1 /* $OpenBSD: vfs_bio.c,v 1.55 2001/12/19 08:58:06 art Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /*- 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 43 */ 44 45 /* 46 * Some references: 47 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 48 * Leffler, et al.: The Design and Implementation of the 4.3BSD 49 * UNIX Operating System (Addison Welley, 1989) 50 */ 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/proc.h> 55 #include <sys/buf.h> 56 #include <sys/vnode.h> 57 #include <sys/mount.h> 58 #include <sys/malloc.h> 59 #include <sys/pool.h> 60 #include <sys/resourcevar.h> 61 #include <sys/conf.h> 62 #include <sys/kernel.h> 63 64 #include <uvm/uvm_extern.h> 65 66 #include <miscfs/specfs/specdev.h> 67 68 /* Macros to clear/set/test flags. */ 69 #define SET(t, f) (t) |= (f) 70 #define CLR(t, f) (t) &= ~(f) 71 #define ISSET(t, f) ((t) & (f)) 72 73 /* 74 * Definitions for the buffer hash lists. 75 */ 76 #define BUFHASH(dvp, lbn) \ 77 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) 78 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 79 u_long bufhash; 80 81 /* 82 * Insq/Remq for the buffer hash lists. 83 */ 84 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 85 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 86 87 /* 88 * Definitions for the buffer free lists. 89 */ 90 #define BQUEUES 4 /* number of free buffer queues */ 91 92 #define BQ_LOCKED 0 /* super-blocks &c */ 93 #define BQ_CLEAN 1 /* LRU queue with clean buffers */ 94 #define BQ_DIRTY 2 /* LRU queue with dirty buffers */ 95 #define BQ_EMPTY 3 /* buffer headers with no memory */ 96 97 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 98 int needbuffer; 99 int nobuffers; 100 struct bio_ops bioops; 101 102 /* 103 * Buffer pool for I/O buffers. 104 */ 105 struct pool bufpool; 106 107 /* 108 * Insq/Remq for the buffer free lists. 109 */ 110 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 111 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 112 113 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int, int)); 114 int getnewbuf __P((int slpflag, int slptimeo, struct buf **)); 115 116 /* 117 * We keep a few counters to monitor the utilization of the buffer cache 118 * 119 * numdirtypages - number of pages on BQ_DIRTY queue. 120 * lodirtypages - low water mark for buffer cleaning daemon. 121 * hidirtypages - high water mark for buffer cleaning daemon. 122 * numfreepages - number of pages on BQ_CLEAN and BQ_DIRTY queues. unused. 123 * numcleanpages - number of pages on BQ_CLEAN queue. 124 * Used to track the need to speedup the cleaner and 125 * as a reserve for special processes like syncer. 126 * mincleanpages - the lowest byte count on BQ_CLEAN. 127 * numemptybufs - number of buffers on BQ_EMPTY. unused. 128 */ 129 long numdirtypages; 130 long lodirtypages; 131 long hidirtypages; 132 long numfreepages; 133 long numcleanpages; 134 long locleanpages; 135 int numemptybufs; 136 #ifdef DEBUG 137 long mincleanpages; 138 #endif 139 140 struct proc *cleanerproc; 141 int bd_req; /* Sleep point for cleaner daemon. */ 142 143 void 144 bremfree(bp) 145 struct buf *bp; 146 { 147 struct bqueues *dp = NULL; 148 149 /* 150 * We only calculate the head of the freelist when removing 151 * the last element of the list as that is the only time that 152 * it is needed (e.g. to reset the tail pointer). 153 * 154 * NB: This makes an assumption about how tailq's are implemented. 155 */ 156 if (bp->b_freelist.tqe_next == NULL) { 157 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 158 if (dp->tqh_last == &bp->b_freelist.tqe_next) 159 break; 160 if (dp == &bufqueues[BQUEUES]) 161 panic("bremfree: lost tail"); 162 } 163 if (bp->b_bufsize <= 0) { 164 numemptybufs--; 165 } else if (!ISSET(bp->b_flags, B_LOCKED)) { 166 numfreepages -= btoc(bp->b_bufsize); 167 if (!ISSET(bp->b_flags, B_DELWRI)) { 168 numcleanpages -= btoc(bp->b_bufsize); 169 #ifdef DEBUG 170 if (mincleanpages > numcleanpages) 171 mincleanpages = numcleanpages; 172 #endif 173 } else { 174 numdirtypages -= btoc(bp->b_bufsize); 175 } 176 } 177 TAILQ_REMOVE(dp, bp, b_freelist); 178 } 179 180 /* 181 * Initialize buffers and hash links for buffers. 182 */ 183 void 184 bufinit() 185 { 186 register struct buf *bp; 187 struct bqueues *dp; 188 register int i; 189 int base, residual; 190 191 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", 0, 192 NULL, NULL, M_DEVBUF); 193 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 194 TAILQ_INIT(dp); 195 bufhashtbl = hashinit(nbuf, M_CACHE, M_WAITOK, &bufhash); 196 base = bufpages / nbuf; 197 residual = bufpages % nbuf; 198 for (i = 0; i < nbuf; i++) { 199 bp = &buf[i]; 200 bzero((char *)bp, sizeof *bp); 201 bp->b_dev = NODEV; 202 bp->b_vnbufs.le_next = NOLIST; 203 bp->b_data = buffers + i * MAXBSIZE; 204 LIST_INIT(&bp->b_dep); 205 if (i < residual) 206 bp->b_bufsize = (base + 1) * PAGE_SIZE; 207 else 208 bp->b_bufsize = base * PAGE_SIZE; 209 bp->b_flags = B_INVAL; 210 if (bp->b_bufsize) { 211 dp = &bufqueues[BQ_CLEAN]; 212 numfreepages += btoc(bp->b_bufsize); 213 numcleanpages += btoc(bp->b_bufsize); 214 } else { 215 dp = &bufqueues[BQ_EMPTY]; 216 numemptybufs++; 217 } 218 binsheadfree(bp, dp); 219 binshash(bp, &invalhash); 220 } 221 222 hidirtypages = bufpages / 4; 223 lodirtypages = hidirtypages / 2; 224 225 /* 226 * Reserve 5% of bufpages for syncer's needs, 227 * but not more than 25% and if possible 228 * not less then 2 * MAXBSIZE. locleanpages 229 * value must be not too small, but probably 230 * there are no reason to set it more than 1-2 MB. 231 */ 232 locleanpages = bufpages / 20; 233 if (locleanpages < btoc(2 * MAXBSIZE)) 234 locleanpages = btoc(2 * MAXBSIZE); 235 if (locleanpages > bufpages / 4) 236 locleanpages = bufpages / 4; 237 if (locleanpages > btoc(2 * 1024 * 1024)) 238 locleanpages = btoc(2 * 1024 * 1024); 239 240 #ifdef DEBUG 241 mincleanpages = locleanpages; 242 #endif 243 } 244 245 static __inline struct buf * 246 bio_doread(vp, blkno, size, async) 247 struct vnode *vp; 248 daddr_t blkno; 249 int size; 250 int async; 251 { 252 register struct buf *bp; 253 254 bp = getblk(vp, blkno, size, 0, 0); 255 256 /* 257 * If buffer does not have data valid, start a read. 258 * Note that if buffer is B_INVAL, getblk() won't return it. 259 * Therefore, it's valid if it's I/O has completed or been delayed. 260 */ 261 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 262 SET(bp->b_flags, B_READ | async); 263 VOP_STRATEGY(bp); 264 265 /* Pay for the read. */ 266 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 267 } else if (async) { 268 brelse(bp); 269 } 270 271 return (bp); 272 } 273 274 /* 275 * Read a disk block. 276 * This algorithm described in Bach (p.54). 277 */ 278 int 279 bread(vp, blkno, size, cred, bpp) 280 struct vnode *vp; 281 daddr_t blkno; 282 int size; 283 struct ucred *cred; 284 struct buf **bpp; 285 { 286 register struct buf *bp; 287 288 /* Get buffer for block. */ 289 bp = *bpp = bio_doread(vp, blkno, size, 0); 290 291 /* Wait for the read to complete, and return result. */ 292 return (biowait(bp)); 293 } 294 295 /* 296 * Read-ahead multiple disk blocks. The first is sync, the rest async. 297 * Trivial modification to the breada algorithm presented in Bach (p.55). 298 */ 299 int 300 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp) 301 struct vnode *vp; 302 daddr_t blkno; int size; 303 daddr_t rablks[]; int rasizes[]; 304 int nrablks; 305 struct ucred *cred; 306 struct buf **bpp; 307 { 308 register struct buf *bp; 309 int i; 310 311 bp = *bpp = bio_doread(vp, blkno, size, 0); 312 313 /* 314 * For each of the read-ahead blocks, start a read, if necessary. 315 */ 316 for (i = 0; i < nrablks; i++) { 317 /* If it's in the cache, just go on to next one. */ 318 if (incore(vp, rablks[i])) 319 continue; 320 321 /* Get a buffer for the read-ahead block */ 322 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 323 } 324 325 /* Otherwise, we had to start a read for it; wait until it's valid. */ 326 return (biowait(bp)); 327 } 328 329 /* 330 * Read with single-block read-ahead. Defined in Bach (p.55), but 331 * implemented as a call to breadn(). 332 * XXX for compatibility with old file systems. 333 */ 334 int 335 breada(vp, blkno, size, rablkno, rabsize, cred, bpp) 336 struct vnode *vp; 337 daddr_t blkno; int size; 338 daddr_t rablkno; int rabsize; 339 struct ucred *cred; 340 struct buf **bpp; 341 { 342 343 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 344 } 345 346 /* 347 * Block write. Described in Bach (p.56) 348 */ 349 int 350 bwrite(bp) 351 struct buf *bp; 352 { 353 int rv, async, wasdelayed, s; 354 struct vnode *vp; 355 struct mount *mp; 356 357 /* 358 * Remember buffer type, to switch on it later. If the write was 359 * synchronous, but the file system was mounted with MNT_ASYNC, 360 * convert it to a delayed write. 361 * XXX note that this relies on delayed tape writes being converted 362 * to async, not sync writes (which is safe, but ugly). 363 */ 364 async = ISSET(bp->b_flags, B_ASYNC); 365 if (!async && bp->b_vp && bp->b_vp->v_mount && 366 ISSET(bp->b_vp->v_mount->mnt_flag, MNT_ASYNC)) { 367 bdwrite(bp); 368 return (0); 369 } 370 371 /* 372 * Collect statistics on synchronous and asynchronous writes. 373 * Writes to block devices are charged to their associated 374 * filesystem (if any). 375 */ 376 if ((vp = bp->b_vp) != NULL) { 377 if (vp->v_type == VBLK) 378 mp = vp->v_specmountpoint; 379 else 380 mp = vp->v_mount; 381 if (mp != NULL) { 382 if (async) 383 mp->mnt_stat.f_asyncwrites++; 384 else 385 mp->mnt_stat.f_syncwrites++; 386 } 387 } 388 389 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 390 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 391 392 s = splbio(); 393 394 /* 395 * If not synchronous, pay for the I/O operation and make 396 * sure the buf is on the correct vnode queue. We have 397 * to do this now, because if we don't, the vnode may not 398 * be properly notified that its I/O has completed. 399 */ 400 if (wasdelayed) { 401 reassignbuf(bp); 402 } else 403 curproc->p_stats->p_ru.ru_oublock++; 404 405 406 /* Initiate disk write. Make sure the appropriate party is charged. */ 407 bp->b_vp->v_numoutput++; 408 splx(s); 409 SET(bp->b_flags, B_WRITEINPROG); 410 VOP_STRATEGY(bp); 411 412 if (async) 413 return (0); 414 415 /* 416 * If I/O was synchronous, wait for it to complete. 417 */ 418 rv = biowait(bp); 419 420 /* Release the buffer. */ 421 brelse(bp); 422 423 return (rv); 424 } 425 426 427 /* 428 * Delayed write. 429 * 430 * The buffer is marked dirty, but is not queued for I/O. 431 * This routine should be used when the buffer is expected 432 * to be modified again soon, typically a small write that 433 * partially fills a buffer. 434 * 435 * NB: magnetic tapes cannot be delayed; they must be 436 * written in the order that the writes are requested. 437 * 438 * Described in Leffler, et al. (pp. 208-213). 439 */ 440 void 441 bdwrite(bp) 442 struct buf *bp; 443 { 444 int s; 445 446 /* 447 * If the block hasn't been seen before: 448 * (1) Mark it as having been seen, 449 * (2) Charge for the write. 450 * (3) Make sure it's on its vnode's correct block list, 451 * (4) If a buffer is rewritten, move it to end of dirty list 452 */ 453 if (!ISSET(bp->b_flags, B_DELWRI)) { 454 SET(bp->b_flags, B_DELWRI); 455 s = splbio(); 456 reassignbuf(bp); 457 splx(s); 458 curproc->p_stats->p_ru.ru_oublock++; /* XXX */ 459 } 460 461 /* If this is a tape block, write the block now. */ 462 if (major(bp->b_dev) < nblkdev && 463 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 464 bawrite(bp); 465 return; 466 } 467 468 /* Otherwise, the "write" is done, so mark and release the buffer. */ 469 CLR(bp->b_flags, B_NEEDCOMMIT); 470 SET(bp->b_flags, B_DONE); 471 brelse(bp); 472 } 473 474 /* 475 * Asynchronous block write; just an asynchronous bwrite(). 476 */ 477 void 478 bawrite(bp) 479 struct buf *bp; 480 { 481 482 SET(bp->b_flags, B_ASYNC); 483 VOP_BWRITE(bp); 484 } 485 486 /* 487 * Must be called at splbio() 488 */ 489 void 490 buf_dirty(bp) 491 struct buf *bp; 492 { 493 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 494 SET(bp->b_flags, B_DELWRI); 495 reassignbuf(bp); 496 } 497 } 498 499 /* 500 * Must be called at splbio() 501 */ 502 void 503 buf_undirty(bp) 504 struct buf *bp; 505 { 506 if (ISSET(bp->b_flags, B_DELWRI)) { 507 CLR(bp->b_flags, B_DELWRI); 508 reassignbuf(bp); 509 } 510 } 511 512 /* 513 * Release a buffer on to the free lists. 514 * Described in Bach (p. 46). 515 */ 516 void 517 brelse(bp) 518 struct buf *bp; 519 { 520 struct bqueues *bufq; 521 int s; 522 523 /* Block disk interrupts. */ 524 s = splbio(); 525 526 /* 527 * Determine which queue the buffer should be on, then put it there. 528 */ 529 530 /* If it's locked, don't report an error; try again later. */ 531 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 532 CLR(bp->b_flags, B_ERROR); 533 534 /* If it's not cacheable, or an error, mark it invalid. */ 535 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 536 SET(bp->b_flags, B_INVAL); 537 538 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 539 /* 540 * If it's invalid or empty, dissociate it from its vnode 541 * and put on the head of the appropriate queue. 542 */ 543 if (LIST_FIRST(&bp->b_dep) != NULL) 544 buf_deallocate(bp); 545 546 if (ISSET(bp->b_flags, B_DELWRI)) { 547 CLR(bp->b_flags, B_DELWRI); 548 } 549 550 if (bp->b_vp) { 551 reassignbuf(bp); 552 brelvp(bp); 553 } 554 if (bp->b_bufsize <= 0) { 555 /* no data */ 556 bufq = &bufqueues[BQ_EMPTY]; 557 numemptybufs++; 558 } else { 559 /* invalid data */ 560 bufq = &bufqueues[BQ_CLEAN]; 561 numfreepages += btoc(bp->b_bufsize); 562 numcleanpages += btoc(bp->b_bufsize); 563 } 564 binsheadfree(bp, bufq); 565 } else { 566 /* 567 * It has valid data. Put it on the end of the appropriate 568 * queue, so that it'll stick around for as long as possible. 569 */ 570 if (ISSET(bp->b_flags, B_LOCKED)) 571 /* locked in core */ 572 bufq = &bufqueues[BQ_LOCKED]; 573 else { 574 numfreepages += btoc(bp->b_bufsize); 575 if (!ISSET(bp->b_flags, B_DELWRI)) { 576 numcleanpages += btoc(bp->b_bufsize); 577 bufq = &bufqueues[BQ_CLEAN]; 578 } else { 579 numdirtypages += btoc(bp->b_bufsize); 580 bufq = &bufqueues[BQ_DIRTY]; 581 } 582 } 583 if (ISSET(bp->b_flags, B_AGE)) 584 binsheadfree(bp, bufq); 585 else 586 binstailfree(bp, bufq); 587 } 588 589 /* Unlock the buffer. */ 590 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_BUSY | B_NOCACHE | B_DEFERRED)); 591 592 /* Allow disk interrupts. */ 593 splx(s); 594 595 /* Wake up syncer and cleaner processes waiting for buffers */ 596 if (nobuffers) { 597 wakeup(&nobuffers); 598 nobuffers = 0; 599 } 600 601 /* Wake up any processes waiting for any buffer to become free. */ 602 if (needbuffer && (numcleanpages > locleanpages)) { 603 needbuffer--; 604 wakeup_one(&needbuffer); 605 } 606 607 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 608 if (ISSET(bp->b_flags, B_WANTED)) { 609 CLR(bp->b_flags, B_WANTED); 610 wakeup(bp); 611 } 612 } 613 614 /* 615 * Determine if a block is in the cache. 616 * Just look on what would be its hash chain. If it's there, return 617 * a pointer to it, unless it's marked invalid. If it's marked invalid, 618 * we normally don't return the buffer, unless the caller explicitly 619 * wants us to. 620 */ 621 struct buf * 622 incore(vp, blkno) 623 struct vnode *vp; 624 daddr_t blkno; 625 { 626 struct buf *bp; 627 628 bp = BUFHASH(vp, blkno)->lh_first; 629 630 /* Search hash chain */ 631 for (; bp != NULL; bp = bp->b_hash.le_next) { 632 if (bp->b_lblkno == blkno && bp->b_vp == vp && 633 !ISSET(bp->b_flags, B_INVAL)) 634 return (bp); 635 } 636 637 return (0); 638 } 639 640 /* 641 * Get a block of requested size that is associated with 642 * a given vnode and block offset. If it is found in the 643 * block cache, mark it as having been found, make it busy 644 * and return it. Otherwise, return an empty block of the 645 * correct size. It is up to the caller to insure that the 646 * cached blocks be of the correct size. 647 */ 648 struct buf * 649 getblk(vp, blkno, size, slpflag, slptimeo) 650 register struct vnode *vp; 651 daddr_t blkno; 652 int size, slpflag, slptimeo; 653 { 654 struct bufhashhdr *bh; 655 struct buf *bp, *nbp = NULL; 656 int s, err; 657 658 /* 659 * XXX 660 * The following is an inlined version of 'incore()', but with 661 * the 'invalid' test moved to after the 'busy' test. It's 662 * necessary because there are some cases in which the NFS 663 * code sets B_INVAL prior to writing data to the server, but 664 * in which the buffers actually contain valid data. In this 665 * case, we can't allow the system to allocate a new buffer for 666 * the block until the write is finished. 667 */ 668 bh = BUFHASH(vp, blkno); 669 start: 670 bp = bh->lh_first; 671 for (; bp != NULL; bp = bp->b_hash.le_next) { 672 if (bp->b_lblkno != blkno || bp->b_vp != vp) 673 continue; 674 675 s = splbio(); 676 if (ISSET(bp->b_flags, B_BUSY)) { 677 SET(bp->b_flags, B_WANTED); 678 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 679 slptimeo); 680 splx(s); 681 if (err) 682 return (NULL); 683 goto start; 684 } 685 686 if (!ISSET(bp->b_flags, B_INVAL)) { 687 SET(bp->b_flags, (B_BUSY | B_CACHE)); 688 bremfree(bp); 689 splx(s); 690 break; 691 } 692 splx(s); 693 } 694 695 if (bp == NULL) { 696 if (nbp == NULL && getnewbuf(slpflag, slptimeo, &nbp) != 0) { 697 goto start; 698 } 699 bp = nbp; 700 binshash(bp, bh); 701 bp->b_blkno = bp->b_lblkno = blkno; 702 s = splbio(); 703 bgetvp(vp, bp); 704 splx(s); 705 } else if (nbp != NULL) { 706 /* 707 * Set B_AGE so that buffer appear at BQ_CLEAN head 708 * and gets reused ASAP. 709 */ 710 SET(nbp->b_flags, B_AGE); 711 brelse(nbp); 712 } 713 allocbuf(bp, size); 714 715 return (bp); 716 } 717 718 /* 719 * Get an empty, disassociated buffer of given size. 720 */ 721 struct buf * 722 geteblk(size) 723 int size; 724 { 725 struct buf *bp; 726 727 getnewbuf(0, 0, &bp); 728 SET(bp->b_flags, B_INVAL); 729 binshash(bp, &invalhash); 730 allocbuf(bp, size); 731 732 return (bp); 733 } 734 735 /* 736 * Expand or contract the actual memory allocated to a buffer. 737 * 738 * If the buffer shrinks, data is lost, so it's up to the 739 * caller to have written it out *first*; this routine will not 740 * start a write. If the buffer grows, it's the callers 741 * responsibility to fill out the buffer's additional contents. 742 */ 743 void 744 allocbuf(bp, size) 745 struct buf *bp; 746 int size; 747 { 748 struct buf *nbp; 749 vsize_t desired_size; 750 int s; 751 752 desired_size = round_page(size); 753 if (desired_size > MAXBSIZE) 754 panic("allocbuf: buffer larger than MAXBSIZE requested"); 755 756 if (bp->b_bufsize == desired_size) 757 goto out; 758 759 /* 760 * If the buffer is smaller than the desired size, we need to snarf 761 * it from other buffers. Get buffers (via getnewbuf()), and 762 * steal their pages. 763 */ 764 while (bp->b_bufsize < desired_size) { 765 int amt; 766 767 /* find a buffer */ 768 getnewbuf(0, 0, &nbp); 769 SET(nbp->b_flags, B_INVAL); 770 binshash(nbp, &invalhash); 771 772 /* and steal its pages, up to the amount we need */ 773 amt = MIN(nbp->b_bufsize, (desired_size - bp->b_bufsize)); 774 pagemove((nbp->b_data + nbp->b_bufsize - amt), 775 bp->b_data + bp->b_bufsize, amt); 776 bp->b_bufsize += amt; 777 nbp->b_bufsize -= amt; 778 779 /* reduce transfer count if we stole some data */ 780 if (nbp->b_bcount > nbp->b_bufsize) 781 nbp->b_bcount = nbp->b_bufsize; 782 783 #ifdef DIAGNOSTIC 784 if (nbp->b_bufsize < 0) 785 panic("allocbuf: negative bufsize"); 786 #endif 787 788 brelse(nbp); 789 } 790 791 /* 792 * If we want a buffer smaller than the current size, 793 * shrink this buffer. Grab a buf head from the EMPTY queue, 794 * move a page onto it, and put it on front of the AGE queue. 795 * If there are no free buffer headers, leave the buffer alone. 796 */ 797 if (bp->b_bufsize > desired_size) { 798 s = splbio(); 799 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) { 800 /* No free buffer head */ 801 splx(s); 802 goto out; 803 } 804 bremfree(nbp); 805 SET(nbp->b_flags, B_BUSY); 806 splx(s); 807 808 /* move the page to it and note this change */ 809 pagemove(bp->b_data + desired_size, 810 nbp->b_data, bp->b_bufsize - desired_size); 811 nbp->b_bufsize = bp->b_bufsize - desired_size; 812 bp->b_bufsize = desired_size; 813 nbp->b_bcount = 0; 814 SET(nbp->b_flags, B_INVAL); 815 816 /* release the newly-filled buffer and leave */ 817 brelse(nbp); 818 } 819 820 out: 821 bp->b_bcount = size; 822 } 823 824 /* 825 * Find a buffer which is available for use. 826 * 827 * We must notify getblk if we slept during the buffer allocation. When 828 * that happens, we allocate a buffer anyway (unless tsleep is interrupted 829 * or times out) and return !0. 830 */ 831 int 832 getnewbuf(slpflag, slptimeo, bpp) 833 int slpflag, slptimeo; 834 struct buf **bpp; 835 { 836 struct buf *bp; 837 int s, ret, error; 838 839 *bpp = NULL; 840 ret = 0; 841 842 start: 843 s = splbio(); 844 /* 845 * Wake up cleaner if we're getting low on buffers. 846 */ 847 if (numdirtypages >= hidirtypages) 848 wakeup(&bd_req); 849 850 if ((numcleanpages <= locleanpages) && 851 curproc != syncerproc && curproc != cleanerproc) { 852 needbuffer++; 853 error = tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", 854 slptimeo); 855 splx(s); 856 if (error) 857 return (1); 858 ret = 1; 859 goto start; 860 } 861 if ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) == NULL) { 862 /* wait for a free buffer of any kind */ 863 nobuffers = 1; 864 error = tsleep(&nobuffers, slpflag|(PRIBIO-3), 865 "getnewbuf", slptimeo); 866 splx(s); 867 if (error) 868 return (1); 869 ret = 1; 870 goto start; 871 } 872 873 bremfree(bp); 874 875 /* Buffer is no longer on free lists. */ 876 SET(bp->b_flags, B_BUSY); 877 878 #ifdef DIAGNOSTIC 879 if (ISSET(bp->b_flags, B_DELWRI)) 880 panic("Dirty buffer on BQ_CLEAN"); 881 #endif 882 883 /* disassociate us from our vnode, if we had one... */ 884 if (bp->b_vp) 885 brelvp(bp); 886 887 splx(s); 888 889 #ifdef DIAGNOSTIC 890 /* CLEAN buffers must have no dependencies */ 891 if (LIST_FIRST(&bp->b_dep) != NULL) 892 panic("BQ_CLEAN has buffer with dependencies"); 893 #endif 894 895 /* clear out various other fields */ 896 bp->b_flags = B_BUSY; 897 bp->b_dev = NODEV; 898 bp->b_blkno = bp->b_lblkno = 0; 899 bp->b_iodone = 0; 900 bp->b_error = 0; 901 bp->b_resid = 0; 902 bp->b_bcount = 0; 903 bp->b_dirtyoff = bp->b_dirtyend = 0; 904 bp->b_validoff = bp->b_validend = 0; 905 906 bremhash(bp); 907 *bpp = bp; 908 return (ret); 909 } 910 911 /* 912 * Buffer cleaning daemon. 913 */ 914 void 915 buf_daemon(struct proc *p) 916 { 917 int s; 918 struct buf *bp; 919 struct timeval starttime, timediff; 920 921 cleanerproc = curproc; 922 923 for (;;) { 924 if (numdirtypages < hidirtypages) { 925 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 926 } 927 928 starttime = time; 929 s = splbio(); 930 while ((bp = TAILQ_FIRST(&bufqueues[BQ_DIRTY]))) { 931 bremfree(bp); 932 SET(bp->b_flags, B_BUSY); 933 splx(s); 934 935 if (ISSET(bp->b_flags, B_INVAL)) { 936 brelse(bp); 937 s = splbio(); 938 continue; 939 } 940 #ifdef DIAGNOSTIC 941 if (!ISSET(bp->b_flags, B_DELWRI)) 942 panic("Clean buffer on BQ_DIRTY"); 943 #endif 944 if (LIST_FIRST(&bp->b_dep) != NULL && 945 !ISSET(bp->b_flags, B_DEFERRED) && 946 buf_countdeps(bp, 0, 1)) { 947 SET(bp->b_flags, B_DEFERRED); 948 s = splbio(); 949 numfreepages += btoc(bp->b_bufsize); 950 numdirtypages += btoc(bp->b_bufsize); 951 binstailfree(bp, &bufqueues[BQ_DIRTY]); 952 CLR(bp->b_flags, B_BUSY); 953 continue; 954 } 955 956 bawrite(bp); 957 958 if (numdirtypages < lodirtypages) 959 break; 960 /* Never allow processing to run for more than 1 sec */ 961 timersub(&time, &starttime, &timediff); 962 if (timediff.tv_sec) 963 break; 964 965 s = splbio(); 966 } 967 } 968 } 969 970 /* 971 * Wait for operations on the buffer to complete. 972 * When they do, extract and return the I/O's error value. 973 */ 974 int 975 biowait(bp) 976 struct buf *bp; 977 { 978 int s; 979 980 s = splbio(); 981 while (!ISSET(bp->b_flags, B_DONE)) 982 tsleep(bp, PRIBIO + 1, "biowait", 0); 983 splx(s); 984 985 /* check for interruption of I/O (e.g. via NFS), then errors. */ 986 if (ISSET(bp->b_flags, B_EINTR)) { 987 CLR(bp->b_flags, B_EINTR); 988 return (EINTR); 989 } 990 991 if (ISSET(bp->b_flags, B_ERROR)) 992 return (bp->b_error ? bp->b_error : EIO); 993 else 994 return (0); 995 } 996 997 /* 998 * Mark I/O complete on a buffer. 999 * 1000 * If a callback has been requested, e.g. the pageout 1001 * daemon, do so. Otherwise, awaken waiting processes. 1002 * 1003 * [ Leffler, et al., says on p.247: 1004 * "This routine wakes up the blocked process, frees the buffer 1005 * for an asynchronous write, or, for a request by the pagedaemon 1006 * process, invokes a procedure specified in the buffer structure" ] 1007 * 1008 * In real life, the pagedaemon (or other system processes) wants 1009 * to do async stuff to, and doesn't want the buffer brelse()'d. 1010 * (for swap pager, that puts swap buffers on the free lists (!!!), 1011 * for the vn device, that puts malloc'd buffers on the free lists!) 1012 */ 1013 void 1014 biodone(bp) 1015 struct buf *bp; 1016 { 1017 if (ISSET(bp->b_flags, B_DONE)) 1018 panic("biodone already"); 1019 SET(bp->b_flags, B_DONE); /* note that it's done */ 1020 1021 if (LIST_FIRST(&bp->b_dep) != NULL) 1022 buf_complete(bp); 1023 1024 if (!ISSET(bp->b_flags, B_READ)) { 1025 CLR(bp->b_flags, B_WRITEINPROG); 1026 vwakeup(bp->b_vp); 1027 } 1028 1029 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1030 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1031 (*bp->b_iodone)(bp); 1032 } else { 1033 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1034 brelse(bp); 1035 } else { /* or just wakeup the buffer */ 1036 CLR(bp->b_flags, B_WANTED); 1037 wakeup(bp); 1038 } 1039 } 1040 } 1041 1042 #ifdef DEBUG 1043 /* 1044 * Print out statistics on the current allocation of the buffer pool. 1045 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1046 * in vfs_syscalls.c using sysctl. 1047 */ 1048 void 1049 vfs_bufstats() 1050 { 1051 int s, i, j, count; 1052 register struct buf *bp; 1053 register struct bqueues *dp; 1054 int counts[MAXBSIZE/PAGE_SIZE+1]; 1055 int totals[BQUEUES]; 1056 long ptotals[BQUEUES]; 1057 long pages; 1058 static char *bname[BQUEUES] = { "LOCKED", "CLEAN", "DIRTY", "EMPTY" }; 1059 1060 s = splbio(); 1061 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1062 count = 0; 1063 pages = 0; 1064 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1065 counts[j] = 0; 1066 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) { 1067 counts[bp->b_bufsize/PAGE_SIZE]++; 1068 count++; 1069 pages += btoc(bp->b_bufsize); 1070 } 1071 totals[i] = count; 1072 ptotals[i] = pages; 1073 printf("%s: total-%d(%d pages)", bname[i], count, pages); 1074 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1075 if (counts[j] != 0) 1076 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1077 printf("\n"); 1078 } 1079 if (totals[BQ_EMPTY] != numemptybufs) 1080 printf("numemptybufs counter wrong: %d != %d\n", 1081 numemptybufs, totals[BQ_EMPTY]); 1082 if ((ptotals[BQ_CLEAN] + ptotals[BQ_DIRTY]) != numfreepages) 1083 printf("numfreepages counter wrong: %ld != %ld\n", 1084 numfreepages, ptotals[BQ_CLEAN] + ptotals[BQ_DIRTY]); 1085 if (ptotals[BQ_CLEAN] != numcleanpages) 1086 printf("numcleanpages counter wrong: %ld != %ld\n", 1087 numcleanpages, ptotals[BQ_CLEAN]); 1088 else 1089 printf("numcleanpages: %ld\n", numcleanpages); 1090 if (numdirtypages != ptotals[BQ_DIRTY]) 1091 printf("numdirtypages counter wrong: %ld != %ld\n", 1092 numdirtypages, ptotals[BQ_DIRTY]); 1093 else 1094 printf("numdirtypages: %ld\n", numdirtypages); 1095 1096 printf("syncer eating up to %ld pages from %ld reserved\n", 1097 locleanpages - mincleanpages, locleanpages); 1098 splx(s); 1099 } 1100 #endif /* DEBUG */ 1101