1 /* $OpenBSD: vfs_bio.c,v 1.136 2012/05/30 19:32:19 miod Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /* 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/resourcevar.h> 57 #include <sys/conf.h> 58 #include <sys/kernel.h> 59 #include <sys/specdev.h> 60 61 #include <uvm/uvm_extern.h> 62 63 /* 64 * Definitions for the buffer free lists. 65 */ 66 #define BQUEUES 2 /* number of free buffer queues */ 67 68 #define BQ_DIRTY 0 /* LRU queue with dirty buffers */ 69 #define BQ_CLEAN 1 /* LRU queue with clean buffers */ 70 71 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 72 int needbuffer; 73 struct bio_ops bioops; 74 75 /* 76 * Buffer pool for I/O buffers. 77 */ 78 struct pool bufpool; 79 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 80 void buf_put(struct buf *); 81 82 /* 83 * Insq/Remq for the buffer free lists. 84 */ 85 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 86 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 87 88 struct buf *bio_doread(struct vnode *, daddr64_t, int, int); 89 struct buf *buf_get(struct vnode *, daddr64_t, size_t); 90 void bread_cluster_callback(struct buf *); 91 92 /* 93 * We keep a few counters to monitor the utilization of the buffer cache 94 * 95 * numbufpages - number of pages totally allocated. 96 * numdirtypages - number of pages on BQ_DIRTY queue. 97 * lodirtypages - low water mark for buffer cleaning daemon. 98 * hidirtypages - high water mark for buffer cleaning daemon. 99 * numcleanpages - number of pages on BQ_CLEAN queue. 100 * Used to track the need to speedup the cleaner and 101 * as a reserve for special processes like syncer. 102 * maxcleanpages - the highest page count on BQ_CLEAN. 103 */ 104 105 struct bcachestats bcstats; 106 long lodirtypages; 107 long hidirtypages; 108 long locleanpages; 109 long hicleanpages; 110 long maxcleanpages; 111 long backoffpages; /* backoff counter for page allocations */ 112 long buflowpages; /* bufpages low water mark */ 113 long bufhighpages; /* bufpages high water mark */ 114 long bufbackpages; /* number of pages we back off when asked to shrink */ 115 116 vsize_t bufkvm; 117 118 struct proc *cleanerproc; 119 int bd_req; /* Sleep point for cleaner daemon. */ 120 121 void 122 bremfree(struct buf *bp) 123 { 124 struct bqueues *dp = NULL; 125 126 splassert(IPL_BIO); 127 128 /* 129 * We only calculate the head of the freelist when removing 130 * the last element of the list as that is the only time that 131 * it is needed (e.g. to reset the tail pointer). 132 * 133 * NB: This makes an assumption about how tailq's are implemented. 134 */ 135 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 136 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 137 if (dp->tqh_last == &TAILQ_NEXT(bp, b_freelist)) 138 break; 139 if (dp == &bufqueues[BQUEUES]) 140 panic("bremfree: lost tail"); 141 } 142 if (!ISSET(bp->b_flags, B_DELWRI)) { 143 bcstats.numcleanpages -= atop(bp->b_bufsize); 144 } else { 145 bcstats.numdirtypages -= atop(bp->b_bufsize); 146 bcstats.delwribufs--; 147 } 148 TAILQ_REMOVE(dp, bp, b_freelist); 149 } 150 151 void 152 buf_put(struct buf *bp) 153 { 154 splassert(IPL_BIO); 155 156 #ifdef DIAGNOSTIC 157 if (bp->b_pobj != NULL) 158 KASSERT(bp->b_bufsize > 0); 159 if (ISSET(bp->b_flags, B_DELWRI)) 160 panic("buf_put: releasing dirty buffer"); 161 if (bp->b_freelist.tqe_next != NOLIST && 162 bp->b_freelist.tqe_next != (void *)-1) 163 panic("buf_put: still on the free list"); 164 if (bp->b_vnbufs.le_next != NOLIST && 165 bp->b_vnbufs.le_next != (void *)-1) 166 panic("buf_put: still on the vnode list"); 167 if (!LIST_EMPTY(&bp->b_dep)) 168 panic("buf_put: b_dep is not empty"); 169 #endif 170 171 LIST_REMOVE(bp, b_list); 172 bcstats.numbufs--; 173 if (backoffpages) { 174 backoffpages -= atop(bp->b_bufsize); 175 if (backoffpages < 0) 176 backoffpages = 0; 177 } 178 179 if (buf_dealloc_mem(bp) != 0) 180 return; 181 pool_put(&bufpool, bp); 182 } 183 184 /* 185 * Initialize buffers and hash links for buffers. 186 */ 187 void 188 bufinit(void) 189 { 190 u_int64_t dmapages; 191 struct bqueues *dp; 192 193 dmapages = uvm_pagecount(&dma_constraint); 194 195 /* 196 * If MD code doesn't say otherwise, use 10% of kvm for mappings and 197 * 10% of dmaable pages for cache pages. 198 */ 199 if (bufcachepercent == 0) 200 bufcachepercent = 10; 201 if (bufpages == 0) 202 bufpages = dmapages * bufcachepercent / 100; 203 204 bufhighpages = bufpages; 205 206 /* 207 * set the base backoff level for the buffer cache to bufpages. 208 * we will not allow uvm to steal back more than this number of 209 * pages 210 */ 211 buflowpages = dmapages * 10 / 100; 212 213 /* 214 * set bufbackpages to 100 pages, or 10 percent of the low water mark 215 * if we don't have that many pages. 216 */ 217 218 bufbackpages = buflowpages * 10 / 100; 219 if (bufbackpages > 100) 220 bufbackpages = 100; 221 222 if (bufkvm == 0) 223 bufkvm = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 10; 224 225 /* 226 * Don't use more than twice the amount of bufpages for mappings. 227 * It's twice since we map things sparsely. 228 */ 229 if (bufkvm > bufpages * PAGE_SIZE) 230 bufkvm = bufpages * PAGE_SIZE; 231 /* 232 * Round bufkvm to MAXPHYS because we allocate chunks of va space 233 * in MAXPHYS chunks. 234 */ 235 bufkvm &= ~(MAXPHYS - 1); 236 237 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 238 pool_setipl(&bufpool, IPL_BIO); 239 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 240 TAILQ_INIT(dp); 241 242 /* 243 * hmm - bufkvm is an argument because it's static, while 244 * bufpages is global because it can change while running. 245 */ 246 buf_mem_init(bufkvm); 247 248 hidirtypages = (bufpages / 4) * 3; 249 lodirtypages = bufpages / 2; 250 251 /* 252 * When we hit 95% of pages being clean, we bring them down to 253 * 90% to have some slack. 254 */ 255 hicleanpages = bufpages - (bufpages / 20); 256 locleanpages = bufpages - (bufpages / 10); 257 258 maxcleanpages = locleanpages; 259 } 260 261 /* 262 * Change cachepct 263 */ 264 void 265 bufadjust(int newbufpages) 266 { 267 /* 268 * XXX - note, bufkvm was allocated once, based on 10% of physmem 269 * see above. 270 */ 271 struct buf *bp; 272 int s; 273 274 s = splbio(); 275 bufpages = newbufpages; 276 277 hidirtypages = (bufpages / 4) * 3; 278 lodirtypages = bufpages / 2; 279 280 /* 281 * When we hit 95% of pages being clean, we bring them down to 282 * 90% to have some slack. 283 */ 284 hicleanpages = bufpages - (bufpages / 20); 285 locleanpages = bufpages - (bufpages / 10); 286 287 maxcleanpages = locleanpages; 288 289 /* 290 * If we we have more buffers allocated than bufpages, 291 * free them up to get back down. this may possibly consume 292 * all our clean pages... 293 */ 294 while ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) && 295 (bcstats.numbufpages > bufpages)) { 296 bremfree(bp); 297 if (bp->b_vp) { 298 RB_REMOVE(buf_rb_bufs, 299 &bp->b_vp->v_bufs_tree, bp); 300 brelvp(bp); 301 } 302 buf_put(bp); 303 } 304 305 /* 306 * Wake up cleaner if we're getting low on pages. We might 307 * now have too much dirty, or have fallen below our low 308 * water mark on clean pages so we need to free more stuff 309 * up. 310 */ 311 if (bcstats.numdirtypages >= hidirtypages || 312 bcstats.numcleanpages <= locleanpages) 313 wakeup(&bd_req); 314 315 /* 316 * if immediate action has not freed up enough goo for us 317 * to proceed - we tsleep and wait for the cleaner above 318 * to do it's work and get us reduced down to sanity. 319 */ 320 while (bcstats.numbufpages > bufpages) { 321 needbuffer++; 322 tsleep(&needbuffer, PRIBIO, "needbuffer", 0); 323 } 324 splx(s); 325 } 326 327 /* 328 * Make the buffer cache back off from cachepct. 329 */ 330 int 331 bufbackoff(struct uvm_constraint_range *range, long size) 332 { 333 /* 334 * Back off the amount of buffer cache pages. Called by the page 335 * daemon to consume buffer cache pages rather than swapping. 336 * 337 * On success, it frees N pages from the buffer cache, and sets 338 * a flag so that the next N allocations from buf_get will recycle 339 * a buffer rather than allocate a new one. It then returns 0 to the 340 * caller. 341 * 342 * on failure, it could free no pages from the buffer cache, does 343 * nothing and returns -1 to the caller. 344 */ 345 long d; 346 347 if (bufpages <= buflowpages) 348 return(-1); 349 350 if (bufpages - bufbackpages >= buflowpages) 351 d = bufbackpages; 352 else 353 d = bufpages - buflowpages; 354 backoffpages = bufbackpages; 355 bufadjust(bufpages - d); 356 backoffpages = 0; 357 return(0); 358 } 359 360 struct buf * 361 bio_doread(struct vnode *vp, daddr64_t blkno, int size, int async) 362 { 363 struct buf *bp; 364 struct mount *mp; 365 366 bp = getblk(vp, blkno, size, 0, 0); 367 368 /* 369 * If buffer does not have valid data, start a read. 370 * Note that if buffer is B_INVAL, getblk() won't return it. 371 * Therefore, it's valid if its I/O has completed or been delayed. 372 */ 373 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 374 SET(bp->b_flags, B_READ | async); 375 bcstats.pendingreads++; 376 bcstats.numreads++; 377 VOP_STRATEGY(bp); 378 /* Pay for the read. */ 379 curproc->p_ru.ru_inblock++; /* XXX */ 380 } else if (async) { 381 brelse(bp); 382 } 383 384 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 385 386 /* 387 * Collect statistics on synchronous and asynchronous reads. 388 * Reads from block devices are charged to their associated 389 * filesystem (if any). 390 */ 391 if (mp != NULL) { 392 if (async == 0) 393 mp->mnt_stat.f_syncreads++; 394 else 395 mp->mnt_stat.f_asyncreads++; 396 } 397 398 return (bp); 399 } 400 401 /* 402 * Read a disk block. 403 * This algorithm described in Bach (p.54). 404 */ 405 int 406 bread(struct vnode *vp, daddr64_t blkno, int size, struct buf **bpp) 407 { 408 struct buf *bp; 409 410 /* Get buffer for block. */ 411 bp = *bpp = bio_doread(vp, blkno, size, 0); 412 413 /* Wait for the read to complete, and return result. */ 414 return (biowait(bp)); 415 } 416 417 /* 418 * Read-ahead multiple disk blocks. The first is sync, the rest async. 419 * Trivial modification to the breada algorithm presented in Bach (p.55). 420 */ 421 int 422 breadn(struct vnode *vp, daddr64_t blkno, int size, daddr64_t rablks[], 423 int rasizes[], int nrablks, struct buf **bpp) 424 { 425 struct buf *bp; 426 int i; 427 428 bp = *bpp = bio_doread(vp, blkno, size, 0); 429 430 /* 431 * For each of the read-ahead blocks, start a read, if necessary. 432 */ 433 for (i = 0; i < nrablks; i++) { 434 /* If it's in the cache, just go on to next one. */ 435 if (incore(vp, rablks[i])) 436 continue; 437 438 /* Get a buffer for the read-ahead block */ 439 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 440 } 441 442 /* Otherwise, we had to start a read for it; wait until it's valid. */ 443 return (biowait(bp)); 444 } 445 446 /* 447 * Called from interrupt context. 448 */ 449 void 450 bread_cluster_callback(struct buf *bp) 451 { 452 struct buf **xbpp = bp->b_saveaddr; 453 int i; 454 455 if (xbpp[1] != NULL) { 456 size_t newsize = xbpp[1]->b_bufsize; 457 458 /* 459 * Shrink this buffer's mapping to only cover its part of 460 * the total I/O. 461 */ 462 buf_fix_mapping(bp, newsize); 463 bp->b_bcount = newsize; 464 } 465 466 for (i = 1; xbpp[i] != 0; i++) { 467 if (ISSET(bp->b_flags, B_ERROR)) 468 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 469 biodone(xbpp[i]); 470 } 471 472 free(xbpp, M_TEMP); 473 474 if (ISSET(bp->b_flags, B_ASYNC)) { 475 brelse(bp); 476 } else { 477 CLR(bp->b_flags, B_WANTED); 478 wakeup(bp); 479 } 480 } 481 482 int 483 bread_cluster(struct vnode *vp, daddr64_t blkno, int size, struct buf **rbpp) 484 { 485 struct buf *bp, **xbpp; 486 int howmany, maxra, i, inc; 487 daddr64_t sblkno; 488 489 *rbpp = bio_doread(vp, blkno, size, 0); 490 491 if (size != round_page(size)) 492 goto out; 493 494 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 495 goto out; 496 497 maxra++; 498 if (sblkno == -1 || maxra < 2) 499 goto out; 500 501 howmany = MAXPHYS / size; 502 if (howmany > maxra) 503 howmany = maxra; 504 505 xbpp = malloc((howmany + 1) * sizeof(struct buf *), M_TEMP, M_NOWAIT); 506 if (xbpp == NULL) 507 goto out; 508 509 for (i = howmany - 1; i >= 0; i--) { 510 size_t sz; 511 512 /* 513 * First buffer allocates big enough size to cover what 514 * all the other buffers need. 515 */ 516 sz = i == 0 ? howmany * size : 0; 517 518 xbpp[i] = buf_get(vp, blkno + i + 1, sz); 519 if (xbpp[i] == NULL) { 520 for (++i; i < howmany; i++) { 521 SET(xbpp[i]->b_flags, B_INVAL); 522 brelse(xbpp[i]); 523 } 524 free(xbpp, M_TEMP); 525 goto out; 526 } 527 } 528 529 bp = xbpp[0]; 530 531 xbpp[howmany] = 0; 532 533 inc = btodb(size); 534 535 for (i = 1; i < howmany; i++) { 536 bcstats.pendingreads++; 537 bcstats.numreads++; 538 SET(xbpp[i]->b_flags, B_READ | B_ASYNC); 539 xbpp[i]->b_blkno = sblkno + (i * inc); 540 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 541 xbpp[i]->b_data = NULL; 542 xbpp[i]->b_pobj = bp->b_pobj; 543 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 544 } 545 546 KASSERT(bp->b_lblkno == blkno + 1); 547 KASSERT(bp->b_vp == vp); 548 549 bp->b_blkno = sblkno; 550 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 551 552 bp->b_saveaddr = (void *)xbpp; 553 bp->b_iodone = bread_cluster_callback; 554 555 bcstats.pendingreads++; 556 bcstats.numreads++; 557 VOP_STRATEGY(bp); 558 curproc->p_ru.ru_inblock++; 559 560 out: 561 return (biowait(*rbpp)); 562 } 563 564 /* 565 * Block write. Described in Bach (p.56) 566 */ 567 int 568 bwrite(struct buf *bp) 569 { 570 int rv, async, wasdelayed, s; 571 struct vnode *vp; 572 struct mount *mp; 573 574 vp = bp->b_vp; 575 if (vp != NULL) 576 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 577 else 578 mp = NULL; 579 580 /* 581 * Remember buffer type, to switch on it later. If the write was 582 * synchronous, but the file system was mounted with MNT_ASYNC, 583 * convert it to a delayed write. 584 * XXX note that this relies on delayed tape writes being converted 585 * to async, not sync writes (which is safe, but ugly). 586 */ 587 async = ISSET(bp->b_flags, B_ASYNC); 588 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 589 bdwrite(bp); 590 return (0); 591 } 592 593 /* 594 * Collect statistics on synchronous and asynchronous writes. 595 * Writes to block devices are charged to their associated 596 * filesystem (if any). 597 */ 598 if (mp != NULL) { 599 if (async) 600 mp->mnt_stat.f_asyncwrites++; 601 else 602 mp->mnt_stat.f_syncwrites++; 603 } 604 bcstats.pendingwrites++; 605 bcstats.numwrites++; 606 607 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 608 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 609 610 s = splbio(); 611 612 /* 613 * If not synchronous, pay for the I/O operation and make 614 * sure the buf is on the correct vnode queue. We have 615 * to do this now, because if we don't, the vnode may not 616 * be properly notified that its I/O has completed. 617 */ 618 if (wasdelayed) { 619 reassignbuf(bp); 620 } else 621 curproc->p_ru.ru_oublock++; 622 623 624 /* Initiate disk write. Make sure the appropriate party is charged. */ 625 bp->b_vp->v_numoutput++; 626 splx(s); 627 SET(bp->b_flags, B_WRITEINPROG); 628 VOP_STRATEGY(bp); 629 630 if (async) 631 return (0); 632 633 /* 634 * If I/O was synchronous, wait for it to complete. 635 */ 636 rv = biowait(bp); 637 638 /* Release the buffer. */ 639 brelse(bp); 640 641 return (rv); 642 } 643 644 645 /* 646 * Delayed write. 647 * 648 * The buffer is marked dirty, but is not queued for I/O. 649 * This routine should be used when the buffer is expected 650 * to be modified again soon, typically a small write that 651 * partially fills a buffer. 652 * 653 * NB: magnetic tapes cannot be delayed; they must be 654 * written in the order that the writes are requested. 655 * 656 * Described in Leffler, et al. (pp. 208-213). 657 */ 658 void 659 bdwrite(struct buf *bp) 660 { 661 int s; 662 663 /* 664 * If the block hasn't been seen before: 665 * (1) Mark it as having been seen, 666 * (2) Charge for the write. 667 * (3) Make sure it's on its vnode's correct block list, 668 * (4) If a buffer is rewritten, move it to end of dirty list 669 */ 670 if (!ISSET(bp->b_flags, B_DELWRI)) { 671 SET(bp->b_flags, B_DELWRI); 672 s = splbio(); 673 reassignbuf(bp); 674 splx(s); 675 curproc->p_ru.ru_oublock++; /* XXX */ 676 } 677 678 /* If this is a tape block, write the block now. */ 679 if (major(bp->b_dev) < nblkdev && 680 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 681 bawrite(bp); 682 return; 683 } 684 685 /* Otherwise, the "write" is done, so mark and release the buffer. */ 686 CLR(bp->b_flags, B_NEEDCOMMIT); 687 SET(bp->b_flags, B_DONE); 688 brelse(bp); 689 } 690 691 /* 692 * Asynchronous block write; just an asynchronous bwrite(). 693 */ 694 void 695 bawrite(struct buf *bp) 696 { 697 698 SET(bp->b_flags, B_ASYNC); 699 VOP_BWRITE(bp); 700 } 701 702 /* 703 * Must be called at splbio() 704 */ 705 void 706 buf_dirty(struct buf *bp) 707 { 708 splassert(IPL_BIO); 709 710 #ifdef DIAGNOSTIC 711 if (!ISSET(bp->b_flags, B_BUSY)) 712 panic("Trying to dirty buffer on freelist!"); 713 #endif 714 715 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 716 SET(bp->b_flags, B_DELWRI); 717 reassignbuf(bp); 718 } 719 } 720 721 /* 722 * Must be called at splbio() 723 */ 724 void 725 buf_undirty(struct buf *bp) 726 { 727 splassert(IPL_BIO); 728 729 #ifdef DIAGNOSTIC 730 if (!ISSET(bp->b_flags, B_BUSY)) 731 panic("Trying to undirty buffer on freelist!"); 732 #endif 733 if (ISSET(bp->b_flags, B_DELWRI)) { 734 CLR(bp->b_flags, B_DELWRI); 735 reassignbuf(bp); 736 } 737 } 738 739 /* 740 * Release a buffer on to the free lists. 741 * Described in Bach (p. 46). 742 */ 743 void 744 brelse(struct buf *bp) 745 { 746 struct bqueues *bufq; 747 int s; 748 749 s = splbio(); 750 751 if (bp->b_data != NULL) 752 KASSERT(bp->b_bufsize > 0); 753 754 /* 755 * Determine which queue the buffer should be on, then put it there. 756 */ 757 758 /* If it's not cacheable, or an error, mark it invalid. */ 759 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 760 SET(bp->b_flags, B_INVAL); 761 762 if (ISSET(bp->b_flags, B_INVAL)) { 763 /* 764 * If the buffer is invalid, place it in the clean queue, so it 765 * can be reused. 766 */ 767 if (LIST_FIRST(&bp->b_dep) != NULL) 768 buf_deallocate(bp); 769 770 if (ISSET(bp->b_flags, B_DELWRI)) { 771 CLR(bp->b_flags, B_DELWRI); 772 } 773 774 if (bp->b_vp) { 775 RB_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, 776 bp); 777 brelvp(bp); 778 } 779 bp->b_vp = NULL; 780 781 /* 782 * If the buffer has no associated data, place it back in the 783 * pool. 784 */ 785 if (bp->b_data == NULL && bp->b_pobj == NULL) { 786 /* 787 * Wake up any processes waiting for _this_ buffer to 788 * become free. They are not allowed to grab it 789 * since it will be freed. But the only sleeper is 790 * getblk and it's restarting the operation after 791 * sleep. 792 */ 793 if (ISSET(bp->b_flags, B_WANTED)) { 794 CLR(bp->b_flags, B_WANTED); 795 wakeup(bp); 796 } 797 if (bp->b_vp != NULL) 798 RB_REMOVE(buf_rb_bufs, 799 &bp->b_vp->v_bufs_tree, bp); 800 buf_put(bp); 801 splx(s); 802 return; 803 } 804 805 bcstats.numcleanpages += atop(bp->b_bufsize); 806 if (maxcleanpages < bcstats.numcleanpages) 807 maxcleanpages = bcstats.numcleanpages; 808 binsheadfree(bp, &bufqueues[BQ_CLEAN]); 809 } else { 810 /* 811 * It has valid data. Put it on the end of the appropriate 812 * queue, so that it'll stick around for as long as possible. 813 */ 814 815 if (!ISSET(bp->b_flags, B_DELWRI)) { 816 bcstats.numcleanpages += atop(bp->b_bufsize); 817 if (maxcleanpages < bcstats.numcleanpages) 818 maxcleanpages = bcstats.numcleanpages; 819 bufq = &bufqueues[BQ_CLEAN]; 820 } else { 821 bcstats.numdirtypages += atop(bp->b_bufsize); 822 bcstats.delwribufs++; 823 bufq = &bufqueues[BQ_DIRTY]; 824 } 825 if (ISSET(bp->b_flags, B_AGE)) { 826 binsheadfree(bp, bufq); 827 bp->b_synctime = time_uptime + 30; 828 } else { 829 binstailfree(bp, bufq); 830 bp->b_synctime = time_uptime + 300; 831 } 832 } 833 834 /* Unlock the buffer. */ 835 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 836 buf_release(bp); 837 838 /* Wake up any processes waiting for any buffer to become free. */ 839 if (needbuffer) { 840 needbuffer--; 841 wakeup(&needbuffer); 842 } 843 844 /* Wake up any processes waiting for _this_ buffer to become free. */ 845 if (ISSET(bp->b_flags, B_WANTED)) { 846 CLR(bp->b_flags, B_WANTED); 847 wakeup(bp); 848 } 849 850 splx(s); 851 } 852 853 /* 854 * Determine if a block is in the cache. Just look on what would be its hash 855 * chain. If it's there, return a pointer to it, unless it's marked invalid. 856 */ 857 struct buf * 858 incore(struct vnode *vp, daddr64_t blkno) 859 { 860 struct buf *bp; 861 struct buf b; 862 int s; 863 864 s = splbio(); 865 866 /* Search buf lookup tree */ 867 b.b_lblkno = blkno; 868 bp = RB_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 869 if (bp != NULL && ISSET(bp->b_flags, B_INVAL)) 870 bp = NULL; 871 872 splx(s); 873 return (bp); 874 } 875 876 /* 877 * Get a block of requested size that is associated with 878 * a given vnode and block offset. If it is found in the 879 * block cache, mark it as having been found, make it busy 880 * and return it. Otherwise, return an empty block of the 881 * correct size. It is up to the caller to ensure that the 882 * cached blocks be of the correct size. 883 */ 884 struct buf * 885 getblk(struct vnode *vp, daddr64_t blkno, int size, int slpflag, int slptimeo) 886 { 887 struct buf *bp; 888 struct buf b; 889 int s, error; 890 891 /* 892 * XXX 893 * The following is an inlined version of 'incore()', but with 894 * the 'invalid' test moved to after the 'busy' test. It's 895 * necessary because there are some cases in which the NFS 896 * code sets B_INVAL prior to writing data to the server, but 897 * in which the buffers actually contain valid data. In this 898 * case, we can't allow the system to allocate a new buffer for 899 * the block until the write is finished. 900 */ 901 start: 902 s = splbio(); 903 b.b_lblkno = blkno; 904 bp = RB_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 905 if (bp != NULL) { 906 if (ISSET(bp->b_flags, B_BUSY)) { 907 SET(bp->b_flags, B_WANTED); 908 error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 909 slptimeo); 910 splx(s); 911 if (error) 912 return (NULL); 913 goto start; 914 } 915 916 if (!ISSET(bp->b_flags, B_INVAL)) { 917 bcstats.cachehits++; 918 SET(bp->b_flags, B_CACHE); 919 bremfree(bp); 920 buf_acquire(bp); 921 splx(s); 922 return (bp); 923 } 924 } 925 splx(s); 926 927 if ((bp = buf_get(vp, blkno, size)) == NULL) 928 goto start; 929 930 return (bp); 931 } 932 933 /* 934 * Get an empty, disassociated buffer of given size. 935 */ 936 struct buf * 937 geteblk(int size) 938 { 939 struct buf *bp; 940 941 while ((bp = buf_get(NULL, 0, size)) == NULL) 942 ; 943 944 return (bp); 945 } 946 947 /* 948 * Allocate a buffer. 949 */ 950 struct buf * 951 buf_get(struct vnode *vp, daddr64_t blkno, size_t size) 952 { 953 static int gcount = 0; 954 struct buf *bp; 955 int poolwait = size == 0 ? PR_NOWAIT : PR_WAITOK; 956 int npages; 957 int s; 958 959 /* 960 * if we were previously backed off, slowly climb back up 961 * to the high water mark again. 962 */ 963 if (backoffpages == 0 && bufpages < bufhighpages) { 964 if (gcount == 0) { 965 bufadjust(bufpages + bufbackpages); 966 gcount += bufbackpages; 967 } else 968 gcount--; 969 } 970 971 s = splbio(); 972 if (size) { 973 /* 974 * Wake up cleaner if we're getting low on pages. 975 */ 976 if (bcstats.numdirtypages >= hidirtypages || 977 bcstats.numcleanpages <= locleanpages) 978 wakeup(&bd_req); 979 980 /* 981 * If we're above the high water mark for clean pages, 982 * free down to the low water mark. 983 */ 984 if (bcstats.numcleanpages > hicleanpages) { 985 while (bcstats.numcleanpages > locleanpages) { 986 bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN]); 987 bremfree(bp); 988 if (bp->b_vp) { 989 RB_REMOVE(buf_rb_bufs, 990 &bp->b_vp->v_bufs_tree, bp); 991 brelvp(bp); 992 } 993 buf_put(bp); 994 } 995 } 996 997 npages = atop(round_page(size)); 998 999 /* 1000 * Free some buffers until we have enough space. 1001 */ 1002 while ((bcstats.numbufpages + npages > bufpages) 1003 || backoffpages) { 1004 int freemax = 5; 1005 int i = freemax; 1006 while ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) && i--) { 1007 bremfree(bp); 1008 if (bp->b_vp) { 1009 RB_REMOVE(buf_rb_bufs, 1010 &bp->b_vp->v_bufs_tree, bp); 1011 brelvp(bp); 1012 } 1013 buf_put(bp); 1014 } 1015 if (freemax == i && 1016 (bcstats.numbufpages + npages > bufpages || 1017 backoffpages)) { 1018 needbuffer++; 1019 tsleep(&needbuffer, PRIBIO, "needbuffer", 0); 1020 splx(s); 1021 return (NULL); 1022 } 1023 } 1024 } 1025 1026 bp = pool_get(&bufpool, poolwait|PR_ZERO); 1027 1028 if (bp == NULL) { 1029 splx(s); 1030 return (NULL); 1031 } 1032 1033 bp->b_freelist.tqe_next = NOLIST; 1034 bp->b_synctime = time_uptime + 300; 1035 bp->b_dev = NODEV; 1036 LIST_INIT(&bp->b_dep); 1037 bp->b_bcount = size; 1038 1039 buf_acquire_unmapped(bp); 1040 1041 if (vp != NULL) { 1042 /* 1043 * We insert the buffer into the hash with B_BUSY set 1044 * while we allocate pages for it. This way any getblk 1045 * that happens while we allocate pages will wait for 1046 * this buffer instead of starting its own guf_get. 1047 * 1048 * But first, we check if someone beat us to it. 1049 */ 1050 if (incore(vp, blkno)) { 1051 pool_put(&bufpool, bp); 1052 splx(s); 1053 return (NULL); 1054 } 1055 1056 bp->b_blkno = bp->b_lblkno = blkno; 1057 bgetvp(vp, bp); 1058 if (RB_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp)) 1059 panic("buf_get: dup lblk vp %p bp %p", vp, bp); 1060 } else { 1061 bp->b_vnbufs.le_next = NOLIST; 1062 SET(bp->b_flags, B_INVAL); 1063 bp->b_vp = NULL; 1064 } 1065 1066 LIST_INSERT_HEAD(&bufhead, bp, b_list); 1067 bcstats.numbufs++; 1068 1069 if (size) { 1070 buf_alloc_pages(bp, round_page(size)); 1071 buf_map(bp); 1072 } 1073 1074 splx(s); 1075 1076 return (bp); 1077 } 1078 1079 /* 1080 * Buffer cleaning daemon. 1081 */ 1082 void 1083 buf_daemon(struct proc *p) 1084 { 1085 struct timeval starttime, timediff; 1086 struct buf *bp; 1087 int s; 1088 1089 cleanerproc = curproc; 1090 1091 s = splbio(); 1092 for (;;) { 1093 if (bcstats.numdirtypages < hidirtypages) 1094 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 1095 1096 getmicrouptime(&starttime); 1097 1098 while ((bp = TAILQ_FIRST(&bufqueues[BQ_DIRTY]))) { 1099 struct timeval tv; 1100 1101 if (bcstats.numdirtypages < lodirtypages) 1102 break; 1103 1104 bremfree(bp); 1105 buf_acquire(bp); 1106 splx(s); 1107 1108 if (ISSET(bp->b_flags, B_INVAL)) { 1109 brelse(bp); 1110 s = splbio(); 1111 continue; 1112 } 1113 #ifdef DIAGNOSTIC 1114 if (!ISSET(bp->b_flags, B_DELWRI)) 1115 panic("Clean buffer on BQ_DIRTY"); 1116 #endif 1117 if (LIST_FIRST(&bp->b_dep) != NULL && 1118 !ISSET(bp->b_flags, B_DEFERRED) && 1119 buf_countdeps(bp, 0, 0)) { 1120 SET(bp->b_flags, B_DEFERRED); 1121 s = splbio(); 1122 bcstats.numdirtypages += atop(bp->b_bufsize); 1123 bcstats.delwribufs++; 1124 binstailfree(bp, &bufqueues[BQ_DIRTY]); 1125 buf_release(bp); 1126 continue; 1127 } 1128 1129 bawrite(bp); 1130 1131 /* Never allow processing to run for more than 1 sec */ 1132 getmicrouptime(&tv); 1133 timersub(&tv, &starttime, &timediff); 1134 s = splbio(); 1135 if (timediff.tv_sec) 1136 break; 1137 1138 } 1139 } 1140 } 1141 1142 /* 1143 * Wait for operations on the buffer to complete. 1144 * When they do, extract and return the I/O's error value. 1145 */ 1146 int 1147 biowait(struct buf *bp) 1148 { 1149 int s; 1150 1151 KASSERT(!(bp->b_flags & B_ASYNC)); 1152 1153 s = splbio(); 1154 while (!ISSET(bp->b_flags, B_DONE)) 1155 tsleep(bp, PRIBIO + 1, "biowait", 0); 1156 splx(s); 1157 1158 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1159 if (ISSET(bp->b_flags, B_EINTR)) { 1160 CLR(bp->b_flags, B_EINTR); 1161 return (EINTR); 1162 } 1163 1164 if (ISSET(bp->b_flags, B_ERROR)) 1165 return (bp->b_error ? bp->b_error : EIO); 1166 else 1167 return (0); 1168 } 1169 1170 /* 1171 * Mark I/O complete on a buffer. 1172 * 1173 * If a callback has been requested, e.g. the pageout 1174 * daemon, do so. Otherwise, awaken waiting processes. 1175 * 1176 * [ Leffler, et al., says on p.247: 1177 * "This routine wakes up the blocked process, frees the buffer 1178 * for an asynchronous write, or, for a request by the pagedaemon 1179 * process, invokes a procedure specified in the buffer structure" ] 1180 * 1181 * In real life, the pagedaemon (or other system processes) wants 1182 * to do async stuff to, and doesn't want the buffer brelse()'d. 1183 * (for swap pager, that puts swap buffers on the free lists (!!!), 1184 * for the vn device, that puts malloc'd buffers on the free lists!) 1185 * 1186 * Must be called at splbio(). 1187 */ 1188 void 1189 biodone(struct buf *bp) 1190 { 1191 splassert(IPL_BIO); 1192 1193 if (ISSET(bp->b_flags, B_DONE)) 1194 panic("biodone already"); 1195 SET(bp->b_flags, B_DONE); /* note that it's done */ 1196 1197 if (bp->b_bq) 1198 bufq_done(bp->b_bq, bp); 1199 1200 if (LIST_FIRST(&bp->b_dep) != NULL) 1201 buf_complete(bp); 1202 1203 if (!ISSET(bp->b_flags, B_READ)) { 1204 CLR(bp->b_flags, B_WRITEINPROG); 1205 vwakeup(bp->b_vp); 1206 } 1207 if (bcstats.numbufs && 1208 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) { 1209 if (!ISSET(bp->b_flags, B_READ)) 1210 bcstats.pendingwrites--; 1211 else 1212 bcstats.pendingreads--; 1213 } 1214 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1215 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1216 (*bp->b_iodone)(bp); 1217 } else { 1218 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1219 brelse(bp); 1220 } else { /* or just wakeup the buffer */ 1221 CLR(bp->b_flags, B_WANTED); 1222 wakeup(bp); 1223 } 1224 } 1225 } 1226 1227 #ifdef DDB 1228 void bcstats_print(int (*)(const char *, ...)); 1229 /* 1230 * bcstats_print: ddb hook to print interesting buffer cache counters 1231 */ 1232 void 1233 bcstats_print(int (*pr)(const char *, ...)) 1234 { 1235 (*pr)("Current Buffer Cache status:\n"); 1236 (*pr)("numbufs %lld busymapped %lld, delwri %lld\n", 1237 bcstats.numbufs, bcstats.busymapped, bcstats.delwribufs); 1238 (*pr)("kvaslots %lld avail kva slots %lld\n", 1239 bcstats.kvaslots, bcstats.kvaslots_avail); 1240 (*pr)("bufpages %lld, dirtypages %lld\n", 1241 bcstats.numbufpages, bcstats.numdirtypages); 1242 (*pr)("pendingreads %lld, pendingwrites %lld\n", 1243 bcstats.pendingreads, bcstats.pendingwrites); 1244 } 1245 #endif 1246