_PAGES; 235 236 /* 237 * Shrinking the cache happens here only if someone has manually 238 * adjusted bufcachepercent - or the pagedaemon has told us 239 * to give back memory *now* - so we give it all back. 240 */ 241 while ((bp = bufcache_getcleanbuf()) && 242 (bcstats.numbufpages > targetpages)) { 243 bufcache_take(bp); 244 if (bp->b_vp) { 245 RB_REMOVE(buf_rb_bufs, 246 &bp->b_vp->v_bufs_tree, bp); 247 brelvp(bp); 248 } 249 buf_put(bp); 250 } 251 252 /* 253 * Wake up the cleaner if we have lots of dirty pages, 254 * or if we are getting low on buffer cache kva. 255 */ 256 if ((UNCLEAN_PAGES >= hidirtypages) || 257 bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS) 258 wakeup(&bd_req); 259 260 splx(s); 261 } 262 263 /* 264 * Make the buffer cache back off from cachepct. 265 */ 266 int 267 bufbackoff(struct uvm_constraint_range *range, long size) 268 { 269 /* 270 * Back off "size" buffer cache pages. Called by the page 271 * daemon to consume buffer cache pages rather than scanning. 272 * 273 * It returns 0 to the pagedaemon to indicate that it has 274 * succeeded in freeing enough pages. It returns -1 to 275 * indicate that it could not and the pagedaemon should take 276 * other measures. 277 * 278 */ 279 long pdelta, oldbufpages; 280 281 /* 282 * Back off by at least bufbackpages. If the page daemon gave us 283 * a larger size, back off by that much. 284 */ 285 pdelta = (size > bufbackpages) ? size : bufbackpages; 286 287 if (bufpages <= buflowpages) 288 return(-1); 289 if (bufpages - pdelta < buflowpages) 290 pdelta = bufpages - buflowpages; 291 oldbufpages = bufpages; 292 bufadjust(bufpages - pdelta); 293 if (oldbufpages - bufpages < size) 294 return (-1); /* we did not free what we were asked */ 295 else 296 return(0); 297 } 298 299 struct buf * 300 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async) 301 { 302 struct buf *bp; 303 struct mount *mp; 304 305 bp = getblk(vp, blkno, size, 0, 0); 306 307 /* 308 * If buffer does not have valid data, start a read. 309 * Note that if buffer is B_INVAL, getblk() won't return it. 310 * Therefore, it's valid if its I/O has completed or been delayed. 311 */ 312 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 313 SET(bp->b_flags, B_READ | async); 314 bcstats.pendingreads++; 315 bcstats.numreads++; 316 VOP_STRATEGY(bp); 317 /* Pay for the read. */ 318 curproc->p_ru.ru_inblock++; /* XXX */ 319 } else if (async) { 320 brelse(bp); 321 } 322 323 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 324 325 /* 326 * Collect statistics on synchronous and asynchronous reads. 327 * Reads from block devices are charged to their associated 328 * filesystem (if any). 329 */ 330 if (mp != NULL) { 331 if (async == 0) 332 mp->mnt_stat.f_syncreads++; 333 else 334 mp->mnt_stat.f_asyncreads++; 335 } 336 337 return (bp); 338 } 339 340 /* 341 * Read a disk block. 342 * This algorithm described in Bach (p.54). 343 */ 344 int 345 bread(struct vnode *vp, daddr_t blkno, int size, struct buf **bpp) 346 { 347 struct buf *bp; 348 349 /* Get buffer for block. */ 350 bp = *bpp = bio_doread(vp, blkno, size, 0); 351 352 /* Wait for the read to complete, and return result. */ 353 return (biowait(bp)); 354 } 355 356 /* 357 * Read-ahead multiple disk blocks. The first is sync, the rest async. 358 * Trivial modification to the breada algorithm presented in Bach (p.55). 359 */ 360 int 361 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t rablks[], 362 int rasizes[], int nrablks, struct buf **bpp) 363 { 364 struct buf *bp; 365 int i; 366 367 bp = *bpp = bio_doread(vp, blkno, size, 0); 368 369 /* 370 * For each of the read-ahead blocks, start a read, if necessary. 371 */ 372 for (i = 0; i < nrablks; i++) { 373 /* If it's in the cache, just go on to next one. */ 374 if (incore(vp, rablks[i])) 375 continue; 376 377 /* Get a buffer for the read-ahead block */ 378 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 379 } 380 381 /* Otherwise, we had to start a read for it; wait until it's valid. */ 382 return (biowait(bp)); 383 } 384 385 /* 386 * Called from interrupt context. 387 */ 388 void 389 bread_cluster_callback(struct buf *bp) 390 { 391 struct buf **xbpp = bp->b_saveaddr; 392 int i; 393 394 if (xbpp[1] != NULL) { 395 size_t newsize = xbpp[1]->b_bufsize; 396 397 /* 398 * Shrink this buffer's mapping to only cover its part of 399 * the total I/O. 400 */ 401 buf_fix_mapping(bp, newsize); 402 bp->b_bcount = newsize; 403 } 404 405 for (i = 1; xbpp[i] != 0; i++) { 406 if (ISSET(bp->b_flags, B_ERROR)) 407 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 408 biodone(xbpp[i]); 409 } 410 411 free(xbpp, M_TEMP, 0); 412 413 if (ISSET(bp->b_flags, B_ASYNC)) { 414 brelse(bp); 415 } else { 416 CLR(bp->b_flags, B_WANTED); 417 wakeup(bp); 418 } 419 } 420 421 int 422 bread_cluster(struct vnode *vp, daddr_t blkno, int size, struct buf **rbpp) 423 { 424 struct buf *bp, **xbpp; 425 int howmany, maxra, i, inc; 426 daddr_t sblkno; 427 428 *rbpp = bio_doread(vp, blkno, size, 0); 429 430 if (size != round_page(size)) 431 goto out; 432 433 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 434 goto out; 435 436 maxra++; 437 if (sblkno == -1 || maxra < 2) 438 goto out; 439 440 howmany = MAXPHYS / size; 441 if (howmany > maxra) 442 howmany = maxra; 443 444 xbpp = mallocarray(howmany + 1, sizeof(struct buf *), M_TEMP, M_NOWAIT); 445 if (xbpp == NULL) 446 goto out; 447 448 for (i = howmany - 1; i >= 0; i--) { 449 size_t sz; 450 451 /* 452 * First buffer allocates big enough size to cover what 453 * all the other buffers need. 454 */ 455 sz = i == 0 ? howmany * size : 0; 456 457 xbpp[i] = buf_get(vp, blkno + i + 1, sz); 458 if (xbpp[i] == NULL) { 459 for (++i; i < howmany; i++) { 460 SET(xbpp[i]->b_flags, B_INVAL); 461 brelse(xbpp[i]); 462 } 463 free(xbpp, M_TEMP, 0); 464 goto out; 465 } 466 } 467 468 bp = xbpp[0]; 469 470 xbpp[howmany] = 0; 471 472 inc = btodb(size); 473 474 for (i = 1; i < howmany; i++) { 475 bcstats.pendingreads++; 476 bcstats.numreads++; 477 SET(xbpp[i]->b_flags, B_READ | B_ASYNC); 478 xbpp[i]->b_blkno = sblkno + (i * inc); 479 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 480 xbpp[i]->b_data = NULL; 481 xbpp[i]->b_pobj = bp->b_pobj; 482 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 483 } 484 485 KASSERT(bp->b_lblkno == blkno + 1); 486 KASSERT(bp->b_vp == vp); 487 488 bp->b_blkno = sblkno; 489 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 490 491 bp->b_saveaddr = (void *)xbpp; 492 bp->b_iodone = bread_cluster_callback; 493 494 bcstats.pendingreads++; 495 bcstats.numreads++; 496 VOP_STRATEGY(bp); 497 curproc->p_ru.ru_inblock++; 498 499 out: 500 return (biowait(*rbpp)); 501 } 502 503 /* 504 * Block write. Described in Bach (p.56) 505 */ 506 int 507 bwrite(struct buf *bp) 508 { 509 int rv, async, wasdelayed, s; 510 struct vnode *vp; 511 struct mount *mp; 512 513 vp = bp->b_vp; 514 if (vp != NULL) 515 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 516 else 517 mp = NULL; 518 519 /* 520 * Remember buffer type, to switch on it later. If the write was 521 * synchronous, but the file system was mounted with MNT_ASYNC, 522 * convert it to a delayed write. 523 * XXX note that this relies on delayed tape writes being converted 524 * to async, not sync writes (which is safe, but ugly). 525 */ 526 async = ISSET(bp->b_flags, B_ASYNC); 527 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 528 bdwrite(bp); 529 return (0); 530 } 531 532 /* 533 * Collect statistics on synchronous and asynchronous writes. 534 * Writes to block devices are charged to their associated 535 * filesystem (if any). 536 */ 537 if (mp != NULL) { 538 if (async) 539 mp->mnt_stat.f_asyncwrites++; 540 else 541 mp->mnt_stat.f_syncwrites++; 542 } 543 bcstats.pendingwrites++; 544 bcstats.numwrites++; 545 546 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 547 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 548 549 s = splbio(); 550 551 /* 552 * If not synchronous, pay for the I/O operation and make 553 * sure the buf is on the correct vnode queue. We have 554 * to do this now, because if we don't, the vnode may not 555 * be properly notified that its I/O has completed. 556 */ 557 if (wasdelayed) { 558 reassignbuf(bp); 559 } else 560 curproc->p_ru.ru_oublock++; 561 562 563 /* Initiate disk write. Make sure the appropriate party is charged. */ 564 bp->b_vp->v_numoutput++; 565 splx(s); 566 SET(bp->b_flags, B_WRITEINPROG); 567 VOP_STRATEGY(bp); 568 569 /* 570 * If the queue is above the high water mark, wait till 571 * the number of outstanding write bufs drops below the low 572 * water mark. 573 */ 574 if (bp->b_bq) 575 bufq_wait(bp->b_bq, bp); 576 577 if (async) 578 return (0); 579 580 /* 581 * If I/O was synchronous, wait for it to complete. 582 */ 583 rv = biowait(bp); 584 585 /* Release the buffer. */ 586 brelse(bp); 587 588 return (rv); 589 } 590 591 592 /* 593 * Delayed write. 594 * 595 * The buffer is marked dirty, but is not queued for I/O. 596 * This routine should be used when the buffer is expected 597 * to be modified again soon, typically a small write that 598 * partially fills a buffer. 599 * 600 * NB: magnetic tapes cannot be delayed; they must be 601 * written in the order that the writes are requested. 602 * 603 * Described in Leffler, et al. (pp. 208-213). 604 */ 605 void 606 bdwrite(struct buf *bp) 607 { 608 int s; 609 610 /* 611 * If the block hasn't been seen before: 612 * (1) Mark it as having been seen, 613 * (2) Charge for the write. 614 * (3) Make sure it's on its vnode's correct block list, 615 * (4) If a buffer is rewritten, move it to end of dirty list 616 */ 617 if (!ISSET(bp->b_flags, B_DELWRI)) { 618 SET(bp->b_flags, B_DELWRI); 619 s = splbio(); 620 reassignbuf(bp); 621 splx(s); 622 curproc->p_ru.ru_oublock++; /* XXX */ 623 } 624 625 /* If this is a tape block, write the block now. */ 626 if (major(bp->b_dev) < nblkdev && 627 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 628 bawrite(bp); 629 return; 630 } 631 632 /* Otherwise, the "write" is done, so mark and release the buffer. */ 633 CLR(bp->b_flags, B_NEEDCOMMIT); 634 SET(bp->b_flags, B_DONE); 635 brelse(bp); 636 } 637 638 /* 639 * Asynchronous block write; just an asynchronous bwrite(). 640 */ 641 void 642 bawrite(struct buf *bp) 643 { 644 645 SET(bp->b_flags, B_ASYNC); 646 VOP_BWRITE(bp); 647 } 648 649 /* 650 * Must be called at splbio() 651 */ 652 void 653 buf_dirty(struct buf *bp) 654 { 655 splassert(IPL_BIO); 656 657 #ifdef DIAGNOSTIC 658 if (!ISSET(bp->b_flags, B_BUSY)) 659 panic("Trying to dirty buffer on freelist!"); 660 #endif 661 662 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 663 SET(bp->b_flags, B_DELWRI); 664 reassignbuf(bp); 665 } 666 } 667 668 /* 669 * Must be called at splbio() 670 */ 671 void 672 buf_undirty(struct buf *bp) 673 { 674 splassert(IPL_BIO); 675 676 #ifdef DIAGNOSTIC 677 if (!ISSET(bp->b_flags, B_BUSY)) 678 panic("Trying to undirty buffer on freelist!"); 679 #endif 680 if (ISSET(bp->b_flags, B_DELWRI)) { 681 CLR(bp->b_flags, B_DELWRI); 682 reassignbuf(bp); 683 } 684 } 685 686 /* 687 * Release a buffer on to the free lists. 688 * Described in Bach (p. 46). 689 */ 690 void 691 brelse(struct buf *bp) 692 { 693 int s; 694 695 s = splbio(); 696 697 if (bp->b_data != NULL) 698 KASSERT(bp->b_bufsize > 0); 699 700 /* 701 * Determine which queue the buffer should be on, then put it there. 702 */ 703 704 /* If it's not cacheable, or an error, mark it invalid. */ 705 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 706 SET(bp->b_flags, B_INVAL); 707 708 if (ISSET(bp->b_flags, B_INVAL)) { 709 /* 710 * If the buffer is invalid, free it now rather than leaving 711 * it in a queue and wasting memory. 712 */ 713 if (LIST_FIRST(&bp->b_dep) != NULL) 714 buf_deallocate(bp); 715 716 if (ISSET(bp->b_flags, B_DELWRI)) { 717 CLR(bp->b_flags, B_DELWRI); 718 } 719 720 if (bp->b_vp) { 721 RB_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, 722 bp); 723 brelvp(bp); 724 } 725 bp->b_vp = NULL; 726 727 /* 728 * Wake up any processes waiting for _this_ buffer to 729 * become free. They are not allowed to grab it 730 * since it will be freed. But the only sleeper is 731 * getblk and it will restart the operation after 732 * sleep. 733 */ 734 if (ISSET(bp->b_flags, B_WANTED)) { 735 CLR(bp->b_flags, B_WANTED); 736 wakeup(bp); 737 } 738 buf_put(bp); 739 } else { 740 /* 741 * It has valid data. Put it on the end of the appropriate 742 * queue, so that it'll stick around for as long as possible. 743 */ 744 bufcache_release(bp); 745 746 /* Unlock the buffer. */ 747 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 748 buf_release(bp); 749 750 /* Wake up any processes waiting for _this_ buffer to 751 * become free. */ 752 if (ISSET(bp->b_flags, B_WANTED)) { 753 CLR(bp->b_flags, B_WANTED); 754 wakeup(bp); 755 } 756 } 757 758 /* Wake up syncer and cleaner processes waiting for buffers. */ 759 if (nobuffers) { 760 nobuffers = 0; 761 wakeup(&nobuffers); 762 } 763 764 /* Wake up any processes waiting for any buffer to become free. */ 765 if (needbuffer && bcstats.numbufpages < targetpages && 766 bcstats.kvaslots_avail > RESERVE_SLOTS) { 767 needbuffer = 0; 768 wakeup(&needbuffer); 769 } 770 771 splx(s); 772 } 773 774 /* 775 * Determine if a block is in the cache. Just look on what would be its hash 776 * chain. If it's there, return a pointer to it, unless it's marked invalid. 777 */ 778 struct buf * 779 incore(struct vnode *vp, daddr_t blkno) 780 { 781 struct buf *bp; 782 struct buf b; 783 int s; 784 785 s = splbio(); 786 787 /* Search buf lookup tree */ 788 b.b_lblkno = blkno; 789 bp = RB_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 790 if (bp != NULL && ISSET(bp->b_flags, B_INVAL)) 791 bp = NULL; 792 793 splx(s); 794 return (bp); 795 } 796 797 /* 798 * Get a block of requested size that is associated with 799 * a given vnode and block offset. If it is found in the 800 * block cache, mark it as having been found, make it busy 801 * and return it. Otherwise, return an empty block of the 802 * correct size. It is up to the caller to ensure that the 803 * cached blocks be of the correct size. 804 */ 805 struct buf * 806 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 807 { 808 struct buf *bp; 809 struct buf b; 810 int s, error; 811 812 /* 813 * XXX 814 * The following is an inlined version of 'incore()', but with 815 * the 'invalid' test moved to after the 'busy' test. It's 816 * necessary because there are some cases in which the NFS 817 * code sets B_INVAL prior to writing data to the server, but 818 * in which the buffers actually contain valid data. In this 819 * case, we can't allow the system to allocate a new buffer for 820 * the block until the write is finished. 821 */ 822 start: 823 s = splbio(); 824 b.b_lblkno = blkno; 825 bp = RB_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 826 if (bp != NULL) { 827 if (ISSET(bp->b_flags, B_BUSY)) { 828 SET(bp->b_flags, B_WANTED); 829 error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 830 slptimeo); 831 splx(s); 832 if (error) 833 return (NULL); 834 goto start; 835 } 836 837 if (!ISSET(bp->b_flags, B_INVAL)) { 838 bcstats.cachehits++; 839 SET(bp->b_flags, B_CACHE); 840 bufcache_take(bp); 841 buf_acquire(bp); 842 splx(s); 843 return (bp); 844 } 845 } 846 splx(s); 847 848 if ((bp = buf_get(vp, blkno, size)) == NULL) 849 goto start; 850 851 return (bp); 852 } 853 854 /* 855 * Get an empty, disassociated buffer of given size. 856 */ 857 struct buf * 858 geteblk(int size) 859 { 860 struct buf *bp; 861 862 while ((bp = buf_get(NULL, 0, size)) == NULL) 863 ; 864 865 return (bp); 866 } 867 868 /* 869 * Allocate a buffer. 870 */ 871 struct buf * 872 buf_get(struct vnode *vp, daddr_t blkno, size_t size) 873 { 874 struct buf *bp; 875 int poolwait = size == 0 ? PR_NOWAIT : PR_WAITOK; 876 int npages; 877 int s; 878 879 s = splbio(); 880 if (size) { 881 /* 882 * Wake up the cleaner if we have lots of dirty pages, 883 * or if we are getting low on buffer cache kva. 884 */ 885 if (UNCLEAN_PAGES >= hidirtypages || 886 bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS) 887 wakeup(&bd_req); 888 889 npages = atop(round_page(size)); 890 891 /* 892 * if our cache has been previously shrunk, 893 * allow it to grow again with use up to 894 * bufhighpages (cachepercent) 895 */ 896 if (bufpages < bufhighpages) 897 bufadjust(bufhighpages); 898 899 /* 900 * If would go over the page target with our 901 * new allocation, free enough buffers first 902 * to stay at the target with our new allocation. 903 */ 904 while ((bcstats.numbufpages + npages > targetpages) && 905 (bp = bufcache_getcleanbuf())) { 906 bufcache_take(bp); 907 if (bp->b_vp) { 908 RB_REMOVE(buf_rb_bufs, 909 &bp->b_vp->v_bufs_tree, bp); 910 brelvp(bp); 911 } 912 buf_put(bp); 913 } 914 915 /* 916 * If we get here, we tried to free the world down 917 * above, and couldn't get down - Wake the cleaner 918 * and wait for it to push some buffers out. 919 */ 920 if ((bcstats.numbufpages + npages > targetpages || 921 bcstats.kvaslots_avail <= RESERVE_SLOTS) && 922 curproc != syncerproc && curproc != cleanerproc) { 923 wakeup(&bd_req); 924 needbuffer++; 925 tsleep(&needbuffer, PRIBIO, "needbuffer", 0); 926 splx(s); 927 return (NULL); 928 } 929 if (bcstats.numbufpages + npages > bufpages) { 930 /* cleaner or syncer */ 931 nobuffers = 1; 932 tsleep(&nobuffers, PRIBIO, "nobuffers", 0); 933 splx(s); 934 return (NULL); 935 } 936 } 937 938 bp = pool_get(&bufpool, poolwait|PR_ZERO); 939 940 if (bp == NULL) { 941 splx(s); 942 return (NULL); 943 } 944 945 bp->b_freelist.tqe_next = NOLIST; 946 bp->b_dev = NODEV; 947 LIST_INIT(&bp->b_dep); 948 bp->b_bcount = size; 949 950 buf_acquire_nomap(bp); 951 952 if (vp != NULL) { 953 /* 954 * We insert the buffer into the hash with B_BUSY set 955 * while we allocate pages for it. This way any getblk 956 * that happens while we allocate pages will wait for 957 * this buffer instead of starting its own guf_get. 958 * 959 * But first, we check if someone beat us to it. 960 */ 961 if (incore(vp, blkno)) { 962 pool_put(&bufpool, bp); 963 splx(s); 964 return (NULL); 965 } 966 967 bp->b_blkno = bp->b_lblkno = blkno; 968 bgetvp(vp, bp); 969 if (RB_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp)) 970 panic("buf_get: dup lblk vp %p bp %p", vp, bp); 971 } else { 972 bp->b_vnbufs.le_next = NOLIST; 973 SET(bp->b_flags, B_INVAL); 974 bp->b_vp = NULL; 975 } 976 977 LIST_INSERT_HEAD(&bufhead, bp, b_list); 978 bcstats.numbufs++; 979 980 if (size) { 981 buf_alloc_pages(bp, round_page(size)); 982 buf_map(bp); 983 } 984 985 splx(s); 986 987 return (bp); 988 } 989 990 /* 991 * Buffer cleaning daemon. 992 */ 993 void 994 buf_daemon(struct proc *p) 995 { 996 struct timeval starttime, timediff; 997 struct buf *bp = NULL; 998 int s, pushed = 0; 999 1000 cleanerproc = curproc; 1001 1002 s = splbio(); 1003 for (;;) { 1004 if (bp == NULL || (pushed >= 16 && 1005 UNCLEAN_PAGES < hidirtypages && 1006 bcstats.kvaslots_avail > 2 * RESERVE_SLOTS)){ 1007 pushed = 0; 1008 /* 1009 * Wake up anyone who was waiting for buffers 1010 * to be released. 1011 */ 1012 if (needbuffer) { 1013 needbuffer = 0; 1014 wakeup(&needbuffer); 1015 } 1016 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 1017 } 1018 1019 getmicrouptime(&starttime); 1020 1021 while ((bp = bufcache_getdirtybuf())) { 1022 struct timeval tv; 1023 1024 if (UNCLEAN_PAGES < lodirtypages && 1025 bcstats.kvaslots_avail > 2 * RESERVE_SLOTS && 1026 pushed >= 16) 1027 break; 1028 1029 bufcache_take(bp); 1030 buf_acquire(bp); 1031 splx(s); 1032 1033 if (ISSET(bp->b_flags, B_INVAL)) { 1034 brelse(bp); 1035 s = splbio(); 1036 continue; 1037 } 1038 #ifdef DIAGNOSTIC 1039 if (!ISSET(bp->b_flags, B_DELWRI)) 1040 panic("Clean buffer on dirty queue"); 1041 #endif 1042 if (LIST_FIRST(&bp->b_dep) != NULL && 1043 !ISSET(bp->b_flags, B_DEFERRED) && 1044 buf_countdeps(bp, 0, 0)) { 1045 SET(bp->b_flags, B_DEFERRED); 1046 s = splbio(); 1047 bufcache_release(bp); 1048 buf_release(bp); 1049 continue; 1050 } 1051 1052 bawrite(bp); 1053 pushed++; 1054 1055 /* Never allow processing to run for more than 1 sec */ 1056 getmicrouptime(&tv); 1057 timersub(&tv, &starttime, &timediff); 1058 s = splbio(); 1059 if (timediff.tv_sec) 1060 break; 1061 1062 } 1063 } 1064 } 1065 1066 /* 1067 * Wait for operations on the buffer to complete. 1068 * When they do, extract and return the I/O's error value. 1069 */ 1070 int 1071 biowait(struct buf *bp) 1072 { 1073 int s; 1074 1075 KASSERT(!(bp->b_flags & B_ASYNC)); 1076 1077 s = splbio(); 1078 while (!ISSET(bp->b_flags, B_DONE)) 1079 tsleep(bp, PRIBIO + 1, "biowait", 0); 1080 splx(s); 1081 1082 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1083 if (ISSET(bp->b_flags, B_EINTR)) { 1084 CLR(bp->b_flags, B_EINTR); 1085 return (EINTR); 1086 } 1087 1088 if (ISSET(bp->b_flags, B_ERROR)) 1089 return (bp->b_error ? bp->b_error : EIO); 1090 else 1091 return (0); 1092 } 1093 1094 /* 1095 * Mark I/O complete on a buffer. 1096 * 1097 * If a callback has been requested, e.g. the pageout 1098 * daemon, do so. Otherwise, awaken waiting processes. 1099 * 1100 * [ Leffler, et al., says on p.247: 1101 * "This routine wakes up the blocked process, frees the buffer 1102 * for an asynchronous write, or, for a request by the pagedaemon 1103 * process, invokes a procedure specified in the buffer structure" ] 1104 * 1105 * In real life, the pagedaemon (or other system processes) wants 1106 * to do async stuff to, and doesn't want the buffer brelse()'d. 1107 * (for swap pager, that puts swap buffers on the free lists (!!!), 1108 * for the vn device, that puts malloc'd buffers on the free lists!) 1109 * 1110 * Must be called at splbio(). 1111 */ 1112 void 1113 biodone(struct buf *bp) 1114 { 1115 splassert(IPL_BIO); 1116 1117 if (ISSET(bp->b_flags, B_DONE)) 1118 panic("biodone already"); 1119 SET(bp->b_flags, B_DONE); /* note that it's done */ 1120 1121 if (bp->b_bq) 1122 bufq_done(bp->b_bq, bp); 1123 1124 if (LIST_FIRST(&bp->b_dep) != NULL) 1125 buf_complete(bp); 1126 1127 if (!ISSET(bp->b_flags, B_READ)) { 1128 CLR(bp->b_flags, B_WRITEINPROG); 1129 vwakeup(bp->b_vp); 1130 } 1131 if (bcstats.numbufs && 1132 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) { 1133 if (!ISSET(bp->b_flags, B_READ)) 1134 bcstats.pendingwrites--; 1135 else 1136 bcstats.pendingreads--; 1137 } 1138 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1139 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1140 (*bp->b_iodone)(bp); 1141 } else { 1142 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1143 brelse(bp); 1144 } else { /* or just wakeup the buffer */ 1145 CLR(bp->b_flags, B_WANTED); 1146 wakeup(bp); 1147 } 1148 } 1149 } 1150 1151 #ifdef DDB 1152 void bcstats_print(int (*)(const char *, ...) 1153 __attribute__((__format__(__kprintf__,1,2)))); 1154 /* 1155 * bcstats_print: ddb hook to print interesting buffer cache counters 1156 */ 1157 void 1158 bcstats_print( 1159 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1160 { 1161 (*pr)("Current Buffer Cache status:\n"); 1162 (*pr)("numbufs %lld busymapped %lld, delwri %lld\n", 1163 bcstats.numbufs, bcstats.busymapped, bcstats.delwribufs); 1164 (*pr)("kvaslots %lld avail kva slots %lld\n", 1165 bcstats.kvaslots, bcstats.kvaslots_avail); 1166 (*pr)("bufpages %lld, dirtypages %lld\n", 1167 bcstats.numbufpages, bcstats.numdirtypages); 1168 (*pr)("pendingreads %lld, pendingwrites %lld\n", 1169 bcstats.pendingreads, bcstats.pendingwrites); 1170 } 1171 #endif 1172 1173 /* bufcache freelist code below */ 1174 1175 /* 1176 * simple LRU queues, one clean and one dirty 1177 */ 1178 TAILQ_HEAD(bufqueue, buf); 1179 struct bufqueue cleanqueue; 1180 struct bufqueue dirtyqueue; 1181 1182 void 1183 bufcache_init(void) 1184 { 1185 1186 TAILQ_INIT(&cleanqueue); 1187 TAILQ_INIT(&dirtyqueue); 1188 } 1189 1190 struct buf * 1191 bufcache_getcleanbuf(void) 1192 { 1193 return TAILQ_FIRST(&cleanqueue); 1194 } 1195 1196 struct buf * 1197 bufcache_getdirtybuf(void) 1198 { 1199 return TAILQ_FIRST(&dirtyqueue); 1200 } 1201 1202 void 1203 bufcache_take(struct buf *bp) 1204 { 1205 struct bufqueue *queue; 1206 1207 splassert(IPL_BIO); 1208 1209 if (!ISSET(bp->b_flags, B_DELWRI)) { 1210 queue = &cleanqueue; 1211 bcstats.numcleanpages -= atop(bp->b_bufsize); 1212 } else { 1213 queue = &dirtyqueue; 1214 bcstats.numdirtypages -= atop(bp->b_bufsize); 1215 bcstats.delwribufs--; 1216 } 1217 TAILQ_REMOVE(queue, bp, b_freelist); 1218 } 1219 1220 void 1221 bufcache_release(struct buf *bp) 1222 { 1223 struct bufqueue *queue; 1224 1225 if (!ISSET(bp->b_flags, B_DELWRI)) { 1226 queue = &cleanqueue; 1227 bcstats.numcleanpages += atop(bp->b_bufsize); 1228 } else { 1229 queue = &dirtyqueue; 1230 bcstats.numdirtypages += atop(bp->b_bufsize); 1231 bcstats.delwribufs++; 1232 } 1233 TAILQ_INSERT_TAIL(queue, bp, b_freelist); 1234 } 1235 1236 #ifdef HIBERNATE 1237 /* 1238 * Flush buffercache to lowest value on hibernate suspend 1239 */ 1240 void 1241 hibernate_suspend_bufcache(void) 1242 { 1243 long save_buflowpages = buflowpages; 1244 1245 /* Shrink buffercache to 16MB (4096 pages) */ 1246 buflowpages = 4096; 1247 bufadjust(buflowpages); 1248 buflowpages = save_buflowpages; 1249 bufhighpages = bufpages; 1250 } 1251 1252 void 1253 hibernate_resume_bufcache(void) 1254 { 1255 uint64_t dmapages, pgs; 1256 1257 dmapages = uvm_pagecount(&dma_constraint); 1258 pgs = bufcachepercent * dmapages / 100; 1259 bufadjust(pgs); 1260 bufhighpages = bufpages; 1261 } 1262 #endif /* HIBERNATE */ 1263