1 /* $OpenBSD: vfs_bio.c,v 1.210 2022/08/14 01:58:28 jsg Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /* 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/specdev.h> 57 #include <sys/tracepoint.h> 58 #include <uvm/uvm_extern.h> 59 60 /* XXX Should really be in buf.h, but for uvm_constraint_range.. */ 61 int buf_realloc_pages(struct buf *, struct uvm_constraint_range *, int); 62 63 struct uvm_constraint_range high_constraint; 64 int fliphigh; 65 66 int nobuffers; 67 int needbuffer; 68 struct bio_ops bioops; 69 70 /* private bufcache functions */ 71 void bufcache_init(void); 72 void bufcache_adjust(void); 73 struct buf *bufcache_gethighcleanbuf(void); 74 struct buf *bufcache_getdmacleanbuf(void); 75 76 /* 77 * Buffer pool for I/O buffers. 78 */ 79 struct pool bufpool; 80 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 81 void buf_put(struct buf *); 82 83 struct buf *bio_doread(struct vnode *, daddr_t, int, int); 84 struct buf *buf_get(struct vnode *, daddr_t, size_t); 85 void bread_cluster_callback(struct buf *); 86 int64_t bufcache_recover_dmapages(int discard, int64_t howmany); 87 88 struct bcachestats bcstats; /* counters */ 89 long lodirtypages; /* dirty page count low water mark */ 90 long hidirtypages; /* dirty page count high water mark */ 91 long targetpages; /* target number of pages for cache size */ 92 long buflowpages; /* smallest size cache allowed */ 93 long bufhighpages; /* largest size cache allowed */ 94 long bufbackpages; /* minimum number of pages we shrink when asked to */ 95 96 vsize_t bufkvm; 97 98 struct proc *cleanerproc; 99 int bd_req; /* Sleep point for cleaner daemon. */ 100 101 #define NUM_CACHES 2 102 #define DMA_CACHE 0 103 struct bufcache cleancache[NUM_CACHES]; 104 struct bufqueue dirtyqueue; 105 106 void 107 buf_put(struct buf *bp) 108 { 109 splassert(IPL_BIO); 110 111 #ifdef DIAGNOSTIC 112 if (bp->b_pobj != NULL) 113 KASSERT(bp->b_bufsize > 0); 114 if (ISSET(bp->b_flags, B_DELWRI)) 115 panic("buf_put: releasing dirty buffer"); 116 if (bp->b_freelist.tqe_next != NOLIST && 117 bp->b_freelist.tqe_next != (void *)-1) 118 panic("buf_put: still on the free list"); 119 if (bp->b_vnbufs.le_next != NOLIST && 120 bp->b_vnbufs.le_next != (void *)-1) 121 panic("buf_put: still on the vnode list"); 122 if (!LIST_EMPTY(&bp->b_dep)) 123 panic("buf_put: b_dep is not empty"); 124 #endif 125 126 LIST_REMOVE(bp, b_list); 127 bcstats.numbufs--; 128 129 if (buf_dealloc_mem(bp) != 0) 130 return; 131 pool_put(&bufpool, bp); 132 } 133 134 /* 135 * Initialize buffers and hash links for buffers. 136 */ 137 void 138 bufinit(void) 139 { 140 u_int64_t dmapages; 141 u_int64_t highpages; 142 143 dmapages = uvm_pagecount(&dma_constraint); 144 /* take away a guess at how much of this the kernel will consume */ 145 dmapages -= (atop(physmem) - atop(uvmexp.free)); 146 147 /* See if we have memory above the dma accessible region. */ 148 high_constraint.ucr_low = dma_constraint.ucr_high; 149 high_constraint.ucr_high = no_constraint.ucr_high; 150 if (high_constraint.ucr_low != high_constraint.ucr_high) 151 high_constraint.ucr_low++; 152 highpages = uvm_pagecount(&high_constraint); 153 154 /* 155 * Do we have any significant amount of high memory above 156 * the DMA region? if so enable moving buffers there, if not, 157 * don't bother. 158 */ 159 if (highpages > dmapages / 4) 160 fliphigh = 1; 161 else 162 fliphigh = 0; 163 164 /* 165 * If MD code doesn't say otherwise, use up to 10% of DMA'able 166 * memory for buffers. 167 */ 168 if (bufcachepercent == 0) 169 bufcachepercent = 10; 170 171 /* 172 * XXX these values and their same use in kern_sysctl 173 * need to move into buf.h 174 */ 175 KASSERT(bufcachepercent <= 90); 176 KASSERT(bufcachepercent >= 5); 177 if (bufpages == 0) 178 bufpages = dmapages * bufcachepercent / 100; 179 if (bufpages < BCACHE_MIN) 180 bufpages = BCACHE_MIN; 181 KASSERT(bufpages < dmapages); 182 183 bufhighpages = bufpages; 184 185 /* 186 * Set the base backoff level for the buffer cache. We will 187 * not allow uvm to steal back more than this number of pages. 188 */ 189 buflowpages = dmapages * 5 / 100; 190 if (buflowpages < BCACHE_MIN) 191 buflowpages = BCACHE_MIN; 192 193 /* 194 * set bufbackpages to 100 pages, or 10 percent of the low water mark 195 * if we don't have that many pages. 196 */ 197 198 bufbackpages = buflowpages * 10 / 100; 199 if (bufbackpages > 100) 200 bufbackpages = 100; 201 202 /* 203 * If the MD code does not say otherwise, reserve 10% of kva 204 * space for mapping buffers. 205 */ 206 if (bufkvm == 0) 207 bufkvm = VM_KERNEL_SPACE_SIZE / 10; 208 209 /* 210 * Don't use more than twice the amount of bufpages for mappings. 211 * It's twice since we map things sparsely. 212 */ 213 if (bufkvm > bufpages * PAGE_SIZE) 214 bufkvm = bufpages * PAGE_SIZE; 215 /* 216 * Round bufkvm to MAXPHYS because we allocate chunks of va space 217 * in MAXPHYS chunks. 218 */ 219 bufkvm &= ~(MAXPHYS - 1); 220 221 pool_init(&bufpool, sizeof(struct buf), 0, IPL_BIO, 0, "bufpl", NULL); 222 223 bufcache_init(); 224 225 /* 226 * hmm - bufkvm is an argument because it's static, while 227 * bufpages is global because it can change while running. 228 */ 229 buf_mem_init(bufkvm); 230 231 /* 232 * Set the dirty page high water mark to be less than the low 233 * water mark for pages in the buffer cache. This ensures we 234 * can always back off by throwing away clean pages, and give 235 * ourselves a chance to write out the dirty pages eventually. 236 */ 237 hidirtypages = (buflowpages / 4) * 3; 238 lodirtypages = buflowpages / 2; 239 240 /* 241 * We are allowed to use up to the reserve. 242 */ 243 targetpages = bufpages - RESERVE_PAGES; 244 } 245 246 /* 247 * Change cachepct 248 */ 249 void 250 bufadjust(int newbufpages) 251 { 252 int s; 253 int64_t npages; 254 255 if (newbufpages < buflowpages) 256 newbufpages = buflowpages; 257 258 s = splbio(); 259 bufpages = newbufpages; 260 261 /* 262 * We are allowed to use up to the reserve 263 */ 264 targetpages = bufpages - RESERVE_PAGES; 265 266 npages = bcstats.dmapages - targetpages; 267 268 /* 269 * Shrinking the cache happens here only if someone has manually 270 * adjusted bufcachepercent - or the pagedaemon has told us 271 * to give back memory *now* - so we give it all back. 272 */ 273 if (bcstats.dmapages > targetpages) 274 (void) bufcache_recover_dmapages(0, bcstats.dmapages - targetpages); 275 bufcache_adjust(); 276 277 /* 278 * Wake up the cleaner if we have lots of dirty pages, 279 * or if we are getting low on buffer cache kva. 280 */ 281 if ((UNCLEAN_PAGES >= hidirtypages) || 282 bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS) 283 wakeup(&bd_req); 284 285 splx(s); 286 } 287 288 /* 289 * Make the buffer cache back off from cachepct. 290 */ 291 int 292 bufbackoff(struct uvm_constraint_range *range, long size) 293 { 294 /* 295 * Back off "size" buffer cache pages. Called by the page 296 * daemon to consume buffer cache pages rather than scanning. 297 * 298 * It returns 0 to the pagedaemon to indicate that it has 299 * succeeded in freeing enough pages. It returns -1 to 300 * indicate that it could not and the pagedaemon should take 301 * other measures. 302 * 303 */ 304 long pdelta, oldbufpages; 305 306 /* 307 * If we will accept high memory for this backoff 308 * try to steal it from the high memory buffer cache. 309 */ 310 if (range != NULL && range->ucr_high > dma_constraint.ucr_high) { 311 struct buf *bp; 312 int64_t start = bcstats.numbufpages, recovered = 0; 313 int s = splbio(); 314 315 while ((recovered < size) && 316 (bp = bufcache_gethighcleanbuf())) { 317 bufcache_take(bp); 318 if (bp->b_vp) { 319 RBT_REMOVE(buf_rb_bufs, 320 &bp->b_vp->v_bufs_tree, bp); 321 brelvp(bp); 322 } 323 buf_put(bp); 324 recovered = start - bcstats.numbufpages; 325 } 326 bufcache_adjust(); 327 splx(s); 328 329 /* If we got enough, return success */ 330 if (recovered >= size) 331 return 0; 332 333 /* 334 * If we needed only memory above DMA, 335 * return failure 336 */ 337 if (range->ucr_low > dma_constraint.ucr_high) 338 return -1; 339 340 /* Otherwise get the rest from DMA */ 341 size -= recovered; 342 } 343 344 /* 345 * XXX Otherwise do the dma memory cache dance. this needs 346 * refactoring later to get rid of 'bufpages' 347 */ 348 349 /* 350 * Back off by at least bufbackpages. If the page daemon gave us 351 * a larger size, back off by that much. 352 */ 353 pdelta = (size > bufbackpages) ? size : bufbackpages; 354 355 if (bufpages <= buflowpages) 356 return(-1); 357 if (bufpages - pdelta < buflowpages) 358 pdelta = bufpages - buflowpages; 359 oldbufpages = bufpages; 360 bufadjust(bufpages - pdelta); 361 if (oldbufpages - bufpages < size) 362 return (-1); /* we did not free what we were asked */ 363 else 364 return(0); 365 } 366 367 368 /* 369 * Opportunistically flip a buffer into high memory. Will move the buffer 370 * if memory is available without sleeping, and return 0, otherwise will 371 * fail and return -1 with the buffer unchanged. 372 */ 373 374 int 375 buf_flip_high(struct buf *bp) 376 { 377 int s; 378 int ret = -1; 379 380 KASSERT(ISSET(bp->b_flags, B_BC)); 381 KASSERT(ISSET(bp->b_flags, B_DMA)); 382 KASSERT(bp->cache == DMA_CACHE); 383 KASSERT(fliphigh); 384 385 /* Attempt to move the buffer to high memory if we can */ 386 s = splbio(); 387 if (buf_realloc_pages(bp, &high_constraint, UVM_PLA_NOWAIT) == 0) { 388 KASSERT(!ISSET(bp->b_flags, B_DMA)); 389 bcstats.highflips++; 390 ret = 0; 391 } else 392 bcstats.highflops++; 393 splx(s); 394 395 return ret; 396 } 397 398 /* 399 * Flip a buffer to dma reachable memory, when we need it there for 400 * I/O. This can sleep since it will wait for memory allocation in the 401 * DMA reachable area since we have to have the buffer there to proceed. 402 */ 403 void 404 buf_flip_dma(struct buf *bp) 405 { 406 KASSERT(ISSET(bp->b_flags, B_BC)); 407 KASSERT(ISSET(bp->b_flags, B_BUSY)); 408 KASSERT(bp->cache < NUM_CACHES); 409 410 if (!ISSET(bp->b_flags, B_DMA)) { 411 int s = splbio(); 412 413 /* move buf to dma reachable memory */ 414 (void) buf_realloc_pages(bp, &dma_constraint, UVM_PLA_WAITOK); 415 KASSERT(ISSET(bp->b_flags, B_DMA)); 416 bcstats.dmaflips++; 417 splx(s); 418 } 419 420 if (bp->cache > DMA_CACHE) { 421 CLR(bp->b_flags, B_COLD); 422 CLR(bp->b_flags, B_WARM); 423 bp->cache = DMA_CACHE; 424 } 425 } 426 427 struct buf * 428 bio_doread(struct vnode *vp, daddr_t blkno, int size, int async) 429 { 430 struct buf *bp; 431 struct mount *mp; 432 433 bp = getblk(vp, blkno, size, 0, INFSLP); 434 435 /* 436 * If buffer does not have valid data, start a read. 437 * Note that if buffer is B_INVAL, getblk() won't return it. 438 * Therefore, it's valid if its I/O has completed or been delayed. 439 */ 440 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 441 SET(bp->b_flags, B_READ | async); 442 bcstats.pendingreads++; 443 bcstats.numreads++; 444 VOP_STRATEGY(bp->b_vp, bp); 445 /* Pay for the read. */ 446 curproc->p_ru.ru_inblock++; /* XXX */ 447 } else if (async) { 448 brelse(bp); 449 } 450 451 mp = vp->v_type == VBLK ? vp->v_specmountpoint : vp->v_mount; 452 453 /* 454 * Collect statistics on synchronous and asynchronous reads. 455 * Reads from block devices are charged to their associated 456 * filesystem (if any). 457 */ 458 if (mp != NULL) { 459 if (async == 0) 460 mp->mnt_stat.f_syncreads++; 461 else 462 mp->mnt_stat.f_asyncreads++; 463 } 464 465 return (bp); 466 } 467 468 /* 469 * Read a disk block. 470 * This algorithm described in Bach (p.54). 471 */ 472 int 473 bread(struct vnode *vp, daddr_t blkno, int size, struct buf **bpp) 474 { 475 struct buf *bp; 476 477 /* Get buffer for block. */ 478 bp = *bpp = bio_doread(vp, blkno, size, 0); 479 480 /* Wait for the read to complete, and return result. */ 481 return (biowait(bp)); 482 } 483 484 /* 485 * Read-ahead multiple disk blocks. The first is sync, the rest async. 486 * Trivial modification to the breada algorithm presented in Bach (p.55). 487 */ 488 int 489 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t rablks[], 490 int rasizes[], int nrablks, struct buf **bpp) 491 { 492 struct buf *bp; 493 int i; 494 495 bp = *bpp = bio_doread(vp, blkno, size, 0); 496 497 /* 498 * For each of the read-ahead blocks, start a read, if necessary. 499 */ 500 for (i = 0; i < nrablks; i++) { 501 /* If it's in the cache, just go on to next one. */ 502 if (incore(vp, rablks[i])) 503 continue; 504 505 /* Get a buffer for the read-ahead block */ 506 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 507 } 508 509 /* Otherwise, we had to start a read for it; wait until it's valid. */ 510 return (biowait(bp)); 511 } 512 513 /* 514 * Called from interrupt context. 515 */ 516 void 517 bread_cluster_callback(struct buf *bp) 518 { 519 struct buf **xbpp = bp->b_saveaddr; 520 int i; 521 522 if (xbpp[1] != NULL) { 523 size_t newsize = xbpp[1]->b_bufsize; 524 525 /* 526 * Shrink this buffer's mapping to only cover its part of 527 * the total I/O. 528 */ 529 buf_fix_mapping(bp, newsize); 530 bp->b_bcount = newsize; 531 } 532 533 /* Invalidate read-ahead buffers if read short */ 534 if (bp->b_resid > 0) { 535 for (i = 1; xbpp[i] != NULL; i++) 536 continue; 537 for (i = i - 1; i != 0; i--) { 538 if (xbpp[i]->b_bufsize <= bp->b_resid) { 539 bp->b_resid -= xbpp[i]->b_bufsize; 540 SET(xbpp[i]->b_flags, B_INVAL); 541 } else if (bp->b_resid > 0) { 542 bp->b_resid = 0; 543 SET(xbpp[i]->b_flags, B_INVAL); 544 } else 545 break; 546 } 547 } 548 549 for (i = 1; xbpp[i] != NULL; i++) { 550 if (ISSET(bp->b_flags, B_ERROR)) 551 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 552 /* 553 * Move the pages from the master buffer's uvm object 554 * into the individual buffer's uvm objects. 555 */ 556 struct uvm_object *newobj = &xbpp[i]->b_uobj; 557 struct uvm_object *oldobj = &bp->b_uobj; 558 int page; 559 560 uvm_obj_init(newobj, &bufcache_pager, 1); 561 for (page = 0; page < atop(xbpp[i]->b_bufsize); page++) { 562 struct vm_page *pg = uvm_pagelookup(oldobj, 563 xbpp[i]->b_poffs + ptoa(page)); 564 KASSERT(pg != NULL); 565 KASSERT(pg->wire_count == 1); 566 uvm_pagerealloc(pg, newobj, xbpp[i]->b_poffs + ptoa(page)); 567 } 568 xbpp[i]->b_pobj = newobj; 569 570 biodone(xbpp[i]); 571 } 572 573 free(xbpp, M_TEMP, (i + 1) * sizeof(*xbpp)); 574 575 if (ISSET(bp->b_flags, B_ASYNC)) { 576 brelse(bp); 577 } else { 578 CLR(bp->b_flags, B_WANTED); 579 wakeup(bp); 580 } 581 } 582 583 /* 584 * Read-ahead multiple disk blocks, but make sure only one (big) I/O 585 * request is sent to the disk. 586 * XXX This should probably be dropped and breadn should instead be optimized 587 * XXX to do fewer I/O requests. 588 */ 589 int 590 bread_cluster(struct vnode *vp, daddr_t blkno, int size, struct buf **rbpp) 591 { 592 struct buf *bp, **xbpp; 593 int howmany, maxra, i, inc; 594 daddr_t sblkno; 595 596 *rbpp = bio_doread(vp, blkno, size, 0); 597 598 /* 599 * If the buffer is in the cache skip any I/O operation. 600 */ 601 if (ISSET((*rbpp)->b_flags, B_CACHE)) 602 goto out; 603 604 if (size != round_page(size)) 605 goto out; 606 607 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 608 goto out; 609 610 maxra++; 611 if (sblkno == -1 || maxra < 2) 612 goto out; 613 614 howmany = MAXPHYS / size; 615 if (howmany > maxra) 616 howmany = maxra; 617 618 xbpp = mallocarray(howmany + 1, sizeof(*xbpp), M_TEMP, M_NOWAIT); 619 if (xbpp == NULL) 620 goto out; 621 622 for (i = howmany - 1; i >= 0; i--) { 623 size_t sz; 624 625 /* 626 * First buffer allocates big enough size to cover what 627 * all the other buffers need. 628 */ 629 sz = i == 0 ? howmany * size : 0; 630 631 xbpp[i] = buf_get(vp, blkno + i + 1, sz); 632 if (xbpp[i] == NULL) { 633 for (++i; i < howmany; i++) { 634 SET(xbpp[i]->b_flags, B_INVAL); 635 brelse(xbpp[i]); 636 } 637 free(xbpp, M_TEMP, (howmany + 1) * sizeof(*xbpp)); 638 goto out; 639 } 640 } 641 642 bp = xbpp[0]; 643 644 xbpp[howmany] = NULL; 645 646 inc = btodb(size); 647 648 for (i = 1; i < howmany; i++) { 649 bcstats.pendingreads++; 650 bcstats.numreads++; 651 /* 652 * We set B_DMA here because bp above will be B_DMA, 653 * and we are playing buffer slice-n-dice games from 654 * the memory allocated in bp. 655 */ 656 SET(xbpp[i]->b_flags, B_DMA | B_READ | B_ASYNC); 657 xbpp[i]->b_blkno = sblkno + (i * inc); 658 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 659 xbpp[i]->b_data = NULL; 660 xbpp[i]->b_pobj = bp->b_pobj; 661 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 662 } 663 664 KASSERT(bp->b_lblkno == blkno + 1); 665 KASSERT(bp->b_vp == vp); 666 667 bp->b_blkno = sblkno; 668 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 669 670 bp->b_saveaddr = (void *)xbpp; 671 bp->b_iodone = bread_cluster_callback; 672 673 bcstats.pendingreads++; 674 bcstats.numreads++; 675 VOP_STRATEGY(bp->b_vp, bp); 676 curproc->p_ru.ru_inblock++; 677 678 out: 679 return (biowait(*rbpp)); 680 } 681 682 /* 683 * Block write. Described in Bach (p.56) 684 */ 685 int 686 bwrite(struct buf *bp) 687 { 688 int rv, async, wasdelayed, s; 689 struct vnode *vp; 690 struct mount *mp; 691 692 vp = bp->b_vp; 693 if (vp != NULL) 694 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 695 else 696 mp = NULL; 697 698 /* 699 * Remember buffer type, to switch on it later. If the write was 700 * synchronous, but the file system was mounted with MNT_ASYNC, 701 * convert it to a delayed write. 702 * XXX note that this relies on delayed tape writes being converted 703 * to async, not sync writes (which is safe, but ugly). 704 */ 705 async = ISSET(bp->b_flags, B_ASYNC); 706 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 707 /* 708 * Don't convert writes from VND on async filesystems 709 * that already have delayed writes in the upper layer. 710 */ 711 if (!ISSET(bp->b_flags, B_NOCACHE)) { 712 bdwrite(bp); 713 return (0); 714 } 715 } 716 717 /* 718 * Collect statistics on synchronous and asynchronous writes. 719 * Writes to block devices are charged to their associated 720 * filesystem (if any). 721 */ 722 if (mp != NULL) { 723 if (async) 724 mp->mnt_stat.f_asyncwrites++; 725 else 726 mp->mnt_stat.f_syncwrites++; 727 } 728 bcstats.pendingwrites++; 729 bcstats.numwrites++; 730 731 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 732 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 733 734 s = splbio(); 735 736 /* 737 * If not synchronous, pay for the I/O operation and make 738 * sure the buf is on the correct vnode queue. We have 739 * to do this now, because if we don't, the vnode may not 740 * be properly notified that its I/O has completed. 741 */ 742 if (wasdelayed) { 743 reassignbuf(bp); 744 } else 745 curproc->p_ru.ru_oublock++; 746 747 748 /* Initiate disk write. Make sure the appropriate party is charged. */ 749 bp->b_vp->v_numoutput++; 750 splx(s); 751 buf_flip_dma(bp); 752 SET(bp->b_flags, B_WRITEINPROG); 753 VOP_STRATEGY(bp->b_vp, bp); 754 755 /* 756 * If the queue is above the high water mark, wait till 757 * the number of outstanding write bufs drops below the low 758 * water mark. 759 */ 760 if (bp->b_bq) 761 bufq_wait(bp->b_bq); 762 763 if (async) 764 return (0); 765 766 /* 767 * If I/O was synchronous, wait for it to complete. 768 */ 769 rv = biowait(bp); 770 771 /* Release the buffer. */ 772 brelse(bp); 773 774 return (rv); 775 } 776 777 778 /* 779 * Delayed write. 780 * 781 * The buffer is marked dirty, but is not queued for I/O. 782 * This routine should be used when the buffer is expected 783 * to be modified again soon, typically a small write that 784 * partially fills a buffer. 785 * 786 * NB: magnetic tapes cannot be delayed; they must be 787 * written in the order that the writes are requested. 788 * 789 * Described in Leffler, et al. (pp. 208-213). 790 */ 791 void 792 bdwrite(struct buf *bp) 793 { 794 int s; 795 796 /* 797 * If the block hasn't been seen before: 798 * (1) Mark it as having been seen, 799 * (2) Charge for the write. 800 * (3) Make sure it's on its vnode's correct block list, 801 * (4) If a buffer is rewritten, move it to end of dirty list 802 */ 803 if (!ISSET(bp->b_flags, B_DELWRI)) { 804 SET(bp->b_flags, B_DELWRI); 805 s = splbio(); 806 buf_flip_dma(bp); 807 reassignbuf(bp); 808 splx(s); 809 curproc->p_ru.ru_oublock++; /* XXX */ 810 } 811 812 /* The "write" is done, so mark and release the buffer. */ 813 CLR(bp->b_flags, B_NEEDCOMMIT); 814 CLR(bp->b_flags, B_NOCACHE); /* Must cache delayed writes */ 815 SET(bp->b_flags, B_DONE); 816 brelse(bp); 817 } 818 819 /* 820 * Asynchronous block write; just an asynchronous bwrite(). 821 */ 822 void 823 bawrite(struct buf *bp) 824 { 825 826 SET(bp->b_flags, B_ASYNC); 827 VOP_BWRITE(bp); 828 } 829 830 /* 831 * Must be called at splbio() 832 */ 833 void 834 buf_dirty(struct buf *bp) 835 { 836 splassert(IPL_BIO); 837 838 #ifdef DIAGNOSTIC 839 if (!ISSET(bp->b_flags, B_BUSY)) 840 panic("Trying to dirty buffer on freelist!"); 841 #endif 842 843 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 844 SET(bp->b_flags, B_DELWRI); 845 buf_flip_dma(bp); 846 reassignbuf(bp); 847 } 848 } 849 850 /* 851 * Must be called at splbio() 852 */ 853 void 854 buf_undirty(struct buf *bp) 855 { 856 splassert(IPL_BIO); 857 858 #ifdef DIAGNOSTIC 859 if (!ISSET(bp->b_flags, B_BUSY)) 860 panic("Trying to undirty buffer on freelist!"); 861 #endif 862 if (ISSET(bp->b_flags, B_DELWRI)) { 863 CLR(bp->b_flags, B_DELWRI); 864 reassignbuf(bp); 865 } 866 } 867 868 /* 869 * Release a buffer on to the free lists. 870 * Described in Bach (p. 46). 871 */ 872 void 873 brelse(struct buf *bp) 874 { 875 int s; 876 877 s = splbio(); 878 879 if (bp->b_data != NULL) 880 KASSERT(bp->b_bufsize > 0); 881 882 /* 883 * softdep is basically incompatible with not caching buffers 884 * that have dependencies, so this buffer must be cached 885 */ 886 if (LIST_FIRST(&bp->b_dep) != NULL) 887 CLR(bp->b_flags, B_NOCACHE); 888 889 /* 890 * Determine which queue the buffer should be on, then put it there. 891 */ 892 893 /* If it's not cacheable, or an error, mark it invalid. */ 894 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 895 SET(bp->b_flags, B_INVAL); 896 /* If it's a write error, also mark the vnode as damaged. */ 897 if (ISSET(bp->b_flags, B_ERROR) && !ISSET(bp->b_flags, B_READ)) { 898 if (bp->b_vp && bp->b_vp->v_type == VREG) 899 SET(bp->b_vp->v_bioflag, VBIOERROR); 900 } 901 902 if (ISSET(bp->b_flags, B_INVAL)) { 903 /* 904 * If the buffer is invalid, free it now rather than leaving 905 * it in a queue and wasting memory. 906 */ 907 if (LIST_FIRST(&bp->b_dep) != NULL) 908 buf_deallocate(bp); 909 910 if (ISSET(bp->b_flags, B_DELWRI)) { 911 CLR(bp->b_flags, B_DELWRI); 912 } 913 914 if (bp->b_vp) { 915 RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp); 916 brelvp(bp); 917 } 918 bp->b_vp = NULL; 919 920 /* 921 * Wake up any processes waiting for _this_ buffer to 922 * become free. They are not allowed to grab it 923 * since it will be freed. But the only sleeper is 924 * getblk and it will restart the operation after 925 * sleep. 926 */ 927 if (ISSET(bp->b_flags, B_WANTED)) { 928 CLR(bp->b_flags, B_WANTED); 929 wakeup(bp); 930 } 931 buf_put(bp); 932 } else { 933 /* 934 * It has valid data. Put it on the end of the appropriate 935 * queue, so that it'll stick around for as long as possible. 936 */ 937 bufcache_release(bp); 938 939 /* Unlock the buffer. */ 940 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 941 buf_release(bp); 942 943 /* Wake up any processes waiting for _this_ buffer to 944 * become free. */ 945 if (ISSET(bp->b_flags, B_WANTED)) { 946 CLR(bp->b_flags, B_WANTED); 947 wakeup(bp); 948 } 949 950 if (bcstats.dmapages > targetpages) 951 (void) bufcache_recover_dmapages(0, 952 bcstats.dmapages - targetpages); 953 bufcache_adjust(); 954 } 955 956 /* Wake up syncer and cleaner processes waiting for buffers. */ 957 if (nobuffers) { 958 nobuffers = 0; 959 wakeup(&nobuffers); 960 } 961 962 /* Wake up any processes waiting for any buffer to become free. */ 963 if (needbuffer && bcstats.dmapages < targetpages && 964 bcstats.kvaslots_avail > RESERVE_SLOTS) { 965 needbuffer = 0; 966 wakeup(&needbuffer); 967 } 968 969 splx(s); 970 } 971 972 /* 973 * Determine if a block is in the cache. Just look on what would be its hash 974 * chain. If it's there, return a pointer to it, unless it's marked invalid. 975 */ 976 struct buf * 977 incore(struct vnode *vp, daddr_t blkno) 978 { 979 struct buf *bp; 980 struct buf b; 981 int s; 982 983 s = splbio(); 984 985 /* Search buf lookup tree */ 986 b.b_lblkno = blkno; 987 bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 988 if (bp != NULL && ISSET(bp->b_flags, B_INVAL)) 989 bp = NULL; 990 991 splx(s); 992 return (bp); 993 } 994 995 /* 996 * Get a block of requested size that is associated with 997 * a given vnode and block offset. If it is found in the 998 * block cache, mark it as having been found, make it busy 999 * and return it. Otherwise, return an empty block of the 1000 * correct size. It is up to the caller to ensure that the 1001 * cached blocks be of the correct size. 1002 */ 1003 struct buf * 1004 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, 1005 uint64_t slptimeo) 1006 { 1007 struct buf *bp; 1008 struct buf b; 1009 int s, error; 1010 1011 /* 1012 * XXX 1013 * The following is an inlined version of 'incore()', but with 1014 * the 'invalid' test moved to after the 'busy' test. It's 1015 * necessary because there are some cases in which the NFS 1016 * code sets B_INVAL prior to writing data to the server, but 1017 * in which the buffers actually contain valid data. In this 1018 * case, we can't allow the system to allocate a new buffer for 1019 * the block until the write is finished. 1020 */ 1021 start: 1022 s = splbio(); 1023 b.b_lblkno = blkno; 1024 bp = RBT_FIND(buf_rb_bufs, &vp->v_bufs_tree, &b); 1025 if (bp != NULL) { 1026 if (ISSET(bp->b_flags, B_BUSY)) { 1027 SET(bp->b_flags, B_WANTED); 1028 error = tsleep_nsec(bp, slpflag | (PRIBIO + 1), 1029 "getblk", slptimeo); 1030 splx(s); 1031 if (error) 1032 return (NULL); 1033 goto start; 1034 } 1035 1036 if (!ISSET(bp->b_flags, B_INVAL)) { 1037 bcstats.cachehits++; 1038 SET(bp->b_flags, B_CACHE); 1039 bufcache_take(bp); 1040 buf_acquire(bp); 1041 splx(s); 1042 return (bp); 1043 } 1044 } 1045 splx(s); 1046 1047 if ((bp = buf_get(vp, blkno, size)) == NULL) 1048 goto start; 1049 1050 return (bp); 1051 } 1052 1053 /* 1054 * Get an empty, disassociated buffer of given size. 1055 */ 1056 struct buf * 1057 geteblk(size_t size) 1058 { 1059 struct buf *bp; 1060 1061 while ((bp = buf_get(NULL, 0, size)) == NULL) 1062 continue; 1063 1064 return (bp); 1065 } 1066 1067 /* 1068 * Allocate a buffer. 1069 * If vp is given, put it into the buffer cache for that vnode. 1070 * If size != 0, allocate memory and call buf_map(). 1071 * If there is already a buffer for the given vnode/blkno, return NULL. 1072 */ 1073 struct buf * 1074 buf_get(struct vnode *vp, daddr_t blkno, size_t size) 1075 { 1076 struct buf *bp; 1077 int poolwait = size == 0 ? PR_NOWAIT : PR_WAITOK; 1078 int npages; 1079 int s; 1080 1081 s = splbio(); 1082 if (size) { 1083 /* 1084 * Wake up the cleaner if we have lots of dirty pages, 1085 * or if we are getting low on buffer cache kva. 1086 */ 1087 if (UNCLEAN_PAGES >= hidirtypages || 1088 bcstats.kvaslots_avail <= 2 * RESERVE_SLOTS) 1089 wakeup(&bd_req); 1090 1091 npages = atop(round_page(size)); 1092 1093 /* 1094 * if our cache has been previously shrunk, 1095 * allow it to grow again with use up to 1096 * bufhighpages (cachepercent) 1097 */ 1098 if (bufpages < bufhighpages) 1099 bufadjust(bufhighpages); 1100 1101 /* 1102 * If we would go over the page target with our 1103 * new allocation, free enough buffers first 1104 * to stay at the target with our new allocation. 1105 */ 1106 if (bcstats.dmapages + npages > targetpages) { 1107 (void) bufcache_recover_dmapages(0, npages); 1108 bufcache_adjust(); 1109 } 1110 1111 /* 1112 * If we get here, we tried to free the world down 1113 * above, and couldn't get down - Wake the cleaner 1114 * and wait for it to push some buffers out. 1115 */ 1116 if ((bcstats.dmapages + npages > targetpages || 1117 bcstats.kvaslots_avail <= RESERVE_SLOTS) && 1118 curproc != syncerproc && curproc != cleanerproc) { 1119 wakeup(&bd_req); 1120 needbuffer++; 1121 tsleep_nsec(&needbuffer, PRIBIO, "needbuffer", INFSLP); 1122 splx(s); 1123 return (NULL); 1124 } 1125 if (bcstats.dmapages + npages > bufpages) { 1126 /* cleaner or syncer */ 1127 nobuffers = 1; 1128 tsleep_nsec(&nobuffers, PRIBIO, "nobuffers", INFSLP); 1129 splx(s); 1130 return (NULL); 1131 } 1132 } 1133 1134 bp = pool_get(&bufpool, poolwait|PR_ZERO); 1135 1136 if (bp == NULL) { 1137 splx(s); 1138 return (NULL); 1139 } 1140 1141 bp->b_freelist.tqe_next = NOLIST; 1142 bp->b_dev = NODEV; 1143 LIST_INIT(&bp->b_dep); 1144 bp->b_bcount = size; 1145 1146 buf_acquire_nomap(bp); 1147 1148 if (vp != NULL) { 1149 /* 1150 * We insert the buffer into the hash with B_BUSY set 1151 * while we allocate pages for it. This way any getblk 1152 * that happens while we allocate pages will wait for 1153 * this buffer instead of starting its own buf_get. 1154 * 1155 * But first, we check if someone beat us to it. 1156 */ 1157 if (incore(vp, blkno)) { 1158 pool_put(&bufpool, bp); 1159 splx(s); 1160 return (NULL); 1161 } 1162 1163 bp->b_blkno = bp->b_lblkno = blkno; 1164 bgetvp(vp, bp); 1165 if (RBT_INSERT(buf_rb_bufs, &vp->v_bufs_tree, bp)) 1166 panic("buf_get: dup lblk vp %p bp %p", vp, bp); 1167 } else { 1168 bp->b_vnbufs.le_next = NOLIST; 1169 SET(bp->b_flags, B_INVAL); 1170 bp->b_vp = NULL; 1171 } 1172 1173 LIST_INSERT_HEAD(&bufhead, bp, b_list); 1174 bcstats.numbufs++; 1175 1176 if (size) { 1177 buf_alloc_pages(bp, round_page(size)); 1178 KASSERT(ISSET(bp->b_flags, B_DMA)); 1179 buf_map(bp); 1180 } 1181 1182 SET(bp->b_flags, B_BC); 1183 splx(s); 1184 1185 return (bp); 1186 } 1187 1188 /* 1189 * Buffer cleaning daemon. 1190 */ 1191 void 1192 buf_daemon(void *arg) 1193 { 1194 struct buf *bp = NULL; 1195 int s, pushed = 0; 1196 1197 s = splbio(); 1198 for (;;) { 1199 if (bp == NULL || (pushed >= 16 && 1200 UNCLEAN_PAGES < hidirtypages && 1201 bcstats.kvaslots_avail > 2 * RESERVE_SLOTS)){ 1202 pushed = 0; 1203 /* 1204 * Wake up anyone who was waiting for buffers 1205 * to be released. 1206 */ 1207 if (needbuffer) { 1208 needbuffer = 0; 1209 wakeup(&needbuffer); 1210 } 1211 tsleep_nsec(&bd_req, PRIBIO - 7, "cleaner", INFSLP); 1212 } 1213 1214 while ((bp = bufcache_getdirtybuf())) { 1215 TRACEPOINT(vfs, cleaner, bp->b_flags, pushed, 1216 lodirtypages, hidirtypages); 1217 1218 if (UNCLEAN_PAGES < lodirtypages && 1219 bcstats.kvaslots_avail > 2 * RESERVE_SLOTS && 1220 pushed >= 16) 1221 break; 1222 1223 bufcache_take(bp); 1224 buf_acquire(bp); 1225 splx(s); 1226 1227 if (ISSET(bp->b_flags, B_INVAL)) { 1228 brelse(bp); 1229 s = splbio(); 1230 continue; 1231 } 1232 #ifdef DIAGNOSTIC 1233 if (!ISSET(bp->b_flags, B_DELWRI)) 1234 panic("Clean buffer on dirty queue"); 1235 #endif 1236 if (LIST_FIRST(&bp->b_dep) != NULL && 1237 !ISSET(bp->b_flags, B_DEFERRED) && 1238 buf_countdeps(bp, 0, 0)) { 1239 SET(bp->b_flags, B_DEFERRED); 1240 s = splbio(); 1241 bufcache_release(bp); 1242 buf_release(bp); 1243 continue; 1244 } 1245 1246 bawrite(bp); 1247 pushed++; 1248 1249 sched_pause(yield); 1250 1251 s = splbio(); 1252 } 1253 } 1254 } 1255 1256 /* 1257 * Wait for operations on the buffer to complete. 1258 * When they do, extract and return the I/O's error value. 1259 */ 1260 int 1261 biowait(struct buf *bp) 1262 { 1263 int s; 1264 1265 KASSERT(!(bp->b_flags & B_ASYNC)); 1266 1267 s = splbio(); 1268 while (!ISSET(bp->b_flags, B_DONE)) 1269 tsleep_nsec(bp, PRIBIO + 1, "biowait", INFSLP); 1270 splx(s); 1271 1272 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1273 if (ISSET(bp->b_flags, B_EINTR)) { 1274 CLR(bp->b_flags, B_EINTR); 1275 return (EINTR); 1276 } 1277 1278 if (ISSET(bp->b_flags, B_ERROR)) 1279 return (bp->b_error ? bp->b_error : EIO); 1280 else 1281 return (0); 1282 } 1283 1284 /* 1285 * Mark I/O complete on a buffer. 1286 * 1287 * If a callback has been requested, e.g. the pageout 1288 * daemon, do so. Otherwise, awaken waiting processes. 1289 * 1290 * [ Leffler, et al., says on p.247: 1291 * "This routine wakes up the blocked process, frees the buffer 1292 * for an asynchronous write, or, for a request by the pagedaemon 1293 * process, invokes a procedure specified in the buffer structure" ] 1294 * 1295 * In real life, the pagedaemon (or other system processes) wants 1296 * to do async stuff to, and doesn't want the buffer brelse()'d. 1297 * (for swap pager, that puts swap buffers on the free lists (!!!), 1298 * for the vn device, that puts malloc'd buffers on the free lists!) 1299 * 1300 * Must be called at splbio(). 1301 */ 1302 void 1303 biodone(struct buf *bp) 1304 { 1305 splassert(IPL_BIO); 1306 1307 if (ISSET(bp->b_flags, B_DONE)) 1308 panic("biodone already"); 1309 SET(bp->b_flags, B_DONE); /* note that it's done */ 1310 1311 if (bp->b_bq) 1312 bufq_done(bp->b_bq, bp); 1313 1314 if (LIST_FIRST(&bp->b_dep) != NULL) 1315 buf_complete(bp); 1316 1317 if (!ISSET(bp->b_flags, B_READ)) { 1318 CLR(bp->b_flags, B_WRITEINPROG); 1319 vwakeup(bp->b_vp); 1320 } 1321 if (bcstats.numbufs && 1322 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) { 1323 if (!ISSET(bp->b_flags, B_READ)) { 1324 bcstats.pendingwrites--; 1325 } else 1326 bcstats.pendingreads--; 1327 } 1328 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1329 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1330 (*bp->b_iodone)(bp); 1331 } else { 1332 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1333 brelse(bp); 1334 } else { /* or just wakeup the buffer */ 1335 CLR(bp->b_flags, B_WANTED); 1336 wakeup(bp); 1337 } 1338 } 1339 } 1340 1341 #ifdef DDB 1342 void bcstats_print(int (*)(const char *, ...) 1343 __attribute__((__format__(__kprintf__,1,2)))); 1344 /* 1345 * bcstats_print: ddb hook to print interesting buffer cache counters 1346 */ 1347 void 1348 bcstats_print( 1349 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1350 { 1351 (*pr)("Current Buffer Cache status:\n"); 1352 (*pr)("numbufs %lld busymapped %lld, delwri %lld\n", 1353 bcstats.numbufs, bcstats.busymapped, bcstats.delwribufs); 1354 (*pr)("kvaslots %lld avail kva slots %lld\n", 1355 bcstats.kvaslots, bcstats.kvaslots_avail); 1356 (*pr)("bufpages %lld, dmapages %lld, dirtypages %lld\n", 1357 bcstats.numbufpages, bcstats.dmapages, bcstats.numdirtypages); 1358 (*pr)("pendingreads %lld, pendingwrites %lld\n", 1359 bcstats.pendingreads, bcstats.pendingwrites); 1360 (*pr)("highflips %lld, highflops %lld, dmaflips %lld\n", 1361 bcstats.highflips, bcstats.highflops, bcstats.dmaflips); 1362 } 1363 #endif 1364 1365 void 1366 buf_adjcnt(struct buf *bp, long ncount) 1367 { 1368 KASSERT(ncount <= bp->b_bufsize); 1369 bp->b_bcount = ncount; 1370 } 1371 1372 /* bufcache freelist code below */ 1373 /* 1374 * Copyright (c) 2014 Ted Unangst <tedu@openbsd.org> 1375 * 1376 * Permission to use, copy, modify, and distribute this software for any 1377 * purpose with or without fee is hereby granted, provided that the above 1378 * copyright notice and this permission notice appear in all copies. 1379 * 1380 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 1381 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 1382 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 1383 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 1384 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 1385 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 1386 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 1387 */ 1388 1389 /* 1390 * The code below implements a variant of the 2Q buffer cache algorithm by 1391 * Johnson and Shasha. 1392 * 1393 * General Outline 1394 * We divide the buffer cache into three working sets: current, previous, 1395 * and long term. Each list is itself LRU and buffers get promoted and moved 1396 * around between them. A buffer starts its life in the current working set. 1397 * As time passes and newer buffers push it out, it will turn into the previous 1398 * working set and is subject to recycling. But if it's accessed again from 1399 * the previous working set, that's an indication that it's actually in the 1400 * long term working set, so we promote it there. The separation of current 1401 * and previous working sets prevents us from promoting a buffer that's only 1402 * temporarily hot to the long term cache. 1403 * 1404 * The objective is to provide scan resistance by making the long term 1405 * working set ineligible for immediate recycling, even as the current 1406 * working set is rapidly turned over. 1407 * 1408 * Implementation 1409 * The code below identifies the current, previous, and long term sets as 1410 * hotqueue, coldqueue, and warmqueue. The hot and warm queues are capped at 1411 * 1/3 of the total clean pages, after which point they start pushing their 1412 * oldest buffers into coldqueue. 1413 * A buf always starts out with neither WARM or COLD flags set (implying HOT). 1414 * When released, it will be returned to the tail of the hotqueue list. 1415 * When the hotqueue gets too large, the oldest hot buf will be moved to the 1416 * coldqueue, with the B_COLD flag set. When a cold buf is released, we set 1417 * the B_WARM flag and put it onto the warmqueue. Warm bufs are also 1418 * directly returned to the end of the warmqueue. As with the hotqueue, when 1419 * the warmqueue grows too large, B_WARM bufs are moved onto the coldqueue. 1420 * 1421 * Note that this design does still support large working sets, greater 1422 * than the cap of hotqueue or warmqueue would imply. The coldqueue is still 1423 * cached and has no maximum length. The hot and warm queues form a Y feeding 1424 * into the coldqueue. Moving bufs between queues is constant time, so this 1425 * design decays to one long warm->cold queue. 1426 * 1427 * In the 2Q paper, hotqueue and coldqueue are A1in and A1out. The warmqueue 1428 * is Am. We always cache pages, as opposed to pointers to pages for A1. 1429 * 1430 * This implementation adds support for multiple 2q caches. 1431 * 1432 * If we have more than one 2q cache, as bufs fall off the cold queue 1433 * for recycling, bufs that have been warm before (which retain the 1434 * B_WARM flag in addition to B_COLD) can be put into the hot queue of 1435 * a second level 2Q cache. buffers which are only B_COLD are 1436 * recycled. Bufs falling off the last cache's cold queue are always 1437 * recycled. 1438 * 1439 */ 1440 1441 /* 1442 * this function is called when a hot or warm queue may have exceeded its 1443 * size limit. it will move a buf to the coldqueue. 1444 */ 1445 int chillbufs(struct 1446 bufcache *cache, struct bufqueue *queue, int64_t *queuepages); 1447 1448 void 1449 bufcache_init(void) 1450 { 1451 int i; 1452 1453 for (i = 0; i < NUM_CACHES; i++) { 1454 TAILQ_INIT(&cleancache[i].hotqueue); 1455 TAILQ_INIT(&cleancache[i].coldqueue); 1456 TAILQ_INIT(&cleancache[i].warmqueue); 1457 } 1458 TAILQ_INIT(&dirtyqueue); 1459 } 1460 1461 /* 1462 * if the buffer caches have shrunk, we may need to rebalance our queues. 1463 */ 1464 void 1465 bufcache_adjust(void) 1466 { 1467 int i; 1468 1469 for (i = 0; i < NUM_CACHES; i++) { 1470 while (chillbufs(&cleancache[i], &cleancache[i].warmqueue, 1471 &cleancache[i].warmbufpages) || 1472 chillbufs(&cleancache[i], &cleancache[i].hotqueue, 1473 &cleancache[i].hotbufpages)) 1474 continue; 1475 } 1476 } 1477 1478 /* 1479 * Get a clean buffer from the cache. if "discard" is set do not promote 1480 * previously warm buffers as normal, because we are tossing everything 1481 * away such as in a hibernation 1482 */ 1483 struct buf * 1484 bufcache_getcleanbuf(int cachenum, int discard) 1485 { 1486 struct buf *bp = NULL; 1487 struct bufcache *cache = &cleancache[cachenum]; 1488 struct bufqueue * queue; 1489 1490 splassert(IPL_BIO); 1491 1492 /* try cold queue */ 1493 while ((bp = TAILQ_FIRST(&cache->coldqueue)) || 1494 (bp = TAILQ_FIRST(&cache->warmqueue)) || 1495 (bp = TAILQ_FIRST(&cache->hotqueue))) { 1496 int64_t pages = atop(bp->b_bufsize); 1497 struct bufcache *newcache; 1498 1499 if (discard || cachenum >= NUM_CACHES - 1) { 1500 /* Victim selected, give it up */ 1501 return bp; 1502 } 1503 KASSERT(bp->cache == cachenum); 1504 1505 /* 1506 * If this buffer was warm before, move it to 1507 * the hot queue in the next cache 1508 */ 1509 1510 if (fliphigh) { 1511 /* 1512 * If we are in the DMA cache, try to flip the 1513 * buffer up high to move it on to the other 1514 * caches. if we can't move the buffer to high 1515 * memory without sleeping, we give it up and 1516 * return it rather than fight for more memory 1517 * against non buffer cache competitors. 1518 */ 1519 SET(bp->b_flags, B_BUSY); 1520 if (bp->cache == 0 && buf_flip_high(bp) == -1) { 1521 CLR(bp->b_flags, B_BUSY); 1522 return bp; 1523 } 1524 CLR(bp->b_flags, B_BUSY); 1525 } 1526 1527 /* Move the buffer to the hot queue in the next cache */ 1528 if (ISSET(bp->b_flags, B_COLD)) { 1529 queue = &cache->coldqueue; 1530 } else if (ISSET(bp->b_flags, B_WARM)) { 1531 queue = &cache->warmqueue; 1532 cache->warmbufpages -= pages; 1533 } else { 1534 queue = &cache->hotqueue; 1535 cache->hotbufpages -= pages; 1536 } 1537 TAILQ_REMOVE(queue, bp, b_freelist); 1538 cache->cachepages -= pages; 1539 CLR(bp->b_flags, B_WARM); 1540 CLR(bp->b_flags, B_COLD); 1541 bp->cache++; 1542 newcache= &cleancache[bp->cache]; 1543 newcache->cachepages += pages; 1544 newcache->hotbufpages += pages; 1545 chillbufs(newcache, &newcache->hotqueue, 1546 &newcache->hotbufpages); 1547 TAILQ_INSERT_TAIL(&newcache->hotqueue, bp, b_freelist); 1548 } 1549 return bp; 1550 } 1551 1552 1553 void 1554 discard_buffer(struct buf *bp) 1555 { 1556 splassert(IPL_BIO); 1557 1558 bufcache_take(bp); 1559 if (bp->b_vp) { 1560 RBT_REMOVE(buf_rb_bufs, 1561 &bp->b_vp->v_bufs_tree, bp); 1562 brelvp(bp); 1563 } 1564 buf_put(bp); 1565 } 1566 1567 int64_t 1568 bufcache_recover_dmapages(int discard, int64_t howmany) 1569 { 1570 struct buf *bp = NULL; 1571 struct bufcache *cache = &cleancache[DMA_CACHE]; 1572 struct bufqueue * queue; 1573 int64_t recovered = 0; 1574 1575 splassert(IPL_BIO); 1576 1577 while ((recovered < howmany) && 1578 ((bp = TAILQ_FIRST(&cache->coldqueue)) || 1579 (bp = TAILQ_FIRST(&cache->warmqueue)) || 1580 (bp = TAILQ_FIRST(&cache->hotqueue)))) { 1581 int64_t pages = atop(bp->b_bufsize); 1582 struct bufcache *newcache; 1583 1584 if (discard || DMA_CACHE >= NUM_CACHES - 1) { 1585 discard_buffer(bp); 1586 continue; 1587 } 1588 KASSERT(bp->cache == DMA_CACHE); 1589 1590 /* 1591 * If this buffer was warm before, move it to 1592 * the hot queue in the next cache 1593 */ 1594 1595 /* 1596 * One way or another, the pages for this 1597 * buffer are leaving DMA memory 1598 */ 1599 recovered += pages; 1600 1601 if (!fliphigh) { 1602 discard_buffer(bp); 1603 continue; 1604 } 1605 1606 /* 1607 * If we are in the DMA cache, try to flip the 1608 * buffer up high to move it on to the other 1609 * caches. if we can't move the buffer to high 1610 * memory without sleeping, we give it up 1611 * now rather than fight for more memory 1612 * against non buffer cache competitors. 1613 */ 1614 SET(bp->b_flags, B_BUSY); 1615 if (bp->cache == 0 && buf_flip_high(bp) == -1) { 1616 CLR(bp->b_flags, B_BUSY); 1617 discard_buffer(bp); 1618 continue; 1619 } 1620 CLR(bp->b_flags, B_BUSY); 1621 1622 /* 1623 * Move the buffer to the hot queue in the next cache 1624 */ 1625 if (ISSET(bp->b_flags, B_COLD)) { 1626 queue = &cache->coldqueue; 1627 } else if (ISSET(bp->b_flags, B_WARM)) { 1628 queue = &cache->warmqueue; 1629 cache->warmbufpages -= pages; 1630 } else { 1631 queue = &cache->hotqueue; 1632 cache->hotbufpages -= pages; 1633 } 1634 TAILQ_REMOVE(queue, bp, b_freelist); 1635 cache->cachepages -= pages; 1636 CLR(bp->b_flags, B_WARM); 1637 CLR(bp->b_flags, B_COLD); 1638 bp->cache++; 1639 newcache= &cleancache[bp->cache]; 1640 newcache->cachepages += pages; 1641 newcache->hotbufpages += pages; 1642 chillbufs(newcache, &newcache->hotqueue, 1643 &newcache->hotbufpages); 1644 TAILQ_INSERT_TAIL(&newcache->hotqueue, bp, b_freelist); 1645 } 1646 return recovered; 1647 } 1648 1649 struct buf * 1650 bufcache_getcleanbuf_range(int start, int end, int discard) 1651 { 1652 int i, j = start, q = end; 1653 struct buf *bp = NULL; 1654 1655 /* 1656 * XXX in theory we could promote warm buffers into a previous queue 1657 * so in the pathological case of where we go through all the caches 1658 * without getting a buffer we have to start at the beginning again. 1659 */ 1660 while (j <= q) { 1661 for (i = q; i >= j; i--) 1662 if ((bp = bufcache_getcleanbuf(i, discard))) 1663 return (bp); 1664 j++; 1665 } 1666 return bp; 1667 } 1668 1669 struct buf * 1670 bufcache_gethighcleanbuf(void) 1671 { 1672 if (!fliphigh) 1673 return NULL; 1674 return bufcache_getcleanbuf_range(DMA_CACHE + 1, NUM_CACHES - 1, 0); 1675 } 1676 1677 1678 struct buf * 1679 bufcache_getdmacleanbuf(void) 1680 { 1681 if (fliphigh) 1682 return bufcache_getcleanbuf_range(DMA_CACHE, DMA_CACHE, 0); 1683 return bufcache_getcleanbuf_range(DMA_CACHE, NUM_CACHES - 1, 0); 1684 } 1685 1686 1687 struct buf * 1688 bufcache_getdirtybuf(void) 1689 { 1690 return TAILQ_FIRST(&dirtyqueue); 1691 } 1692 1693 void 1694 bufcache_take(struct buf *bp) 1695 { 1696 struct bufqueue *queue; 1697 int64_t pages; 1698 1699 splassert(IPL_BIO); 1700 KASSERT(ISSET(bp->b_flags, B_BC)); 1701 KASSERT(bp->cache >= DMA_CACHE); 1702 KASSERT((bp->cache < NUM_CACHES)); 1703 1704 pages = atop(bp->b_bufsize); 1705 1706 TRACEPOINT(vfs, bufcache_take, bp->b_flags, bp->cache, pages); 1707 1708 struct bufcache *cache = &cleancache[bp->cache]; 1709 if (!ISSET(bp->b_flags, B_DELWRI)) { 1710 if (ISSET(bp->b_flags, B_COLD)) { 1711 queue = &cache->coldqueue; 1712 } else if (ISSET(bp->b_flags, B_WARM)) { 1713 queue = &cache->warmqueue; 1714 cache->warmbufpages -= pages; 1715 } else { 1716 queue = &cache->hotqueue; 1717 cache->hotbufpages -= pages; 1718 } 1719 bcstats.numcleanpages -= pages; 1720 cache->cachepages -= pages; 1721 } else { 1722 queue = &dirtyqueue; 1723 bcstats.numdirtypages -= pages; 1724 bcstats.delwribufs--; 1725 } 1726 TAILQ_REMOVE(queue, bp, b_freelist); 1727 } 1728 1729 /* move buffers from a hot or warm queue to a cold queue in a cache */ 1730 int 1731 chillbufs(struct bufcache *cache, struct bufqueue *queue, int64_t *queuepages) 1732 { 1733 struct buf *bp; 1734 int64_t limit, pages; 1735 1736 /* 1737 * We limit the hot queue to be small, with a max of 4096 pages. 1738 * We limit the warm queue to half the cache size. 1739 * 1740 * We impose a minimum size of 96 to prevent too much "wobbling". 1741 */ 1742 if (queue == &cache->hotqueue) 1743 limit = min(cache->cachepages / 20, 4096); 1744 else if (queue == &cache->warmqueue) 1745 limit = (cache->cachepages / 2); 1746 else 1747 panic("chillbufs: invalid queue"); 1748 1749 if (*queuepages > 96 && *queuepages > limit) { 1750 bp = TAILQ_FIRST(queue); 1751 if (!bp) 1752 panic("inconsistent bufpage counts"); 1753 pages = atop(bp->b_bufsize); 1754 *queuepages -= pages; 1755 TAILQ_REMOVE(queue, bp, b_freelist); 1756 /* we do not clear B_WARM */ 1757 SET(bp->b_flags, B_COLD); 1758 TAILQ_INSERT_TAIL(&cache->coldqueue, bp, b_freelist); 1759 return 1; 1760 } 1761 return 0; 1762 } 1763 1764 void 1765 bufcache_release(struct buf *bp) 1766 { 1767 struct bufqueue *queue; 1768 int64_t pages; 1769 struct bufcache *cache = &cleancache[bp->cache]; 1770 1771 KASSERT(ISSET(bp->b_flags, B_BC)); 1772 pages = atop(bp->b_bufsize); 1773 1774 TRACEPOINT(vfs, bufcache_rel, bp->b_flags, bp->cache, pages); 1775 1776 if (fliphigh) { 1777 if (ISSET(bp->b_flags, B_DMA) && bp->cache > 0) 1778 panic("B_DMA buffer release from cache %d", 1779 bp->cache); 1780 else if ((!ISSET(bp->b_flags, B_DMA)) && bp->cache == 0) 1781 panic("Non B_DMA buffer release from cache %d", 1782 bp->cache); 1783 } 1784 1785 if (!ISSET(bp->b_flags, B_DELWRI)) { 1786 int64_t *queuepages; 1787 if (ISSET(bp->b_flags, B_WARM | B_COLD)) { 1788 SET(bp->b_flags, B_WARM); 1789 CLR(bp->b_flags, B_COLD); 1790 queue = &cache->warmqueue; 1791 queuepages = &cache->warmbufpages; 1792 } else { 1793 queue = &cache->hotqueue; 1794 queuepages = &cache->hotbufpages; 1795 } 1796 *queuepages += pages; 1797 bcstats.numcleanpages += pages; 1798 cache->cachepages += pages; 1799 chillbufs(cache, queue, queuepages); 1800 } else { 1801 queue = &dirtyqueue; 1802 bcstats.numdirtypages += pages; 1803 bcstats.delwribufs++; 1804 } 1805 TAILQ_INSERT_TAIL(queue, bp, b_freelist); 1806 } 1807 1808 #ifdef HIBERNATE 1809 /* 1810 * Nuke the buffer cache from orbit when hibernating. We do not want to save 1811 * any clean cache pages to swap and read them back. the original disk files 1812 * are just as good. 1813 */ 1814 void 1815 hibernate_suspend_bufcache(void) 1816 { 1817 struct buf *bp; 1818 int s; 1819 1820 s = splbio(); 1821 /* Chuck away all the cache pages.. discard bufs, do not promote */ 1822 while ((bp = bufcache_getcleanbuf_range(DMA_CACHE, NUM_CACHES - 1, 1))) { 1823 bufcache_take(bp); 1824 if (bp->b_vp) { 1825 RBT_REMOVE(buf_rb_bufs, &bp->b_vp->v_bufs_tree, bp); 1826 brelvp(bp); 1827 } 1828 buf_put(bp); 1829 } 1830 splx(s); 1831 } 1832 1833 void 1834 hibernate_resume_bufcache(void) 1835 { 1836 /* XXX Nothing needed here for now */ 1837 } 1838 #endif /* HIBERNATE */ 1839