1 /* $OpenBSD: vfs_bio.c,v 1.188 2019/02/17 22:17:28 tedu Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /* 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/resourcevar.h> 57 #include <sys/conf.h> 58 #include <sys/kernel.h> 59 #include <sys/specdev.h> 60 #include <uvm/uvm_extern.h> 61 62 /* XXX Should really be in buf.h, but for uvm_constraint_range.. */ 63 int buf_realloc_pages(struct buf *, struct uvm_constraint_range *, int); 64 65 struct uvm_constraint_range high_constraint; 66 int fliphigh; 67 68 int nobuffers; 69 int needbuffer; 70 struct bio_ops bioops; 71 72 /* private bufcache functions */ 73 void bufcache_init(void); 74 void bufcache_adjust(void); 75 struct buf *bufcache_gethighcleanbuf(void); 76 struct buf *bufcache_getdmacleanbuf(void); 77 78 /* 79 * Buffer pool for I/O buffers. 80 */ 81 struct pool bufpool; 82 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 83 void buf_put(struct buf *); 84 85 struct buf *bio_doread(struct vnode *, daddr_t, int, int); 86 struct buf *buf_get(struct vnode *, daddr_t, size_t); 87 void bread_cluster_callback(struct buf *); 88 89 struct bcachestats bcstats; /* counters */ 90 long lodirtypages; /* dirty page count low water mark */ 91 long hidirtypages; /* dirty page count high water mark */ 92 long targetpages; /* target number of pages for cache size */ 93 long buflowpages; /* smallest size cache allowed */ 94 long bufhighpages; /* largest size cache allowed */ 95 long bufbackpages; /* minimum number of pages we shrink when asked to */ 96 97 vsize_t bufkvm; 98 99 struct proc *cleanerproc; 100 int bd_req; /* Sleep point for cleaner daemon. */ 101 102 #define NUM_CACHES 2 103 #define DMA_CACHE 0 104 struct bufcache cleancache[NUM_CACHES]; 105 struct bufqueue dirtyqueue; 106 107 void 108 buf_put(struct buf *bp) 109 { 110 splassert(IPL_BIO); 111 112 #ifdef DIAGNOSTIC 113 if (bp->b_pobj != NULL) 114 KASSERT(bp->b_bufsize > 0); 115 if (ISSET(bp->b_flags, B_DELWRI)) 116 panic("buf_put: releasing dirty buffer"); 117 if (bp->b_freelist.tqe_next != NOLIST && 118 bp->b_freelist.tqe_next != (void *)-1) 119 panic("buf_put: still on the free list"); 120 if (bp->b_vnbufs.le_next != NOLIST && 121 bp->b_vnbufs.le_next != (void *)-1) 122 panic("buf_put: still on the vnode list"); 123 if (!LIST_EMPTY(&bp->b_dep)) 124 panic("buf_put: b_dep is not empty"); 125 #endif 126 127 LIST_REMOVE(bp, b_list); 128 bcstats.numbufs--; 129 130 if (buf_dealloc_mem(bp) != 0) 131 return; 132 pool_put(&bufpool, bp); 133 } 134 135 /* 136 * Initialize buffers and hash links for buffers. 137 */ 138 void 139 bufinit(void) 140 { 141 u_int64_t dmapages; 142 u_int64_t highpages; 143 144 dmapages = uvm_pagecount(&dma_constraint); 145 /* take away a guess at how much of this the kernel will consume */ 146 dmapages -= (atop(physmem) - atop(uvmexp.free)); 147 148 /* See if we have memory above the dma accessible region. */ 149 high_constraint.ucr_low = dma_constraint.ucr_high; 150 high_constraint.ucr_high = no_constraint.ucr_high; 151 if (high_constraint.ucr_low != high_constraint.ucr_high) 152 high_constraint.ucr_low++; 153 highpages = uvm_pagecount(&high_constraint); 154 155 /* 156 * Do we have any significant amount of high memory above 157 * the DMA region? if so enable moving buffers there, if not, 158 * don't bother. 159 */ 160 if (highpages > dmapages / 4) 161 fliphigh = 1; 162 else 163 fliphigh = 0; 164 165 /* 166 * If MD code doesn't say otherwise, use up to 10% of DMA'able 167 * memory for buffers. 168 */ 169 if (bufcachepercent == 0) 170 bufcachepercent = 10; 171 172 /* 173 * XXX these values and their same use in kern_sysctl 174 * need to move into buf.h 175 */ 176 KASSERT(bufcachepercent <= 90); 177 KASSERT(bufcachepercent >= 5); 178 if (bufpages == 0) 179 bufpages = dmapages * bufcachepercent / 100; 180 if (bufpages < BCACHE_MIN) 181 bufpages = BCACHE_MIN; 182 KASSERT(bufpages < dmapages); 183 184 bufhighpages = bufpages; 185 186 /* 187 * Set the base backoff level for the buffer cache. We will 188 * not allow uvm to steal back more than this number of pages. 189 */ 190 buflowpages = dmapages * 5 / 100; 191 if (buflowpages < BCACHE_MIN) 192 buflowpages = BCACHE_MIN; 193 194 /* 195 * set bufbackpages to 100 pages, or 10 percent of the low water mark 196 * if we don't have that many pages. 197 */ 198 199 bufbackpages = buflowpages * 10 / 100; 200 if (bufbackpages > 100) 201 bufbackpages = 100; 202 203 /* 204 * If the MD code does not say otherwise, reserve 10% of kva 205 * space for mapping buffers. 206 */ 207 if (bufkvm == 0) 208 bufkvm = VM_KERNEL_SPACE_SIZE / 10; 209 210 /* 211 * Don't use more than twice the amount of bufpages for mappings. 212 * It's twice since we map things sparsely. 213 */ 214 if (bufkvm > bufpages * PAGE_SIZE) 215 bufkvm = bufpages * PAGE_SIZE; 216 /* 217 * Round bufkvm to MAXPHYS because we allocate chunks of va space 218 * in MAXPHYS chunks. 219 */ 220 bufkvm &= ~(MAXPHYS - 1); 221 222 pool_init(&bufpool, sizeof(struct buf), 0, IPL_BIO, 0, "bufpl", NULL); 223 224 bufcache_init(); 225 226 /* 227 * hmm - bufkvm is an argument because it's static, while 228 * bufpages is global because it can change while running. 229 */ 230 buf_mem_init(bufkvm); 231 232 /* 233 * Set the dirty page high water mark to be less than the low 234 * water mark for pages in the buffer cache. This ensures we 235 * can always back off by throwing away clean pages, and give 236 * ourselves a chance to write out the dirty pages eventually. 237 */ 238 hidirtypages = (buflowpages / 4) * 3; 239 lodirtypages = buflowpages / 2; 240 241 /* 242 * We are allowed to use up to the reserve. 243 */ 244 targetpages = bufpages - RESERVE_PAGES; 245 } 246 247 /* 248 * Change cachepct 249 */ 250 void 251 bufadjust(int newbufpages) 252 { 253 struct buf *bp; 254 int s; 255 256 if (newbufpages < buflowpages) 257 newbufpages = buflowpages; 258 259 s = splbio(); 260 bufpages = newbufpages; 261 262 /* 263 * We are allowed to use up to the reserve 264 */ 265 targetpages = bufpages - RESERVE_PAGES; 266 267 /* 268 * Shrinking the cache happens here only if someone has manually 269 * adjusted bufcachepercent - or the pagedaemon has told us 270 * to give back memory *now* - so we give it all back. 271 */ 272 while ((bp = bufcache_getdmacleanbuf()) && 273 (bcstats.dmapages > targetpages)) { 274 bufcache_take(bp); 275 if (bp->b_vp) { 276 RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp); 277 brelvp(bp); 278 } 279 buf_put(bp); 280 } 281 bufcache_adjust(); 282 283 /* 284 * Wake up the cleaner if we have lots of dirty pages, 285 * or if we are getting low on buffer cache kva. 286 */ 287 if ((UNCLEAN_PAGES >= hidirtypages) || 288 bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS) 289 wakeup(&bd_req); 290 291 splx(s); 292 } 293 294 /* 295 * Make the buffer cache back off from cachepct. 296 */ 297 int 298 bufbackoff(struct uvm_constraint_range *range, long size) 299 { 300 /* 301 * Back off "size" buffer cache pages. Called by the page 302 * daemon to consume buffer cache pages rather than scanning. 303 * 304 * It returns 0 to the pagedaemon to indicate that it has 305 * succeeded in freeing enough pages. It returns -1 to 306 * indicate that it could not and the pagedaemon should take 307 * other measures. 308 * 309 */ 310 long pdelta, oldbufpages; 311 312 /* 313 * If we will accept high memory for this backoff 314 * try to steal it from the high memory buffer cache. 315 */ 316 if (range->ucr_high > dma_constraint.ucr_high) { 317 struct buf *bp; 318 int64_t start = bcstats.numbufpages, recovered = 0; 319 int s = splbio(); 320 321 while ((recovered < size) && 322 (bp = bufcache_gethighcleanbuf())) { 323 bufcache_take(bp); 324 if (bp->b_vp) { 325 RBT_REMOVE(buf_rb_bufs, 326 &bp->b_vp->v_bufs_tree, bp); 327 brelvp(bp); 328 } 329 buf_put(bp); 330 recovered = start - bcstats.numbufpages; 331 } 332 bufcache_adjust(); 333 splx(s); 334 335 /* If we got enough, return success */ 336 if (recovered >= size) 337 return 0; 338 339 /* 340 * If we needed only memory above DMA, 341 * return failure 342 */ 343 if (range->ucr_low > dma_constraint.ucr_high) 344 return -1; 345 346 /* Otherwise get the rest from DMA */ 347 size -= recovered; 348 } 349 350 /* 351 * XXX Otherwise do the dma memory cache dance. this needs 352 * refactoring later to get rid of 'bufpages' 353 */ 354 355 /* 356 * Back off by at least bufbackpages. If the page daemon gave us 357 * a larger size, back off by that much. 358 */ 359 pdelta = (size > bufbackpages) ? size : bufbackpages; 360 361 if (bufpages <= buflowpages) 362 return(-1); 363 if (bufpages - pdelta < buflowpages) 364 pdelta = bufpages - buflowpages; 365 oldbufpages = bufpages; 366 bufadjust(bufpages - pdelta); 367 if (oldbufpages - bufpages < size) 368 return (-1); /* we did not free what we were asked */ 369 else 370 return(0); 371 } 372 373 374 /* 375 * Opportunistically flip a buffer into high memory. Will move the buffer 376 * if memory is available without sleeping, and return 0, otherwise will 377 * fail and return -1 with the buffer unchanged. 378 */ 379 380 int 381 buf_flip_high(struct buf *bp) 382 { 383 int s; 384 int ret = -1; 385 386 KASSERT(ISSET(bp->b_flags, B_BC)); 387 KASSERT(ISSET(bp->b_flags, B_DMA)); 388 KASSERT(bp->cache == DMA_CACHE); 389 KASSERT(fliphigh); 390 391 /* Attempt to move the buffer to high memory if we can */ 392 s = splbio(); 393 if (buf_realloc_pages(bp, &high_constraint, UVM_PLA_NOWAIT) == 0) { 394 KASSERT(!ISSET(bp->b_flags, B_DMA)); 395 bcstats.highflips++; 396 ret = 0; 397 } else 398 bcstats.highflops++; 399 splx(s); 400 401 return ret; 402 } 403 404 /* 405 * Flip a buffer to dma reachable memory, when we need it there for 406 * I/O. This can sleep since it will wait for memory alloacation in the 407 * DMA reachable area since we have to have the buffer there to proceed. 408 */ 409 void 410 buf_flip_dma(struct buf *bp) 411 { 412 KASSERT(ISSET(bp->b_flags, B_BC)); 413 KASSERT(ISSET(bp->b_flags, B_BUSY)); 414 KASSERT(bp->cache < NUM_CACHES); 415 416 if (!ISSET(bp->b_flags, B_DMA)) { 417 int s = splbio(); 418 419 /* move buf to dma reachable memory */ 420 (void) buf_realloc_pages(bp, &dma_constraint, UVM_PLA_WAITOK); 421 KASSERT(ISSET(bp->b_flags, B_DMA)); 422 bcstats.dmaflips++; 423 splx(s); 424 } 425 426 if (bp->cache > DMA_CACHE) { 427 CLR(bp->b_flags, B_COLD); 428 CLR(bp->b_flags, B_WARM); 429 bp->cache = DMA_CACHE; 430 } 431 } 432 433 struct buf * 434 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async) 435 { 436 struct buf *bp; 437 struct mount *mp; 438 439 bp = getblk(vp, blkno, size, 0, 0); 440 441 /* 442 * If buffer does not have valid data, start a read. 443 * Note that if buffer is B_INVAL, getblk() won't return it. 444 * Therefore, it's valid if its I/O has completed or been delayed. 445 */ 446 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 447 SET(bp->b_flags, B_READ | async); 448 bcstats.pendingreads++; 449 bcstats.numreads++; 450 VOP_STRATEGY(bp); 451 /* Pay for the read. */ 452 curproc->p_ru.ru_inblock++; /* XXX */ 453 } else if (async) { 454 brelse(bp); 455 } 456 457 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 458 459 /* 460 * Collect statistics on synchronous and asynchronous reads. 461 * Reads from block devices are charged to their associated 462 * filesystem (if any). 463 */ 464 if (mp != NULL) { 465 if (async == 0) 466 mp->mnt_stat.f_syncreads++; 467 else 468 mp->mnt_stat.f_asyncreads++; 469 } 470 471 return (bp); 472 } 473 474 /* 475 * Read a disk block. 476 * This algorithm described in Bach (p.54). 477 */ 478 int 479 bread(struct vnode *vp, daddr_t blkno, int size, struct buf **bpp) 480 { 481 struct buf *bp; 482 483 /* Get buffer for block. */ 484 bp = *bpp = bio_doread(vp, blkno, size, 0); 485 486 /* Wait for the read to complete, and return result. */ 487 return (biowait(bp)); 488 } 489 490 /* 491 * Read-ahead multiple disk blocks. The first is sync, the rest async. 492 * Trivial modification to the breada algorithm presented in Bach (p.55). 493 */ 494 int 495 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t rablks[], 496 int rasizes[], int nrablks, struct buf **bpp) 497 { 498 struct buf *bp; 499 int i; 500 501 bp = *bpp = bio_doread(vp, blkno, size, 0); 502 503 /* 504 * For each of the read-ahead blocks, start a read, if necessary. 505 */ 506 for (i = 0; i < nrablks; i++) { 507 /* If it's in the cache, just go on to next one. */ 508 if (incore(vp, rablks[i])) 509 continue; 510 511 /* Get a buffer for the read-ahead block */ 512 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 513 } 514 515 /* Otherwise, we had to start a read for it; wait until it's valid. */ 516 return (biowait(bp)); 517 } 518 519 /* 520 * Called from interrupt context. 521 */ 522 void 523 bread_cluster_callback(struct buf *bp) 524 { 525 struct buf **xbpp = bp->b_saveaddr; 526 int i; 527 528 if (xbpp[1] != NULL) { 529 size_t newsize = xbpp[1]->b_bufsize; 530 531 /* 532 * Shrink this buffer's mapping to only cover its part of 533 * the total I/O. 534 */ 535 buf_fix_mapping(bp, newsize); 536 bp->b_bcount = newsize; 537 } 538 539 /* Invalidate read-ahead buffers if read short */ 540 if (bp->b_resid > 0) { 541 for (i = 1; xbpp[i] != NULL; i++) 542 continue; 543 for (i = i - 1; i != 0; i--) { 544 if (xbpp[i]->b_bufsize <= bp->b_resid) { 545 bp->b_resid -= xbpp[i]->b_bufsize; 546 SET(xbpp[i]->b_flags, B_INVAL); 547 } else if (bp->b_resid > 0) { 548 bp->b_resid = 0; 549 SET(xbpp[i]->b_flags, B_INVAL); 550 } else 551 break; 552 } 553 } 554 555 for (i = 1; xbpp[i] != NULL; i++) { 556 if (ISSET(bp->b_flags, B_ERROR)) 557 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 558 biodone(xbpp[i]); 559 } 560 561 free(xbpp, M_TEMP, (i + 1) * sizeof(*xbpp)); 562 563 if (ISSET(bp->b_flags, B_ASYNC)) { 564 brelse(bp); 565 } else { 566 CLR(bp->b_flags, B_WANTED); 567 wakeup(bp); 568 } 569 } 570 571 /* 572 * Read-ahead multiple disk blocks, but make sure only one (big) I/O 573 * request is sent to the disk. 574 * XXX This should probably be dropped and breadn should instead be optimized 575 * XXX to do fewer I/O requests. 576 */ 577 int 578 bread_cluster(struct vnode *vp, daddr_t blkno, int size, struct buf **rbpp) 579 { 580 struct buf *bp, **xbpp; 581 int howmany, maxra, i, inc; 582 daddr_t sblkno; 583 584 *rbpp = bio_doread(vp, blkno, size, 0); 585 586 /* 587 * If the buffer is in the cache skip any I/O operation. 588 */ 589 if (ISSET((*rbpp)->b_flags, B_CACHE)) 590 goto out; 591 592 if (size != round_page(size)) 593 goto out; 594 595 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 596 goto out; 597 598 maxra++; 599 if (sblkno == -1 || maxra < 2) 600 goto out; 601 602 howmany = MAXPHYS / size; 603 if (howmany > maxra) 604 howmany = maxra; 605 606 xbpp = mallocarray(howmany + 1, sizeof(*xbpp), M_TEMP, M_NOWAIT); 607 if (xbpp == NULL) 608 goto out; 609 610 for (i = howmany - 1; i >= 0; i--) { 611 size_t sz; 612 613 /* 614 * First buffer allocates big enough size to cover what 615 * all the other buffers need. 616 */ 617 sz = i == 0 ? howmany * size : 0; 618 619 xbpp[i] = buf_get(vp, blkno + i + 1, sz); 620 if (xbpp[i] == NULL) { 621 for (++i; i < howmany; i++) { 622 SET(xbpp[i]->b_flags, B_INVAL); 623 brelse(xbpp[i]); 624 } 625 free(xbpp, M_TEMP, (howmany + 1) * sizeof(*xbpp)); 626 goto out; 627 } 628 } 629 630 bp = xbpp[0]; 631 632 xbpp[howmany] = NULL; 633 634 inc = btodb(size); 635 636 for (i = 1; i < howmany; i++) { 637 bcstats.pendingreads++; 638 bcstats.numreads++; 639 /* 640 * We set B_DMA here because bp above will be B_DMA, 641 * and we are playing buffer slice-n-dice games from 642 * the memory allocated in bp. 643 */ 644 SET(xbpp[i]->b_flags, B_DMA | B_READ | B_ASYNC); 645 xbpp[i]->b_blkno = sblkno + (i * inc); 646 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 647 xbpp[i]->b_data = NULL; 648 xbpp[i]->b_pobj = bp->b_pobj; 649 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 650 } 651 652 KASSERT(bp->b_lblkno == blkno + 1); 653 KASSERT(bp->b_vp == vp); 654 655 bp->b_blkno = sblkno; 656 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 657 658 bp->b_saveaddr = (void *)xbpp; 659 bp->b_iodone = bread_cluster_callback; 660 661 bcstats.pendingreads++; 662 bcstats.numreads++; 663 VOP_STRATEGY(bp); 664 curproc->p_ru.ru_inblock++; 665 666 out: 667 return (biowait(*rbpp)); 668 } 669 670 /* 671 * Block write. Described in Bach (p.56) 672 */ 673 int 674 bwrite(struct buf *bp) 675 { 676 int rv, async, wasdelayed, s; 677 struct vnode *vp; 678 struct mount *mp; 679 680 vp = bp->b_vp; 681 if (vp != NULL) 682 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 683 else 684 mp = NULL; 685 686 /* 687 * Remember buffer type, to switch on it later. If the write was 688 * synchronous, but the file system was mounted with MNT_ASYNC, 689 * convert it to a delayed write. 690 * XXX note that this relies on delayed tape writes being converted 691 * to async, not sync writes (which is safe, but ugly). 692 */ 693 async = ISSET(bp->b_flags, B_ASYNC); 694 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 695 bdwrite(bp); 696 return (0); 697 } 698 699 /* 700 * Collect statistics on synchronous and asynchronous writes. 701 * Writes to block devices are charged to their associated 702 * filesystem (if any). 703 */ 704 if (mp != NULL) { 705 if (async) 706 mp->mnt_stat.f_asyncwrites++; 707 else 708 mp->mnt_stat.f_syncwrites++; 709 } 710 bcstats.pendingwrites++; 711 bcstats.numwrites++; 712 713 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 714 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 715 716 s = splbio(); 717 718 /* 719 * If not synchronous, pay for the I/O operation and make 720 * sure the buf is on the correct vnode queue. We have 721 * to do this now, because if we don't, the vnode may not 722 * be properly notified that its I/O has completed. 723 */ 724 if (wasdelayed) { 725 reassignbuf(bp); 726 } else 727 curproc->p_ru.ru_oublock++; 728 729 730 /* Initiate disk write. Make sure the appropriate party is charged. */ 731 bp->b_vp->v_numoutput++; 732 splx(s); 733 buf_flip_dma(bp); 734 SET(bp->b_flags, B_WRITEINPROG); 735 VOP_STRATEGY(bp); 736 737 /* 738 * If the queue is above the high water mark, wait till 739 * the number of outstanding write bufs drops below the low 740 * water mark. 741 */ 742 if (bp->b_bq) 743 bufq_wait(bp->b_bq); 744 745 if (async) 746 return (0); 747 748 /* 749 * If I/O was synchronous, wait for it to complete. 750 */ 751 rv = biowait(bp); 752 753 /* Release the buffer. */ 754 brelse(bp); 755 756 return (rv); 757 } 758 759 760 /* 761 * Delayed write. 762 * 763 * The buffer is marked dirty, but is not queued for I/O. 764 * This routine should be used when the buffer is expected 765 * to be modified again soon, typically a small write that 766 * partially fills a buffer. 767 * 768 * NB: magnetic tapes cannot be delayed; they must be 769 * written in the order that the writes are requested. 770 * 771 * Described in Leffler, et al. (pp. 208-213). 772 */ 773 void 774 bdwrite(struct buf *bp) 775 { 776 int s; 777 778 /* 779 * If the block hasn't been seen before: 780 * (1) Mark it as having been seen, 781 * (2) Charge for the write. 782 * (3) Make sure it's on its vnode's correct block list, 783 * (4) If a buffer is rewritten, move it to end of dirty list 784 */ 785 if (!ISSET(bp->b_flags, B_DELWRI)) { 786 SET(bp->b_flags, B_DELWRI); 787 s = splbio(); 788 buf_flip_dma(bp); 789 reassignbuf(bp); 790 splx(s); 791 curproc->p_ru.ru_oublock++; /* XXX */ 792 } 793 794 /* The "write" is done, so mark and release the buffer. */ 795 CLR(bp->b_flags, B_NEEDCOMMIT); 796 SET(bp->b_flags, B_DONE); 797 brelse(bp); 798 } 799 800 /* 801 * Asynchronous block write; just an asynchronous bwrite(). 802 */ 803 void 804 bawrite(struct buf *bp) 805 { 806 807 SET(bp->b_flags, B_ASYNC); 808 VOP_BWRITE(bp); 809 } 810 811 /* 812 * Must be called at splbio() 813 */ 814 void 815 buf_dirty(struct buf *bp) 816 { 817 splassert(IPL_BIO); 818 819 #ifdef DIAGNOSTIC 820 if (!ISSET(bp->b_flags, B_BUSY)) 821 panic("Trying to dirty buffer on freelist!"); 822 #endif 823 824 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 825 SET(bp->b_flags, B_DELWRI); 826 buf_flip_dma(bp); 827 reassignbuf(bp); 828 } 829 } 830 831 /* 832 * Must be called at splbio() 833 */ 834 void 835 buf_undirty(struct buf *bp) 836 { 837 splassert(IPL_BIO); 838 839 #ifdef DIAGNOSTIC 840 if (!ISSET(bp->b_flags, B_BUSY)) 841 panic("Trying to undirty buffer on freelist!"); 842 #endif 843 if (ISSET(bp->b_flags, B_DELWRI)) { 844 CLR(bp->b_flags, B_DELWRI); 845 reassignbuf(bp); 846 } 847 } 848 849 /* 850 * Release a buffer on to the free lists. 851 * Described in Bach (p. 46). 852 */ 853 void 854 brelse(struct buf *bp) 855 { 856 int s; 857 858 s = splbio(); 859 860 if (bp->b_data != NULL) 861 KASSERT(bp->b_bufsize > 0); 862 863 /* 864 * Determine which queue the buffer should be on, then put it there. 865 */ 866 867 /* If it's not cacheable, or an error, mark it invalid. */ 868 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 869 SET(bp->b_flags, B_INVAL); 870 /* If it's a write error, also mark the vnode as damaged. */ 871 if (ISSET(bp->b_flags, B_ERROR) && !ISSET(bp->b_flags, B_READ)) { 872 if (bp->b_vp && bp->b_vp->v_type == VREG) 873 SET(bp->b_vp->v_bioflag, VBIOERROR); 874 } 875 876 if (ISSET(bp->b_flags, B_INVAL)) { 877 /* 878 * If the buffer is invalid, free it now rather than leaving 879 * it in a queue and wasting memory. 880 */ 881 if (LIST_FIRST(&bp->b_dep) != NULL) 882 buf_deallocate(bp); 883 884 if (ISSET(bp->b_flags, B_DELWRI)) { 885 CLR(bp->b_flags, B_DELWRI); 886 } 887 888 if (bp->b_vp) { 889 RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp); 890 brelvp(bp); 891 } 892 bp->b_vp = NULL; 893 894 /* 895 * Wake up any processes waiting for _this_ buffer to 896 * become free. They are not allowed to grab it 897 * since it will be freed. But the only sleeper is 898 * getblk and it will restart the operation after 899 * sleep. 900 */ 901 if (ISSET(bp->b_flags, B_WANTED)) { 902 CLR(bp->b_flags, B_WANTED); 903 wakeup(bp); 904 } 905 buf_put(bp); 906 } else { 907 /* 908 * It has valid data. Put it on the end of the appropriate 909 * queue, so that it'll stick around for as long as possible. 910 */ 911 bufcache_release(bp); 912 913 /* Unlock the buffer. */ 914 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 915 buf_release(bp); 916 917 /* Wake up any processes waiting for _this_ buffer to 918 * become free. */ 919 if (ISSET(bp->b_flags, B_WANTED)) { 920 CLR(bp->b_flags, B_WANTED); 921 wakeup(bp); 922 } 923 } 924 925 /* Wake up syncer and cleaner processes waiting for buffers. */ 926 if (nobuffers) { 927 nobuffers = 0; 928 wakeup(&nobuffers); 929 } 930 931 /* Wake up any processes waiting for any buffer to become free. */ 932 if (needbuffer && bcstats.dmapages < targetpages && 933 bcstats.kvaslots_avail > RESERVE_SLOTS) { 934 needbuffer = 0; 935 wakeup(&needbuffer); 936 } 937 938 splx(s); 939 } 940 941 /* 942 * Determine if a block is in the cache. Just look on what would be its hash 943 * chain. If it's there, return a pointer to it, unless it's marked invalid. 944 */ 945 struct buf * 946 incore(struct vnode *vp, daddr_t blkno) 947 { 948 struct buf *bp; 949 struct buf b; 950 int s; 951 952 s = splbio(); 953 954 /* Search buf lookup tree */ 955 b.b_lblkno = blkno; 956 bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 957 if (bp != NULL && ISSET(bp->b_flags, B_INVAL)) 958 bp = NULL; 959 960 splx(s); 961 return (bp); 962 } 963 964 /* 965 * Get a block of requested size that is associated with 966 * a given vnode and block offset. If it is found in the 967 * block cache, mark it as having been found, make it busy 968 * and return it. Otherwise, return an empty block of the 969 * correct size. It is up to the caller to ensure that the 970 * cached blocks be of the correct size. 971 */ 972 struct buf * 973 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 974 { 975 struct buf *bp; 976 struct buf b; 977 int s, error; 978 979 /* 980 * XXX 981 * The following is an inlined version of 'incore()', but with 982 * the 'invalid' test moved to after the 'busy' test. It's 983 * necessary because there are some cases in which the NFS 984 * code sets B_INVAL prior to writing data to the server, but 985 * in which the buffers actually contain valid data. In this 986 * case, we can't allow the system to allocate a new buffer for 987 * the block until the write is finished. 988 */ 989 start: 990 s = splbio(); 991 b.b_lblkno = blkno; 992 bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 993 if (bp != NULL) { 994 if (ISSET(bp->b_flags, B_BUSY)) { 995 SET(bp->b_flags, B_WANTED); 996 error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 997 slptimeo); 998 splx(s); 999 if (error) 1000 return (NULL); 1001 goto start; 1002 } 1003 1004 if (!ISSET(bp->b_flags, B_INVAL)) { 1005 bcstats.cachehits++; 1006 SET(bp->b_flags, B_CACHE); 1007 bufcache_take(bp); 1008 buf_acquire(bp); 1009 splx(s); 1010 return (bp); 1011 } 1012 } 1013 splx(s); 1014 1015 if ((bp = buf_get(vp, blkno, size)) == NULL) 1016 goto start; 1017 1018 return (bp); 1019 } 1020 1021 /* 1022 * Get an empty, disassociated buffer of given size. 1023 */ 1024 struct buf * 1025 geteblk(size_t size) 1026 { 1027 struct buf *bp; 1028 1029 while ((bp = buf_get(NULL, 0, size)) == NULL) 1030 continue; 1031 1032 return (bp); 1033 } 1034 1035 /* 1036 * Allocate a buffer. 1037 * If vp is given, put it into the buffer cache for that vnode. 1038 * If size != 0, allocate memory and call buf_map(). 1039 * If there is already a buffer for the given vnode/blkno, return NULL. 1040 */ 1041 struct buf * 1042 buf_get(struct vnode *vp, daddr_t blkno, size_t size) 1043 { 1044 struct buf *bp; 1045 int poolwait = size == 0 ? PR_NOWAIT : PR_WAITOK; 1046 int npages; 1047 int s; 1048 1049 s = splbio(); 1050 if (size) { 1051 /* 1052 * Wake up the cleaner if we have lots of dirty pages, 1053 * or if we are getting low on buffer cache kva. 1054 */ 1055 if (UNCLEAN_PAGES >= hidirtypages || 1056 bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS) 1057 wakeup(&bd_req); 1058 1059 npages = atop(round_page(size)); 1060 1061 /* 1062 * if our cache has been previously shrunk, 1063 * allow it to grow again with use up to 1064 * bufhighpages (cachepercent) 1065 */ 1066 if (bufpages < bufhighpages) 1067 bufadjust(bufhighpages); 1068 1069 /* 1070 * If we would go over the page target with our 1071 * new allocation, free enough buffers first 1072 * to stay at the target with our new allocation. 1073 */ 1074 while ((bcstats.dmapages + npages > targetpages) && 1075 (bp = bufcache_getdmacleanbuf())) { 1076 bufcache_take(bp); 1077 if (bp->b_vp) { 1078 RBT_REMOVE(buf_rb_bufs, 1079 &bp->b_vp->v_bufs_tree, bp); 1080 brelvp(bp); 1081 } 1082 buf_put(bp); 1083 } 1084 1085 /* 1086 * If we get here, we tried to free the world down 1087 * above, and couldn't get down - Wake the cleaner 1088 * and wait for it to push some buffers out. 1089 */ 1090 if ((bcstats.dmapages + npages > targetpages || 1091 bcstats.kvaslots_avail <= RESERVE_SLOTS) && 1092 curproc != syncerproc && curproc != cleanerproc) { 1093 wakeup(&bd_req); 1094 needbuffer++; 1095 tsleep(&needbuffer, PRIBIO, "needbuffer", 0); 1096 splx(s); 1097 return (NULL); 1098 } 1099 if (bcstats.dmapages + npages > bufpages) { 1100 /* cleaner or syncer */ 1101 nobuffers = 1; 1102 tsleep(&nobuffers, PRIBIO, "nobuffers", 0); 1103 splx(s); 1104 return (NULL); 1105 } 1106 } 1107 1108 bp = pool_get(&bufpool, poolwait|PR_ZERO); 1109 1110 if (bp == NULL) { 1111 splx(s); 1112 return (NULL); 1113 } 1114 1115 bp->b_freelist.tqe_next = NOLIST; 1116 bp->b_dev = NODEV; 1117 LIST_INIT(&bp->b_dep); 1118 bp->b_bcount = size; 1119 1120 buf_acquire_nomap(bp); 1121 1122 if (vp != NULL) { 1123 /* 1124 * We insert the buffer into the hash with B_BUSY set 1125 * while we allocate pages for it. This way any getblk 1126 * that happens while we allocate pages will wait for 1127 * this buffer instead of starting its own buf_get. 1128 * 1129 * But first, we check if someone beat us to it. 1130 */ 1131 if (incore(vp, blkno)) { 1132 pool_put(&bufpool, bp); 1133 splx(s); 1134 return (NULL); 1135 } 1136 1137 bp->b_blkno = bp->b_lblkno = blkno; 1138 bgetvp(vp, bp); 1139 if (RBT_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp)) 1140 panic("buf_get: dup lblk vp %p bp %p", vp, bp); 1141 } else { 1142 bp->b_vnbufs.le_next = NOLIST; 1143 SET(bp->b_flags, B_INVAL); 1144 bp->b_vp = NULL; 1145 } 1146 1147 LIST_INSERT_HEAD(&bufhead, bp, b_list); 1148 bcstats.numbufs++; 1149 1150 if (size) { 1151 buf_alloc_pages(bp, round_page(size)); 1152 KASSERT(ISSET(bp->b_flags, B_DMA)); 1153 buf_map(bp); 1154 } 1155 1156 SET(bp->b_flags, B_BC); 1157 splx(s); 1158 1159 return (bp); 1160 } 1161 1162 /* 1163 * Buffer cleaning daemon. 1164 */ 1165 void 1166 buf_daemon(void *arg) 1167 { 1168 struct buf *bp = NULL; 1169 int s, pushed = 0; 1170 1171 s = splbio(); 1172 for (;;) { 1173 if (bp == NULL || (pushed >= 16 && 1174 UNCLEAN_PAGES < hidirtypages && 1175 bcstats.kvaslots_avail > 2 * RESERVE_SLOTS)){ 1176 pushed = 0; 1177 /* 1178 * Wake up anyone who was waiting for buffers 1179 * to be released. 1180 */ 1181 if (needbuffer) { 1182 needbuffer = 0; 1183 wakeup(&needbuffer); 1184 } 1185 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 1186 } 1187 1188 while ((bp = bufcache_getdirtybuf())) { 1189 1190 if (UNCLEAN_PAGES < lodirtypages && 1191 bcstats.kvaslots_avail > 2 * RESERVE_SLOTS && 1192 pushed >= 16) 1193 break; 1194 1195 bufcache_take(bp); 1196 buf_acquire(bp); 1197 splx(s); 1198 1199 if (ISSET(bp->b_flags, B_INVAL)) { 1200 brelse(bp); 1201 s = splbio(); 1202 continue; 1203 } 1204 #ifdef DIAGNOSTIC 1205 if (!ISSET(bp->b_flags, B_DELWRI)) 1206 panic("Clean buffer on dirty queue"); 1207 #endif 1208 if (LIST_FIRST(&bp->b_dep) != NULL && 1209 !ISSET(bp->b_flags, B_DEFERRED) && 1210 buf_countdeps(bp, 0, 0)) { 1211 SET(bp->b_flags, B_DEFERRED); 1212 s = splbio(); 1213 bufcache_release(bp); 1214 buf_release(bp); 1215 continue; 1216 } 1217 1218 bawrite(bp); 1219 pushed++; 1220 1221 sched_pause(yield); 1222 1223 s = splbio(); 1224 } 1225 } 1226 } 1227 1228 /* 1229 * Wait for operations on the buffer to complete. 1230 * When they do, extract and return the I/O's error value. 1231 */ 1232 int 1233 biowait(struct buf *bp) 1234 { 1235 int s; 1236 1237 KASSERT(!(bp->b_flags & B_ASYNC)); 1238 1239 s = splbio(); 1240 while (!ISSET(bp->b_flags, B_DONE)) 1241 tsleep(bp, PRIBIO + 1, "biowait", 0); 1242 splx(s); 1243 1244 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1245 if (ISSET(bp->b_flags, B_EINTR)) { 1246 CLR(bp->b_flags, B_EINTR); 1247 return (EINTR); 1248 } 1249 1250 if (ISSET(bp->b_flags, B_ERROR)) 1251 return (bp->b_error ? bp->b_error : EIO); 1252 else 1253 return (0); 1254 } 1255 1256 /* 1257 * Mark I/O complete on a buffer. 1258 * 1259 * If a callback has been requested, e.g. the pageout 1260 * daemon, do so. Otherwise, awaken waiting processes. 1261 * 1262 * [ Leffler, et al., says on p.247: 1263 * "This routine wakes up the blocked process, frees the buffer 1264 * for an asynchronous write, or, for a request by the pagedaemon 1265 * process, invokes a procedure specified in the buffer structure" ] 1266 * 1267 * In real life, the pagedaemon (or other system processes) wants 1268 * to do async stuff to, and doesn't want the buffer brelse()'d. 1269 * (for swap pager, that puts swap buffers on the free lists (!!!), 1270 * for the vn device, that puts malloc'd buffers on the free lists!) 1271 * 1272 * Must be called at splbio(). 1273 */ 1274 void 1275 biodone(struct buf *bp) 1276 { 1277 splassert(IPL_BIO); 1278 1279 if (ISSET(bp->b_flags, B_DONE)) 1280 panic("biodone already"); 1281 SET(bp->b_flags, B_DONE); /* note that it's done */ 1282 1283 if (bp->b_bq) 1284 bufq_done(bp->b_bq, bp); 1285 1286 if (LIST_FIRST(&bp->b_dep) != NULL) 1287 buf_complete(bp); 1288 1289 if (!ISSET(bp->b_flags, B_READ)) { 1290 CLR(bp->b_flags, B_WRITEINPROG); 1291 vwakeup(bp->b_vp); 1292 } 1293 if (bcstats.numbufs && 1294 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) { 1295 if (!ISSET(bp->b_flags, B_READ)) { 1296 bcstats.pendingwrites--; 1297 } else 1298 bcstats.pendingreads--; 1299 } 1300 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1301 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1302 (*bp->b_iodone)(bp); 1303 } else { 1304 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1305 brelse(bp); 1306 } else { /* or just wakeup the buffer */ 1307 CLR(bp->b_flags, B_WANTED); 1308 wakeup(bp); 1309 } 1310 } 1311 } 1312 1313 #ifdef DDB 1314 void bcstats_print(int (*)(const char *, ...) 1315 __attribute__((__format__(__kprintf__,1,2)))); 1316 /* 1317 * bcstats_print: ddb hook to print interesting buffer cache counters 1318 */ 1319 void 1320 bcstats_print( 1321 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1322 { 1323 (*pr)("Current Buffer Cache status:\n"); 1324 (*pr)("numbufs %lld busymapped %lld, delwri %lld\n", 1325 bcstats.numbufs, bcstats.busymapped, bcstats.delwribufs); 1326 (*pr)("kvaslots %lld avail kva slots %lld\n", 1327 bcstats.kvaslots, bcstats.kvaslots_avail); 1328 (*pr)("bufpages %lld, dmapages %lld, dirtypages %lld\n", 1329 bcstats.numbufpages, bcstats.dmapages, bcstats.numdirtypages); 1330 (*pr)("pendingreads %lld, pendingwrites %lld\n", 1331 bcstats.pendingreads, bcstats.pendingwrites); 1332 (*pr)("highflips %lld, highflops %lld, dmaflips %lld\n", 1333 bcstats.highflips, bcstats.highflops, bcstats.dmaflips); 1334 } 1335 #endif 1336 1337 void 1338 buf_adjcnt(struct buf *bp, long ncount) 1339 { 1340 KASSERT(ncount <= bp->b_bufsize); 1341 bp->b_bcount = ncount; 1342 } 1343 1344 /* bufcache freelist code below */ 1345 /* 1346 * Copyright (c) 2014 Ted Unangst <tedu@openbsd.org> 1347 * 1348 * Permission to use, copy, modify, and distribute this software for any 1349 * purpose with or without fee is hereby granted, provided that the above 1350 * copyright notice and this permission notice appear in all copies. 1351 * 1352 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 1353 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 1354 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 1355 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 1356 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 1357 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 1358 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 1359 */ 1360 1361 /* 1362 * The code below implements a variant of the 2Q buffer cache algorithm by 1363 * Johnson and Shasha. 1364 * 1365 * General Outline 1366 * We divide the buffer cache into three working sets: current, previous, 1367 * and long term. Each list is itself LRU and buffers get promoted and moved 1368 * around between them. A buffer starts its life in the current working set. 1369 * As time passes and newer buffers push it out, it will turn into the previous 1370 * working set and is subject to recycling. But if it's accessed again from 1371 * the previous working set, that's an indication that it's actually in the 1372 * long term working set, so we promote it there. The separation of current 1373 * and previous working sets prevents us from promoting a buffer that's only 1374 * temporarily hot to the long term cache. 1375 * 1376 * The objective is to provide scan resistance by making the long term 1377 * working set ineligible for immediate recycling, even as the current 1378 * working set is rapidly turned over. 1379 * 1380 * Implementation 1381 * The code below identifies the current, previous, and long term sets as 1382 * hotqueue, coldqueue, and warmqueue. The hot and warm queues are capped at 1383 * 1/3 of the total clean pages, after which point they start pushing their 1384 * oldest buffers into coldqueue. 1385 * A buf always starts out with neither WARM or COLD flags set (implying HOT). 1386 * When released, it will be returned to the tail of the hotqueue list. 1387 * When the hotqueue gets too large, the oldest hot buf will be moved to the 1388 * coldqueue, with the B_COLD flag set. When a cold buf is released, we set 1389 * the B_WARM flag and put it onto the warmqueue. Warm bufs are also 1390 * directly returned to the end of the warmqueue. As with the hotqueue, when 1391 * the warmqueue grows too large, B_WARM bufs are moved onto the coldqueue. 1392 * 1393 * Note that this design does still support large working sets, greater 1394 * than the cap of hotqueue or warmqueue would imply. The coldqueue is still 1395 * cached and has no maximum length. The hot and warm queues form a Y feeding 1396 * into the coldqueue. Moving bufs between queues is constant time, so this 1397 * design decays to one long warm->cold queue. 1398 * 1399 * In the 2Q paper, hotqueue and coldqueue are A1in and A1out. The warmqueue 1400 * is Am. We always cache pages, as opposed to pointers to pages for A1. 1401 * 1402 * This implementation adds support for multiple 2q caches. 1403 * 1404 * If we have more than one 2q cache, as bufs fall off the cold queue 1405 * for recyclying, bufs that have been warm before (which retain the 1406 * B_WARM flag in addition to B_COLD) can be put into the hot queue of 1407 * a second level 2Q cache. buffers which are only B_COLD are 1408 * recycled. Bufs falling off the last cache's cold queue are always 1409 * recycled. 1410 * 1411 */ 1412 1413 /* 1414 * this function is called when a hot or warm queue may have exceeded its 1415 * size limit. it will move a buf to the coldqueue. 1416 */ 1417 int chillbufs(struct 1418 bufcache *cache, struct bufqueue *queue, int64_t *queuepages); 1419 1420 void 1421 bufcache_init(void) 1422 { 1423 int i; 1424 for (i=0; i < NUM_CACHES; i++) { 1425 TAILQ_INIT(&cleancache[i].hotqueue); 1426 TAILQ_INIT(&cleancache[i].coldqueue); 1427 TAILQ_INIT(&cleancache[i].warmqueue); 1428 } 1429 TAILQ_INIT(&dirtyqueue); 1430 } 1431 1432 /* 1433 * if the buffer caches have shrunk, we may need to rebalance our queues. 1434 */ 1435 void 1436 bufcache_adjust(void) 1437 { 1438 int i; 1439 for (i=0; i < NUM_CACHES; i++) { 1440 while (chillbufs(&cleancache[i], &cleancache[i].warmqueue, 1441 &cleancache[i].warmbufpages) || 1442 chillbufs(&cleancache[i], &cleancache[i].hotqueue, 1443 &cleancache[i].hotbufpages)) 1444 continue; 1445 } 1446 } 1447 1448 /* 1449 * Get a clean buffer from the cache. if "discard" is set do not promote 1450 * previously warm buffers as normal, because we are tossing everything 1451 * away such as in a hibernation 1452 */ 1453 struct buf * 1454 bufcache_getcleanbuf(int cachenum, int discard) 1455 { 1456 struct buf *bp = NULL; 1457 struct bufcache *cache = &cleancache[cachenum]; 1458 1459 splassert(IPL_BIO); 1460 1461 /* try cold queue */ 1462 while ((bp = TAILQ_FIRST(&cache->coldqueue))) { 1463 if ((!discard) && 1464 cachenum < NUM_CACHES - 1 && ISSET(bp->b_flags, B_WARM)) { 1465 int64_t pages = atop(bp->b_bufsize); 1466 struct bufcache *newcache; 1467 1468 KASSERT(bp->cache == cachenum); 1469 1470 /* 1471 * If this buffer was warm before, move it to 1472 * the hot queue in the next cache 1473 */ 1474 1475 if (fliphigh) { 1476 /* 1477 * If we are in the DMA cache, try to flip the 1478 * buffer up high to move it on to the other 1479 * caches. if we can't move the buffer to high 1480 * memory without sleeping, we give it up and 1481 * return it rather than fight for more memory 1482 * against non buffer cache competitors. 1483 */ 1484 SET(bp->b_flags, B_BUSY); 1485 if (bp->cache == 0 && buf_flip_high(bp) == -1) { 1486 CLR(bp->b_flags, B_BUSY); 1487 return bp; 1488 } 1489 CLR(bp->b_flags, B_BUSY); 1490 } 1491 1492 /* Move the buffer to the hot queue in the next cache */ 1493 TAILQ_REMOVE(&cache->coldqueue, bp, b_freelist); 1494 CLR(bp->b_flags, B_WARM); 1495 CLR(bp->b_flags, B_COLD); 1496 bp->cache++; 1497 newcache= &cleancache[bp->cache]; 1498 newcache->cachepages += pages; 1499 newcache->hotbufpages += pages; 1500 chillbufs(newcache, &newcache->hotqueue, 1501 &newcache->hotbufpages); 1502 TAILQ_INSERT_TAIL(&newcache->hotqueue, bp, b_freelist); 1503 } 1504 else 1505 /* buffer is cold - give it up */ 1506 return bp; 1507 } 1508 if ((bp = TAILQ_FIRST(&cache->warmqueue))) 1509 return bp; 1510 if ((bp = TAILQ_FIRST(&cache->hotqueue))) 1511 return bp; 1512 return bp; 1513 } 1514 1515 struct buf * 1516 bufcache_getcleanbuf_range(int start, int end, int discard) 1517 { 1518 int i, j = start, q = end; 1519 struct buf *bp = NULL; 1520 1521 /* 1522 * XXX in theory we could promote warm buffers into a previous queue 1523 * so in the pathological case of where we go through all the caches 1524 * without getting a buffer we have to start at the beginning again. 1525 */ 1526 while (j <= q) { 1527 for (i = q; i >= j; i--) 1528 if ((bp = bufcache_getcleanbuf(i, discard))) 1529 return(bp); 1530 j++; 1531 } 1532 return bp; 1533 } 1534 1535 struct buf * 1536 bufcache_gethighcleanbuf(void) 1537 { 1538 if (!fliphigh) 1539 return NULL; 1540 return bufcache_getcleanbuf_range(DMA_CACHE + 1, NUM_CACHES - 1, 0); 1541 } 1542 1543 struct buf * 1544 bufcache_getdmacleanbuf(void) 1545 { 1546 if (fliphigh) 1547 return bufcache_getcleanbuf_range(DMA_CACHE, DMA_CACHE, 0); 1548 return bufcache_getcleanbuf_range(DMA_CACHE, NUM_CACHES - 1, 0); 1549 } 1550 1551 struct buf * 1552 bufcache_getdirtybuf(void) 1553 { 1554 return TAILQ_FIRST(&dirtyqueue); 1555 } 1556 1557 void 1558 bufcache_take(struct buf *bp) 1559 { 1560 struct bufqueue *queue; 1561 int64_t pages; 1562 1563 splassert(IPL_BIO); 1564 KASSERT(ISSET(bp->b_flags, B_BC)); 1565 KASSERT(bp->cache >= DMA_CACHE); 1566 KASSERT((bp->cache < NUM_CACHES)); 1567 1568 pages = atop(bp->b_bufsize); 1569 struct bufcache *cache = &cleancache[bp->cache]; 1570 if (!ISSET(bp->b_flags, B_DELWRI)) { 1571 if (ISSET(bp->b_flags, B_COLD)) { 1572 queue = &cache->coldqueue; 1573 } else if (ISSET(bp->b_flags, B_WARM)) { 1574 queue = &cache->warmqueue; 1575 cache->warmbufpages -= pages; 1576 } else { 1577 queue = &cache->hotqueue; 1578 cache->hotbufpages -= pages; 1579 } 1580 bcstats.numcleanpages -= pages; 1581 cache->cachepages -= pages; 1582 } else { 1583 queue = &dirtyqueue; 1584 bcstats.numdirtypages -= pages; 1585 bcstats.delwribufs--; 1586 } 1587 TAILQ_REMOVE(queue, bp, b_freelist); 1588 } 1589 1590 /* move buffers from a hot or warm queue to a cold queue in a cache */ 1591 int 1592 chillbufs(struct bufcache *cache, struct bufqueue *queue, int64_t *queuepages) 1593 { 1594 struct buf *bp; 1595 int64_t limit, pages; 1596 1597 /* 1598 * We limit the hot queue to be small, with a max of 4096 pages. 1599 * We limit the warm queue to half the cache size. 1600 * 1601 * We impose a minimum size of 96 to prevent too much "wobbling". 1602 */ 1603 if (queue == &cache->hotqueue) 1604 limit = min(cache->cachepages / 20, 4096); 1605 else if (queue == &cache->warmqueue) 1606 limit = (cache->cachepages / 2); 1607 else 1608 panic("chillbufs: invalid queue"); 1609 1610 if (*queuepages > 96 && *queuepages > limit) { 1611 bp = TAILQ_FIRST(queue); 1612 if (!bp) 1613 panic("inconsistent bufpage counts"); 1614 pages = atop(bp->b_bufsize); 1615 *queuepages -= pages; 1616 TAILQ_REMOVE(queue, bp, b_freelist); 1617 /* we do not clear B_WARM */ 1618 SET(bp->b_flags, B_COLD); 1619 TAILQ_INSERT_TAIL(&cache->coldqueue, bp, b_freelist); 1620 return 1; 1621 } 1622 return 0; 1623 } 1624 1625 void 1626 bufcache_release(struct buf *bp) 1627 { 1628 struct bufqueue *queue; 1629 int64_t pages; 1630 struct bufcache *cache = &cleancache[bp->cache]; 1631 1632 pages = atop(bp->b_bufsize); 1633 KASSERT(ISSET(bp->b_flags, B_BC)); 1634 if (fliphigh) { 1635 if (ISSET(bp->b_flags, B_DMA) && bp->cache > 0) 1636 panic("B_DMA buffer release from cache %d", 1637 bp->cache); 1638 else if ((!ISSET(bp->b_flags, B_DMA)) && bp->cache == 0) 1639 panic("Non B_DMA buffer release from cache %d", 1640 bp->cache); 1641 } 1642 1643 if (!ISSET(bp->b_flags, B_DELWRI)) { 1644 int64_t *queuepages; 1645 if (ISSET(bp->b_flags, B_WARM | B_COLD)) { 1646 SET(bp->b_flags, B_WARM); 1647 CLR(bp->b_flags, B_COLD); 1648 queue = &cache->warmqueue; 1649 queuepages = &cache->warmbufpages; 1650 } else { 1651 queue = &cache->hotqueue; 1652 queuepages = &cache->hotbufpages; 1653 } 1654 *queuepages += pages; 1655 bcstats.numcleanpages += pages; 1656 cache->cachepages += pages; 1657 chillbufs(cache, queue, queuepages); 1658 } else { 1659 queue = &dirtyqueue; 1660 bcstats.numdirtypages += pages; 1661 bcstats.delwribufs++; 1662 } 1663 TAILQ_INSERT_TAIL(queue, bp, b_freelist); 1664 } 1665 1666 #ifdef HIBERNATE 1667 /* 1668 * Nuke the buffer cache from orbit when hibernating. We do not want to save 1669 * any clean cache pages to swap and read them back. the original disk files 1670 * are just as good. 1671 */ 1672 void 1673 hibernate_suspend_bufcache(void) 1674 { 1675 struct buf *bp; 1676 int s; 1677 1678 s = splbio(); 1679 /* Chuck away all the cache pages.. discard bufs, do not promote */ 1680 while ((bp = bufcache_getcleanbuf_range(DMA_CACHE, NUM_CACHES - 1, 1))) { 1681 bufcache_take(bp); 1682 if (bp->b_vp) { 1683 RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp); 1684 brelvp(bp); 1685 } 1686 buf_put(bp); 1687 } 1688 splx(s); 1689 } 1690 1691 void 1692 hibernate_resume_bufcache(void) 1693 { 1694 /* XXX Nothing needed here for now */ 1695 } 1696 #endif /* HIBERNATE */ 1697