1 /* $OpenBSD: vfs_bio.c,v 1.111 2009/03/23 15:10:44 beck Exp $ */ 2 /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ 3 4 /*- 5 * Copyright (c) 1994 Christopher G. Demetriou 6 * Copyright (c) 1982, 1986, 1989, 1993 7 * The Regents of the University of California. All rights reserved. 8 * (c) UNIX System Laboratories, Inc. 9 * All or some portions of this file are derived from material licensed 10 * to the University of California by American Telephone and Telegraph 11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 12 * the permission of UNIX System Laboratories, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 39 */ 40 41 /* 42 * Some references: 43 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 44 * Leffler, et al.: The Design and Implementation of the 4.3BSD 45 * UNIX Operating System (Addison Welley, 1989) 46 */ 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/buf.h> 52 #include <sys/vnode.h> 53 #include <sys/mount.h> 54 #include <sys/malloc.h> 55 #include <sys/pool.h> 56 #include <sys/resourcevar.h> 57 #include <sys/conf.h> 58 #include <sys/kernel.h> 59 60 #include <uvm/uvm_extern.h> 61 62 #include <miscfs/specfs/specdev.h> 63 64 /* 65 * Definitions for the buffer hash lists. 66 */ 67 #define BUFHASH(dvp, lbn) \ 68 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) 69 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 70 u_long bufhash; 71 72 /* 73 * Insq/Remq for the buffer hash lists. 74 */ 75 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 76 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 77 78 /* 79 * Definitions for the buffer free lists. 80 */ 81 #define BQUEUES 2 /* number of free buffer queues */ 82 83 #define BQ_DIRTY 0 /* LRU queue with dirty buffers */ 84 #define BQ_CLEAN 1 /* LRU queue with clean buffers */ 85 86 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 87 int needbuffer; 88 struct bio_ops bioops; 89 90 /* 91 * Buffer pool for I/O buffers. 92 */ 93 struct pool bufpool; 94 struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); 95 struct buf *buf_get(size_t); 96 struct buf *buf_stub(struct vnode *, daddr64_t); 97 void buf_put(struct buf *); 98 99 /* 100 * Insq/Remq for the buffer free lists. 101 */ 102 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 103 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 104 105 struct buf *bio_doread(struct vnode *, daddr64_t, int, int); 106 struct buf *getnewbuf(size_t, int, int, int *); 107 void buf_init(struct buf *); 108 void bread_cluster_callback(struct buf *); 109 110 /* 111 * We keep a few counters to monitor the utilization of the buffer cache 112 * 113 * numbufpages - number of pages totally allocated. 114 * numdirtypages - number of pages on BQ_DIRTY queue. 115 * lodirtypages - low water mark for buffer cleaning daemon. 116 * hidirtypages - high water mark for buffer cleaning daemon. 117 * numcleanpages - number of pages on BQ_CLEAN queue. 118 * Used to track the need to speedup the cleaner and 119 * as a reserve for special processes like syncer. 120 * maxcleanpages - the highest page count on BQ_CLEAN. 121 */ 122 123 struct bcachestats bcstats; 124 long lodirtypages; 125 long hidirtypages; 126 long locleanpages; 127 long hicleanpages; 128 long maxcleanpages; 129 130 /* XXX - should be defined here. */ 131 extern int bufcachepercent; 132 133 vsize_t bufkvm; 134 135 struct proc *cleanerproc; 136 int bd_req; /* Sleep point for cleaner daemon. */ 137 138 void 139 bremfree(struct buf *bp) 140 { 141 struct bqueues *dp = NULL; 142 143 splassert(IPL_BIO); 144 145 /* 146 * We only calculate the head of the freelist when removing 147 * the last element of the list as that is the only time that 148 * it is needed (e.g. to reset the tail pointer). 149 * 150 * NB: This makes an assumption about how tailq's are implemented. 151 */ 152 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 153 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 154 if (dp->tqh_last == &TAILQ_NEXT(bp, b_freelist)) 155 break; 156 if (dp == &bufqueues[BQUEUES]) 157 panic("bremfree: lost tail"); 158 } 159 if (!ISSET(bp->b_flags, B_DELWRI)) { 160 bcstats.numcleanpages -= atop(bp->b_bufsize); 161 } else { 162 bcstats.numdirtypages -= atop(bp->b_bufsize); 163 } 164 TAILQ_REMOVE(dp, bp, b_freelist); 165 bcstats.freebufs--; 166 } 167 168 void 169 buf_init(struct buf *bp) 170 { 171 splassert(IPL_BIO); 172 173 bzero((char *)bp, sizeof *bp); 174 bp->b_vnbufs.le_next = NOLIST; 175 bp->b_freelist.tqe_next = NOLIST; 176 bp->b_synctime = time_uptime + 300; 177 bp->b_dev = NODEV; 178 LIST_INIT(&bp->b_dep); 179 } 180 181 /* 182 * This is a non-sleeping expanded equivalent of getblk() that allocates only 183 * the buffer structure, and not its contents. 184 */ 185 struct buf * 186 buf_stub(struct vnode *vp, daddr64_t lblkno) 187 { 188 struct buf *bp; 189 int s; 190 191 s = splbio(); 192 bp = pool_get(&bufpool, PR_NOWAIT); 193 splx(s); 194 195 if (bp == NULL) 196 return (NULL); 197 198 bzero((char *)bp, sizeof *bp); 199 bp->b_vnbufs.le_next = NOLIST; 200 bp->b_freelist.tqe_next = NOLIST; 201 bp->b_synctime = time_uptime + 300; 202 bp->b_dev = NODEV; 203 bp->b_bufsize = 0; 204 bp->b_data = NULL; 205 bp->b_flags = 0; 206 bp->b_dev = NODEV; 207 bp->b_blkno = bp->b_lblkno = lblkno; 208 bp->b_iodone = NULL; 209 bp->b_error = 0; 210 bp->b_resid = 0; 211 bp->b_bcount = 0; 212 bp->b_dirtyoff = bp->b_dirtyend = 0; 213 bp->b_validoff = bp->b_validend = 0; 214 215 LIST_INIT(&bp->b_dep); 216 217 buf_acquire_unmapped(bp); 218 219 s = splbio(); 220 LIST_INSERT_HEAD(&bufhead, bp, b_list); 221 bcstats.numbufs++; 222 bgetvp(vp, bp); 223 splx(s); 224 225 return (bp); 226 } 227 228 struct buf * 229 buf_get(size_t size) 230 { 231 struct buf *bp; 232 int npages; 233 234 splassert(IPL_BIO); 235 236 KASSERT(size > 0); 237 238 size = round_page(size); 239 npages = atop(size); 240 241 if (bcstats.numbufpages + npages > bufpages) 242 return (NULL); 243 244 bp = pool_get(&bufpool, PR_WAITOK); 245 246 buf_init(bp); 247 bp->b_flags = B_INVAL; 248 buf_alloc_pages(bp, size); 249 bp->b_data = NULL; 250 binsheadfree(bp, &bufqueues[BQ_CLEAN]); 251 binshash(bp, &invalhash); 252 LIST_INSERT_HEAD(&bufhead, bp, b_list); 253 bcstats.numbufs++; 254 bcstats.freebufs++; 255 bcstats.numcleanpages += atop(bp->b_bufsize); 256 257 return (bp); 258 } 259 260 void 261 buf_put(struct buf *bp) 262 { 263 splassert(IPL_BIO); 264 265 #ifdef DIAGNOSTIC 266 if (bp->b_pobj != NULL) 267 KASSERT(bp->b_bufsize > 0); 268 if (ISSET(bp->b_flags, B_DELWRI)) 269 panic("buf_put: releasing dirty buffer"); 270 if (bp->b_freelist.tqe_next != NOLIST && 271 bp->b_freelist.tqe_next != (void *)-1) 272 panic("buf_put: still on the free list"); 273 if (bp->b_vnbufs.le_next != NOLIST && 274 bp->b_vnbufs.le_next != (void *)-1) 275 panic("buf_put: still on the vnode list"); 276 if (!LIST_EMPTY(&bp->b_dep)) 277 panic("buf_put: b_dep is not empty"); 278 #endif 279 280 LIST_REMOVE(bp, b_list); 281 bcstats.numbufs--; 282 283 if (buf_dealloc_mem(bp) != 0) 284 return; 285 pool_put(&bufpool, bp); 286 } 287 288 /* 289 * Initialize buffers and hash links for buffers. 290 */ 291 void 292 bufinit(void) 293 { 294 struct bqueues *dp; 295 296 /* XXX - for now */ 297 bufpages = bufcachepercent = bufkvm = 0; 298 299 /* 300 * If MD code doesn't say otherwise, use 10% of kvm for mappings and 301 * 10% physmem for pages. 302 */ 303 if (bufcachepercent == 0) 304 bufcachepercent = 10; 305 if (bufpages == 0) 306 bufpages = physmem * bufcachepercent / 100; 307 308 if (bufkvm == 0) 309 bufkvm = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 10; 310 311 /* 312 * Don't use more than twice the amount of bufpages for mappings. 313 * It's twice since we map things sparsely. 314 */ 315 if (bufkvm > bufpages * PAGE_SIZE) 316 bufkvm = bufpages * PAGE_SIZE; 317 /* 318 * Round bufkvm to MAXPHYS because we allocate chunks of va space 319 * in MAXPHYS chunks. 320 */ 321 bufkvm &= ~(MAXPHYS - 1); 322 323 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 324 pool_setipl(&bufpool, IPL_BIO); 325 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 326 TAILQ_INIT(dp); 327 328 /* 329 * hmm - bufkvm is an argument because it's static, while 330 * bufpages is global because it can change while running. 331 */ 332 buf_mem_init(bufkvm); 333 334 bufhashtbl = hashinit(bufpages / 4, M_CACHE, M_WAITOK, &bufhash); 335 hidirtypages = (bufpages / 4) * 3; 336 lodirtypages = bufpages / 2; 337 338 /* 339 * When we hit 95% of pages being clean, we bring them down to 340 * 90% to have some slack. 341 */ 342 hicleanpages = bufpages - (bufpages / 20); 343 locleanpages = bufpages - (bufpages / 10); 344 345 maxcleanpages = locleanpages; 346 } 347 348 struct buf * 349 bio_doread(struct vnode *vp, daddr64_t blkno, int size, int async) 350 { 351 struct buf *bp; 352 struct mount *mp; 353 354 bp = getblk(vp, blkno, size, 0, 0); 355 356 /* 357 * If buffer does not have valid data, start a read. 358 * Note that if buffer is B_INVAL, getblk() won't return it. 359 * Therefore, it's valid if its I/O has completed or been delayed. 360 */ 361 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 362 SET(bp->b_flags, B_READ | async); 363 bcstats.pendingreads++; 364 bcstats.numreads++; 365 VOP_STRATEGY(bp); 366 /* Pay for the read. */ 367 curproc->p_stats->p_ru.ru_inblock++; /* XXX */ 368 } else if (async) { 369 brelse(bp); 370 } 371 372 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 373 374 /* 375 * Collect statistics on synchronous and asynchronous reads. 376 * Reads from block devices are charged to their associated 377 * filesystem (if any). 378 */ 379 if (mp != NULL) { 380 if (async == 0) 381 mp->mnt_stat.f_syncreads++; 382 else 383 mp->mnt_stat.f_asyncreads++; 384 } 385 386 return (bp); 387 } 388 389 /* 390 * Read a disk block. 391 * This algorithm described in Bach (p.54). 392 */ 393 int 394 bread(struct vnode *vp, daddr64_t blkno, int size, struct ucred *cred, 395 struct buf **bpp) 396 { 397 struct buf *bp; 398 399 /* Get buffer for block. */ 400 bp = *bpp = bio_doread(vp, blkno, size, 0); 401 402 /* Wait for the read to complete, and return result. */ 403 return (biowait(bp)); 404 } 405 406 /* 407 * Read-ahead multiple disk blocks. The first is sync, the rest async. 408 * Trivial modification to the breada algorithm presented in Bach (p.55). 409 */ 410 int 411 breadn(struct vnode *vp, daddr64_t blkno, int size, daddr64_t rablks[], 412 int rasizes[], int nrablks, struct ucred *cred, struct buf **bpp) 413 { 414 struct buf *bp; 415 int i; 416 417 bp = *bpp = bio_doread(vp, blkno, size, 0); 418 419 /* 420 * For each of the read-ahead blocks, start a read, if necessary. 421 */ 422 for (i = 0; i < nrablks; i++) { 423 /* If it's in the cache, just go on to next one. */ 424 if (incore(vp, rablks[i])) 425 continue; 426 427 /* Get a buffer for the read-ahead block */ 428 (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); 429 } 430 431 /* Otherwise, we had to start a read for it; wait until it's valid. */ 432 return (biowait(bp)); 433 } 434 435 /* 436 * Called from interrupt context. 437 */ 438 void 439 bread_cluster_callback(struct buf *bp) 440 { 441 int i; 442 struct buf **xbpp; 443 444 xbpp = (struct buf **)bp->b_saveaddr; 445 446 for (i = 0; xbpp[i] != 0; i++) { 447 if (ISSET(bp->b_flags, B_ERROR)) 448 SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); 449 biodone(xbpp[i]); 450 } 451 452 free(xbpp, M_TEMP); 453 bp->b_pobj = NULL; 454 buf_put(bp); 455 } 456 457 int 458 bread_cluster(struct vnode *vp, daddr64_t blkno, int size, struct buf **rbpp) 459 { 460 struct buf *bp, **xbpp; 461 int howmany, maxra, i, inc; 462 daddr64_t sblkno; 463 464 *rbpp = bio_doread(vp, blkno, size, 0); 465 466 if (size != round_page(size)) 467 return (biowait(*rbpp)); 468 469 if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) 470 return (biowait(*rbpp)); 471 472 maxra++; 473 if (sblkno == -1 || maxra < 2) 474 return (biowait(*rbpp)); 475 476 howmany = MAXPHYS / size; 477 if (howmany > maxra) 478 howmany = maxra; 479 480 xbpp = malloc((howmany + 1) * sizeof(struct buf *), M_TEMP, M_NOWAIT); 481 if (xbpp == NULL) 482 return (biowait(*rbpp)); 483 484 for (i = 0; i < howmany; i++) { 485 if (incore(vp, blkno + i + 1)) { 486 for (--i; i >= 0; i--) { 487 SET(xbpp[i]->b_flags, B_INVAL); 488 brelse(xbpp[i]); 489 } 490 free(xbpp, M_TEMP); 491 return (biowait(*rbpp)); 492 } 493 xbpp[i] = buf_stub(vp, blkno + i + 1); 494 if (xbpp[i] == NULL) { 495 for (--i; i >= 0; i--) { 496 SET(xbpp[i]->b_flags, B_INVAL); 497 brelse(xbpp[i]); 498 } 499 free(xbpp, M_TEMP); 500 return (biowait(*rbpp)); 501 } 502 } 503 504 xbpp[howmany] = 0; 505 506 bp = getnewbuf(howmany * size, 0, 0, NULL); 507 if (bp == NULL) { 508 for (i = 0; i < howmany; i++) { 509 SET(xbpp[i]->b_flags, B_INVAL); 510 brelse(xbpp[i]); 511 } 512 free(xbpp, M_TEMP); 513 return (biowait(*rbpp)); 514 } 515 516 inc = btodb(size); 517 518 for (i = 0; i < howmany; i++) { 519 bcstats.pendingreads++; 520 bcstats.numreads++; 521 SET(xbpp[i]->b_flags, B_READ | B_ASYNC); 522 binshash(xbpp[i], BUFHASH(vp, xbpp[i]->b_lblkno)); 523 xbpp[i]->b_blkno = sblkno + (i * inc); 524 xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; 525 xbpp[i]->b_data = NULL; 526 xbpp[i]->b_pobj = bp->b_pobj; 527 xbpp[i]->b_poffs = bp->b_poffs + (i * size); 528 buf_acquire_unmapped(xbpp[i]); 529 } 530 531 bp->b_blkno = sblkno; 532 bp->b_lblkno = blkno + 1; 533 SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); 534 bp->b_saveaddr = (void *)xbpp; 535 bp->b_iodone = bread_cluster_callback; 536 bp->b_vp = vp; 537 bcstats.pendingreads++; 538 bcstats.numreads++; 539 VOP_STRATEGY(bp); 540 curproc->p_stats->p_ru.ru_inblock++; 541 542 return (biowait(*rbpp)); 543 } 544 545 /* 546 * Block write. Described in Bach (p.56) 547 */ 548 int 549 bwrite(struct buf *bp) 550 { 551 int rv, async, wasdelayed, s; 552 struct vnode *vp; 553 struct mount *mp; 554 555 vp = bp->b_vp; 556 if (vp != NULL) 557 mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; 558 else 559 mp = NULL; 560 561 /* 562 * Remember buffer type, to switch on it later. If the write was 563 * synchronous, but the file system was mounted with MNT_ASYNC, 564 * convert it to a delayed write. 565 * XXX note that this relies on delayed tape writes being converted 566 * to async, not sync writes (which is safe, but ugly). 567 */ 568 async = ISSET(bp->b_flags, B_ASYNC); 569 if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { 570 bdwrite(bp); 571 return (0); 572 } 573 574 /* 575 * Collect statistics on synchronous and asynchronous writes. 576 * Writes to block devices are charged to their associated 577 * filesystem (if any). 578 */ 579 if (mp != NULL) { 580 if (async) 581 mp->mnt_stat.f_asyncwrites++; 582 else 583 mp->mnt_stat.f_syncwrites++; 584 } 585 bcstats.pendingwrites++; 586 bcstats.numwrites++; 587 588 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 589 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 590 591 s = splbio(); 592 593 /* 594 * If not synchronous, pay for the I/O operation and make 595 * sure the buf is on the correct vnode queue. We have 596 * to do this now, because if we don't, the vnode may not 597 * be properly notified that its I/O has completed. 598 */ 599 if (wasdelayed) { 600 reassignbuf(bp); 601 } else 602 curproc->p_stats->p_ru.ru_oublock++; 603 604 605 /* Initiate disk write. Make sure the appropriate party is charged. */ 606 bp->b_vp->v_numoutput++; 607 splx(s); 608 SET(bp->b_flags, B_WRITEINPROG); 609 VOP_STRATEGY(bp); 610 611 if (async) 612 return (0); 613 614 /* 615 * If I/O was synchronous, wait for it to complete. 616 */ 617 rv = biowait(bp); 618 619 /* Release the buffer. */ 620 brelse(bp); 621 622 return (rv); 623 } 624 625 626 /* 627 * Delayed write. 628 * 629 * The buffer is marked dirty, but is not queued for I/O. 630 * This routine should be used when the buffer is expected 631 * to be modified again soon, typically a small write that 632 * partially fills a buffer. 633 * 634 * NB: magnetic tapes cannot be delayed; they must be 635 * written in the order that the writes are requested. 636 * 637 * Described in Leffler, et al. (pp. 208-213). 638 */ 639 void 640 bdwrite(struct buf *bp) 641 { 642 int s; 643 644 /* 645 * If the block hasn't been seen before: 646 * (1) Mark it as having been seen, 647 * (2) Charge for the write. 648 * (3) Make sure it's on its vnode's correct block list, 649 * (4) If a buffer is rewritten, move it to end of dirty list 650 */ 651 if (!ISSET(bp->b_flags, B_DELWRI)) { 652 SET(bp->b_flags, B_DELWRI); 653 bp->b_synctime = time_uptime + 35; 654 s = splbio(); 655 reassignbuf(bp); 656 splx(s); 657 curproc->p_stats->p_ru.ru_oublock++; /* XXX */ 658 } else { 659 /* 660 * see if this buffer has slacked through the syncer 661 * and enforce an async write upon it. 662 */ 663 if (bp->b_synctime < time_uptime) { 664 bawrite(bp); 665 return; 666 } 667 } 668 669 /* If this is a tape block, write the block now. */ 670 if (major(bp->b_dev) < nblkdev && 671 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 672 bawrite(bp); 673 return; 674 } 675 676 /* Otherwise, the "write" is done, so mark and release the buffer. */ 677 CLR(bp->b_flags, B_NEEDCOMMIT); 678 SET(bp->b_flags, B_DONE); 679 brelse(bp); 680 } 681 682 /* 683 * Asynchronous block write; just an asynchronous bwrite(). 684 */ 685 void 686 bawrite(struct buf *bp) 687 { 688 689 SET(bp->b_flags, B_ASYNC); 690 VOP_BWRITE(bp); 691 } 692 693 /* 694 * Must be called at splbio() 695 */ 696 void 697 buf_dirty(struct buf *bp) 698 { 699 splassert(IPL_BIO); 700 701 #ifdef DIAGNOSTIC 702 if (!ISSET(bp->b_flags, B_BUSY)) 703 panic("Trying to dirty buffer on freelist!"); 704 #endif 705 706 if (ISSET(bp->b_flags, B_DELWRI) == 0) { 707 SET(bp->b_flags, B_DELWRI); 708 bp->b_synctime = time_uptime + 35; 709 reassignbuf(bp); 710 } 711 } 712 713 /* 714 * Must be called at splbio() 715 */ 716 void 717 buf_undirty(struct buf *bp) 718 { 719 splassert(IPL_BIO); 720 721 #ifdef DIAGNOSTIC 722 if (!ISSET(bp->b_flags, B_BUSY)) 723 panic("Trying to undirty buffer on freelist!"); 724 #endif 725 if (ISSET(bp->b_flags, B_DELWRI)) { 726 CLR(bp->b_flags, B_DELWRI); 727 reassignbuf(bp); 728 } 729 } 730 731 /* 732 * Release a buffer on to the free lists. 733 * Described in Bach (p. 46). 734 */ 735 void 736 brelse(struct buf *bp) 737 { 738 struct bqueues *bufq; 739 int s; 740 741 /* Block disk interrupts. */ 742 s = splbio(); 743 744 if (bp->b_data != NULL) 745 KASSERT(bp->b_bufsize > 0); 746 747 /* 748 * Determine which queue the buffer should be on, then put it there. 749 */ 750 751 /* If it's not cacheable, or an error, mark it invalid. */ 752 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 753 SET(bp->b_flags, B_INVAL); 754 755 if (ISSET(bp->b_flags, B_INVAL)) { 756 /* 757 * If the buffer is invalid, place it in the clean queue, so it 758 * can be reused. 759 */ 760 if (LIST_FIRST(&bp->b_dep) != NULL) 761 buf_deallocate(bp); 762 763 if (ISSET(bp->b_flags, B_DELWRI)) { 764 CLR(bp->b_flags, B_DELWRI); 765 } 766 767 if (bp->b_vp) 768 brelvp(bp); 769 770 /* 771 * If the buffer has no associated data, place it back in the 772 * pool. 773 */ 774 if (bp->b_data == NULL && bp->b_pobj == NULL) { 775 /* 776 * Wake up any processes waiting for _this_ buffer to 777 * become free. They are not allowed to grab it 778 * since it will be freed. But the only sleeper is 779 * getblk and it's restarting the operation after 780 * sleep. 781 */ 782 if (ISSET(bp->b_flags, B_WANTED)) { 783 CLR(bp->b_flags, B_WANTED); 784 wakeup(bp); 785 } 786 buf_put(bp); 787 splx(s); 788 return; 789 } 790 791 bcstats.numcleanpages += atop(bp->b_bufsize); 792 if (maxcleanpages < bcstats.numcleanpages) 793 maxcleanpages = bcstats.numcleanpages; 794 binsheadfree(bp, &bufqueues[BQ_CLEAN]); 795 } else { 796 /* 797 * It has valid data. Put it on the end of the appropriate 798 * queue, so that it'll stick around for as long as possible. 799 */ 800 801 if (!ISSET(bp->b_flags, B_DELWRI)) { 802 bcstats.numcleanpages += atop(bp->b_bufsize); 803 if (maxcleanpages < bcstats.numcleanpages) 804 maxcleanpages = bcstats.numcleanpages; 805 bufq = &bufqueues[BQ_CLEAN]; 806 } else { 807 bcstats.numdirtypages += atop(bp->b_bufsize); 808 bufq = &bufqueues[BQ_DIRTY]; 809 } 810 if (ISSET(bp->b_flags, B_AGE)) { 811 binsheadfree(bp, bufq); 812 bp->b_synctime = time_uptime + 30; 813 } else { 814 binstailfree(bp, bufq); 815 bp->b_synctime = time_uptime + 300; 816 } 817 } 818 819 /* Unlock the buffer. */ 820 bcstats.freebufs++; 821 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE | B_DEFERRED)); 822 buf_release(bp); 823 824 /* Wake up any processes waiting for any buffer to become free. */ 825 if (needbuffer) { 826 needbuffer--; 827 wakeup_one(&needbuffer); 828 } 829 830 /* Wake up any processes waiting for _this_ buffer to become free. */ 831 if (ISSET(bp->b_flags, B_WANTED)) { 832 CLR(bp->b_flags, B_WANTED); 833 wakeup(bp); 834 } 835 836 splx(s); 837 } 838 839 /* 840 * Determine if a block is in the cache. Just look on what would be its hash 841 * chain. If it's there, return a pointer to it, unless it's marked invalid. 842 */ 843 struct buf * 844 incore(struct vnode *vp, daddr64_t blkno) 845 { 846 struct buf *bp; 847 848 /* Search hash chain */ 849 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 850 if (bp->b_lblkno == blkno && bp->b_vp == vp && 851 !ISSET(bp->b_flags, B_INVAL)) 852 return (bp); 853 } 854 855 return (NULL); 856 } 857 858 /* 859 * Get a block of requested size that is associated with 860 * a given vnode and block offset. If it is found in the 861 * block cache, mark it as having been found, make it busy 862 * and return it. Otherwise, return an empty block of the 863 * correct size. It is up to the caller to ensure that the 864 * cached blocks be of the correct size. 865 */ 866 struct buf * 867 getblk(struct vnode *vp, daddr64_t blkno, int size, int slpflag, int slptimeo) 868 { 869 struct bufhashhdr *bh; 870 struct buf *bp, *nb = NULL; 871 int s, error; 872 873 /* 874 * XXX 875 * The following is an inlined version of 'incore()', but with 876 * the 'invalid' test moved to after the 'busy' test. It's 877 * necessary because there are some cases in which the NFS 878 * code sets B_INVAL prior to writing data to the server, but 879 * in which the buffers actually contain valid data. In this 880 * case, we can't allow the system to allocate a new buffer for 881 * the block until the write is finished. 882 */ 883 bh = BUFHASH(vp, blkno); 884 start: 885 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 886 if (bp->b_lblkno != blkno || bp->b_vp != vp) 887 continue; 888 889 s = splbio(); 890 if (ISSET(bp->b_flags, B_BUSY)) { 891 if (nb != NULL) { 892 SET(nb->b_flags, B_INVAL); 893 binshash(nb, &invalhash); 894 brelse(nb); 895 nb = NULL; 896 } 897 SET(bp->b_flags, B_WANTED); 898 error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 899 slptimeo); 900 splx(s); 901 if (error) 902 return (NULL); 903 goto start; 904 } 905 906 if (!ISSET(bp->b_flags, B_INVAL)) { 907 bcstats.cachehits++; 908 bremfree(bp); 909 SET(bp->b_flags, B_CACHE); 910 buf_acquire(bp); 911 splx(s); 912 break; 913 } 914 splx(s); 915 } 916 if (nb && bp) { 917 SET(nb->b_flags, B_INVAL); 918 binshash(nb, &invalhash); 919 brelse(nb); 920 nb = NULL; 921 } 922 if (bp == NULL && nb == NULL) { 923 nb = getnewbuf(size, slpflag, slptimeo, &error); 924 if (nb == NULL) { 925 if (error == ERESTART || error == EINTR) 926 return (NULL); 927 } 928 goto start; 929 } 930 if (nb) { 931 bp = nb; 932 binshash(bp, bh); 933 bp->b_blkno = bp->b_lblkno = blkno; 934 s = splbio(); 935 bgetvp(vp, bp); 936 splx(s); 937 } 938 #ifdef DIAGNOSTIC 939 if (!ISSET(bp->b_flags, B_BUSY)) 940 panic("getblk buffer not B_BUSY"); 941 #endif 942 return (bp); 943 } 944 945 /* 946 * Get an empty, disassociated buffer of given size. 947 */ 948 struct buf * 949 geteblk(int size) 950 { 951 struct buf *bp; 952 953 while ((bp = getnewbuf(size, 0, 0, NULL)) == NULL) 954 ; 955 SET(bp->b_flags, B_INVAL); 956 binshash(bp, &invalhash); 957 958 return (bp); 959 } 960 961 /* 962 * Find a buffer which is available for use. 963 */ 964 struct buf * 965 getnewbuf(size_t size, int slpflag, int slptimeo, int *ep) 966 { 967 struct buf *bp; 968 int s; 969 970 #if 0 /* we would really like this but sblock update kills it */ 971 KASSERT(curproc != syncerproc && curproc != cleanerproc); 972 #endif 973 974 s = splbio(); 975 /* 976 * Wake up cleaner if we're getting low on pages. 977 */ 978 if (bcstats.numdirtypages >= hidirtypages || bcstats.numcleanpages <= locleanpages) 979 wakeup(&bd_req); 980 981 /* 982 * If we're above the high water mark for clean pages, 983 * free down to the low water mark. 984 */ 985 if (bcstats.numcleanpages > hicleanpages) { 986 while (bcstats.numcleanpages > locleanpages) { 987 bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN]); 988 bremfree(bp); 989 if (bp->b_vp) 990 brelvp(bp); 991 bremhash(bp); 992 buf_put(bp); 993 } 994 } 995 996 /* we just ask. it can say no.. */ 997 getsome: 998 bp = buf_get(size); 999 if (bp == NULL) { 1000 int freemax = 5; 1001 int i = freemax; 1002 while ((bp = TAILQ_FIRST(&bufqueues[BQ_CLEAN])) && i--) { 1003 bremfree(bp); 1004 if (bp->b_vp) 1005 brelvp(bp); 1006 bremhash(bp); 1007 buf_put(bp); 1008 } 1009 if (freemax != i) 1010 goto getsome; 1011 splx(s); 1012 return (NULL); 1013 } 1014 1015 bremfree(bp); 1016 /* Buffer is no longer on free lists. */ 1017 bp->b_flags = 0; 1018 buf_acquire(bp); 1019 1020 splx(s); 1021 1022 /* clear out various other fields */ 1023 bp->b_dev = NODEV; 1024 bp->b_blkno = bp->b_lblkno = 0; 1025 bp->b_iodone = NULL; 1026 bp->b_error = 0; 1027 bp->b_resid = 0; 1028 bp->b_bcount = size; 1029 bp->b_dirtyoff = bp->b_dirtyend = 0; 1030 bp->b_validoff = bp->b_validend = 0; 1031 1032 bremhash(bp); 1033 return (bp); 1034 } 1035 1036 /* 1037 * Buffer cleaning daemon. 1038 */ 1039 void 1040 buf_daemon(struct proc *p) 1041 { 1042 struct timeval starttime, timediff; 1043 struct buf *bp; 1044 int s; 1045 1046 cleanerproc = curproc; 1047 1048 s = splbio(); 1049 for (;;) { 1050 if (bcstats.numdirtypages < hidirtypages) 1051 tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); 1052 1053 getmicrouptime(&starttime); 1054 1055 while ((bp = TAILQ_FIRST(&bufqueues[BQ_DIRTY]))) { 1056 struct timeval tv; 1057 1058 if (bcstats.numdirtypages < lodirtypages) 1059 break; 1060 1061 bremfree(bp); 1062 buf_acquire(bp); 1063 splx(s); 1064 1065 if (ISSET(bp->b_flags, B_INVAL)) { 1066 brelse(bp); 1067 s = splbio(); 1068 continue; 1069 } 1070 #ifdef DIAGNOSTIC 1071 if (!ISSET(bp->b_flags, B_DELWRI)) 1072 panic("Clean buffer on BQ_DIRTY"); 1073 #endif 1074 if (LIST_FIRST(&bp->b_dep) != NULL && 1075 !ISSET(bp->b_flags, B_DEFERRED) && 1076 buf_countdeps(bp, 0, 0)) { 1077 SET(bp->b_flags, B_DEFERRED); 1078 s = splbio(); 1079 bcstats.numdirtypages += atop(bp->b_bufsize); 1080 binstailfree(bp, &bufqueues[BQ_DIRTY]); 1081 bcstats.freebufs++; 1082 buf_release(bp); 1083 continue; 1084 } 1085 1086 bawrite(bp); 1087 1088 /* Never allow processing to run for more than 1 sec */ 1089 getmicrouptime(&tv); 1090 timersub(&tv, &starttime, &timediff); 1091 s = splbio(); 1092 if (timediff.tv_sec) 1093 break; 1094 1095 } 1096 } 1097 } 1098 1099 /* 1100 * Wait for operations on the buffer to complete. 1101 * When they do, extract and return the I/O's error value. 1102 */ 1103 int 1104 biowait(struct buf *bp) 1105 { 1106 int s; 1107 1108 KASSERT(!(bp->b_flags & B_ASYNC)); 1109 1110 s = splbio(); 1111 while (!ISSET(bp->b_flags, B_DONE)) 1112 tsleep(bp, PRIBIO + 1, "biowait", 0); 1113 splx(s); 1114 1115 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1116 if (ISSET(bp->b_flags, B_EINTR)) { 1117 CLR(bp->b_flags, B_EINTR); 1118 return (EINTR); 1119 } 1120 1121 if (ISSET(bp->b_flags, B_ERROR)) 1122 return (bp->b_error ? bp->b_error : EIO); 1123 else 1124 return (0); 1125 } 1126 1127 /* 1128 * Mark I/O complete on a buffer. 1129 * 1130 * If a callback has been requested, e.g. the pageout 1131 * daemon, do so. Otherwise, awaken waiting processes. 1132 * 1133 * [ Leffler, et al., says on p.247: 1134 * "This routine wakes up the blocked process, frees the buffer 1135 * for an asynchronous write, or, for a request by the pagedaemon 1136 * process, invokes a procedure specified in the buffer structure" ] 1137 * 1138 * In real life, the pagedaemon (or other system processes) wants 1139 * to do async stuff to, and doesn't want the buffer brelse()'d. 1140 * (for swap pager, that puts swap buffers on the free lists (!!!), 1141 * for the vn device, that puts malloc'd buffers on the free lists!) 1142 * 1143 * Must be called at splbio(). 1144 */ 1145 void 1146 biodone(struct buf *bp) 1147 { 1148 splassert(IPL_BIO); 1149 1150 if (ISSET(bp->b_flags, B_DONE)) 1151 panic("biodone already"); 1152 SET(bp->b_flags, B_DONE); /* note that it's done */ 1153 1154 if (LIST_FIRST(&bp->b_dep) != NULL) 1155 buf_complete(bp); 1156 1157 if (!ISSET(bp->b_flags, B_READ)) { 1158 CLR(bp->b_flags, B_WRITEINPROG); 1159 vwakeup(bp->b_vp); 1160 } 1161 if (bcstats.numbufs && 1162 (!(ISSET(bp->b_flags, B_RAW) || ISSET(bp->b_flags, B_PHYS)))) { 1163 if (!ISSET(bp->b_flags, B_READ)) 1164 bcstats.pendingwrites--; 1165 else 1166 bcstats.pendingreads--; 1167 } 1168 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 1169 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1170 (*bp->b_iodone)(bp); 1171 } else { 1172 if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ 1173 brelse(bp); 1174 } else { /* or just wakeup the buffer */ 1175 CLR(bp->b_flags, B_WANTED); 1176 wakeup(bp); 1177 } 1178 } 1179 } 1180