1 /* $OpenBSD: uipc_socket2.c,v 1.64 2016/06/28 14:47:00 tedu Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/file.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/protosw.h> 41 #include <sys/socket.h> 42 #include <sys/socketvar.h> 43 #include <sys/signalvar.h> 44 #include <sys/event.h> 45 #include <sys/pool.h> 46 47 /* 48 * Primitive routines for operating on sockets and socket buffers 49 */ 50 51 u_long sb_max = SB_MAX; /* patchable */ 52 53 extern struct pool mclpools[]; 54 extern struct pool mbpool; 55 56 /* 57 * Procedures to manipulate state flags of socket 58 * and do appropriate wakeups. Normal sequence from the 59 * active (originating) side is that soisconnecting() is 60 * called during processing of connect() call, 61 * resulting in an eventual call to soisconnected() if/when the 62 * connection is established. When the connection is torn down 63 * soisdisconnecting() is called during processing of disconnect() call, 64 * and soisdisconnected() is called when the connection to the peer 65 * is totally severed. The semantics of these routines are such that 66 * connectionless protocols can call soisconnected() and soisdisconnected() 67 * only, bypassing the in-progress calls when setting up a ``connection'' 68 * takes no time. 69 * 70 * From the passive side, a socket is created with 71 * two queues of sockets: so_q0 for connections in progress 72 * and so_q for connections already made and awaiting user acceptance. 73 * As a protocol is preparing incoming connections, it creates a socket 74 * structure queued on so_q0 by calling sonewconn(). When the connection 75 * is established, soisconnected() is called, and transfers the 76 * socket structure to so_q, making it available to accept(). 77 * 78 * If a socket is closed with sockets on either 79 * so_q0 or so_q, these sockets are dropped. 80 * 81 * If higher level protocols are implemented in 82 * the kernel, the wakeups done here will sometimes 83 * cause software-interrupt process scheduling. 84 */ 85 86 void 87 soisconnecting(struct socket *so) 88 { 89 90 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 91 so->so_state |= SS_ISCONNECTING; 92 } 93 94 void 95 soisconnected(struct socket *so) 96 { 97 struct socket *head = so->so_head; 98 99 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 100 so->so_state |= SS_ISCONNECTED; 101 if (head && soqremque(so, 0)) { 102 soqinsque(head, so, 1); 103 sorwakeup(head); 104 wakeup_one(&head->so_timeo); 105 } else { 106 wakeup(&so->so_timeo); 107 sorwakeup(so); 108 sowwakeup(so); 109 } 110 } 111 112 void 113 soisdisconnecting(struct socket *so) 114 { 115 116 so->so_state &= ~SS_ISCONNECTING; 117 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 118 wakeup(&so->so_timeo); 119 sowwakeup(so); 120 sorwakeup(so); 121 } 122 123 void 124 soisdisconnected(struct socket *so) 125 { 126 127 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 128 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 129 wakeup(&so->so_timeo); 130 sowwakeup(so); 131 sorwakeup(so); 132 } 133 134 /* 135 * When an attempt at a new connection is noted on a socket 136 * which accepts connections, sonewconn is called. If the 137 * connection is possible (subject to space constraints, etc.) 138 * then we allocate a new structure, properly linked into the 139 * data structure of the original socket, and return this. 140 * Connstatus may be 0 or SS_ISCONNECTED. 141 * 142 * Must be called at splsoftnet() 143 */ 144 struct socket * 145 sonewconn(struct socket *head, int connstatus) 146 { 147 struct socket *so; 148 int soqueue = connstatus ? 1 : 0; 149 150 splsoftassert(IPL_SOFTNET); 151 152 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 153 return (NULL); 154 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 155 return (NULL); 156 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 157 if (so == NULL) 158 return (NULL); 159 so->so_type = head->so_type; 160 so->so_options = head->so_options &~ SO_ACCEPTCONN; 161 so->so_linger = head->so_linger; 162 so->so_state = head->so_state | SS_NOFDREF; 163 so->so_proto = head->so_proto; 164 so->so_timeo = head->so_timeo; 165 so->so_pgid = head->so_pgid; 166 so->so_euid = head->so_euid; 167 so->so_ruid = head->so_ruid; 168 so->so_egid = head->so_egid; 169 so->so_rgid = head->so_rgid; 170 so->so_cpid = head->so_cpid; 171 so->so_siguid = head->so_siguid; 172 so->so_sigeuid = head->so_sigeuid; 173 174 /* 175 * Inherit watermarks but those may get clamped in low mem situations. 176 */ 177 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 178 pool_put(&socket_pool, so); 179 return (NULL); 180 } 181 so->so_snd.sb_wat = head->so_snd.sb_wat; 182 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 183 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 184 so->so_rcv.sb_wat = head->so_rcv.sb_wat; 185 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 186 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 187 188 rw_init(&so->so_rcv.sb_lock, "sbsndl"); 189 rw_init(&so->so_snd.sb_lock, "sbrcvl"); 190 191 soqinsque(head, so, soqueue); 192 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL, NULL, 193 curproc)) { 194 (void) soqremque(so, soqueue); 195 pool_put(&socket_pool, so); 196 return (NULL); 197 } 198 if (connstatus) { 199 sorwakeup(head); 200 wakeup(&head->so_timeo); 201 so->so_state |= connstatus; 202 } 203 return (so); 204 } 205 206 void 207 soqinsque(struct socket *head, struct socket *so, int q) 208 { 209 210 #ifdef DIAGNOSTIC 211 if (so->so_onq != NULL) 212 panic("soqinsque"); 213 #endif 214 215 so->so_head = head; 216 if (q == 0) { 217 head->so_q0len++; 218 so->so_onq = &head->so_q0; 219 } else { 220 head->so_qlen++; 221 so->so_onq = &head->so_q; 222 } 223 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 224 } 225 226 int 227 soqremque(struct socket *so, int q) 228 { 229 struct socket *head; 230 231 head = so->so_head; 232 if (q == 0) { 233 if (so->so_onq != &head->so_q0) 234 return (0); 235 head->so_q0len--; 236 } else { 237 if (so->so_onq != &head->so_q) 238 return (0); 239 head->so_qlen--; 240 } 241 TAILQ_REMOVE(so->so_onq, so, so_qe); 242 so->so_onq = NULL; 243 so->so_head = NULL; 244 return (1); 245 } 246 247 /* 248 * Socantsendmore indicates that no more data will be sent on the 249 * socket; it would normally be applied to a socket when the user 250 * informs the system that no more data is to be sent, by the protocol 251 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 252 * will be received, and will normally be applied to the socket by a 253 * protocol when it detects that the peer will send no more data. 254 * Data queued for reading in the socket may yet be read. 255 */ 256 257 void 258 socantsendmore(struct socket *so) 259 { 260 261 so->so_state |= SS_CANTSENDMORE; 262 sowwakeup(so); 263 } 264 265 void 266 socantrcvmore(struct socket *so) 267 { 268 269 so->so_state |= SS_CANTRCVMORE; 270 sorwakeup(so); 271 } 272 273 /* 274 * Wait for data to arrive at/drain from a socket buffer. 275 */ 276 int 277 sbwait(struct sockbuf *sb) 278 { 279 splsoftassert(IPL_SOFTNET); 280 281 sb->sb_flagsintr |= SB_WAIT; 282 return (tsleep(&sb->sb_cc, 283 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "netio", 284 sb->sb_timeo)); 285 } 286 287 /* 288 * Lock a sockbuf already known to be locked; 289 * return any error returned from sleep (EINTR). 290 */ 291 int 292 sblock(struct sockbuf *sb, int wf) 293 { 294 int error; 295 296 error = rw_enter(&sb->sb_lock, RW_WRITE | 297 (sb->sb_flags & SB_NOINTR ? 0 : RW_INTR) | 298 (wf == M_WAITOK ? 0 : RW_NOSLEEP)); 299 300 if (error == EBUSY) 301 error = EWOULDBLOCK; 302 return (error); 303 } 304 305 void 306 sbunlock(struct sockbuf *sb) 307 { 308 rw_exit(&sb->sb_lock); 309 } 310 311 312 /* 313 * Wakeup processes waiting on a socket buffer. 314 * Do asynchronous notification via SIGIO 315 * if the socket has the SS_ASYNC flag set. 316 */ 317 void 318 sowakeup(struct socket *so, struct sockbuf *sb) 319 { 320 int s = splsoftnet(); 321 322 selwakeup(&sb->sb_sel); 323 sb->sb_flagsintr &= ~SB_SEL; 324 if (sb->sb_flagsintr & SB_WAIT) { 325 sb->sb_flagsintr &= ~SB_WAIT; 326 wakeup(&sb->sb_cc); 327 } 328 splx(s); 329 if (so->so_state & SS_ASYNC) 330 csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid); 331 } 332 333 /* 334 * Socket buffer (struct sockbuf) utility routines. 335 * 336 * Each socket contains two socket buffers: one for sending data and 337 * one for receiving data. Each buffer contains a queue of mbufs, 338 * information about the number of mbufs and amount of data in the 339 * queue, and other fields allowing select() statements and notification 340 * on data availability to be implemented. 341 * 342 * Data stored in a socket buffer is maintained as a list of records. 343 * Each record is a list of mbufs chained together with the m_next 344 * field. Records are chained together with the m_nextpkt field. The upper 345 * level routine soreceive() expects the following conventions to be 346 * observed when placing information in the receive buffer: 347 * 348 * 1. If the protocol requires each message be preceded by the sender's 349 * name, then a record containing that name must be present before 350 * any associated data (mbuf's must be of type MT_SONAME). 351 * 2. If the protocol supports the exchange of ``access rights'' (really 352 * just additional data associated with the message), and there are 353 * ``rights'' to be received, then a record containing this data 354 * should be present (mbuf's must be of type MT_CONTROL). 355 * 3. If a name or rights record exists, then it must be followed by 356 * a data record, perhaps of zero length. 357 * 358 * Before using a new socket structure it is first necessary to reserve 359 * buffer space to the socket, by calling sbreserve(). This should commit 360 * some of the available buffer space in the system buffer pool for the 361 * socket (currently, it does nothing but enforce limits). The space 362 * should be released by calling sbrelease() when the socket is destroyed. 363 */ 364 365 int 366 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 367 { 368 369 if (sbreserve(&so->so_snd, sndcc)) 370 goto bad; 371 if (sbreserve(&so->so_rcv, rcvcc)) 372 goto bad2; 373 so->so_snd.sb_wat = sndcc; 374 so->so_rcv.sb_wat = rcvcc; 375 if (so->so_rcv.sb_lowat == 0) 376 so->so_rcv.sb_lowat = 1; 377 if (so->so_snd.sb_lowat == 0) 378 so->so_snd.sb_lowat = MCLBYTES; 379 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 380 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 381 return (0); 382 bad2: 383 sbrelease(&so->so_snd); 384 bad: 385 return (ENOBUFS); 386 } 387 388 /* 389 * Allot mbufs to a sockbuf. 390 * Attempt to scale mbmax so that mbcnt doesn't become limiting 391 * if buffering efficiency is near the normal case. 392 */ 393 int 394 sbreserve(struct sockbuf *sb, u_long cc) 395 { 396 397 if (cc == 0 || cc > sb_max) 398 return (1); 399 sb->sb_hiwat = cc; 400 sb->sb_mbmax = min(cc * 2, sb_max + (sb_max / MCLBYTES) * MSIZE); 401 if (sb->sb_lowat > sb->sb_hiwat) 402 sb->sb_lowat = sb->sb_hiwat; 403 return (0); 404 } 405 406 /* 407 * In low memory situation, do not accept any greater than normal request. 408 */ 409 int 410 sbcheckreserve(u_long cnt, u_long defcnt) 411 { 412 if (cnt > defcnt && sbchecklowmem()) 413 return (ENOBUFS); 414 return (0); 415 } 416 417 int 418 sbchecklowmem(void) 419 { 420 static int sblowmem; 421 422 if (mclpools[0].pr_nout < mclpools[0].pr_hardlimit * 60 / 100 || 423 mbpool.pr_nout < mbpool.pr_hardlimit * 60 / 100) 424 sblowmem = 0; 425 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 80 / 100 || 426 mbpool.pr_nout > mbpool.pr_hardlimit * 80 / 100) 427 sblowmem = 1; 428 return (sblowmem); 429 } 430 431 /* 432 * Free mbufs held by a socket, and reserved mbuf space. 433 */ 434 void 435 sbrelease(struct sockbuf *sb) 436 { 437 438 sbflush(sb); 439 sb->sb_hiwat = sb->sb_mbmax = 0; 440 } 441 442 /* 443 * Routines to add and remove 444 * data from an mbuf queue. 445 * 446 * The routines sbappend() or sbappendrecord() are normally called to 447 * append new mbufs to a socket buffer, after checking that adequate 448 * space is available, comparing the function sbspace() with the amount 449 * of data to be added. sbappendrecord() differs from sbappend() in 450 * that data supplied is treated as the beginning of a new record. 451 * To place a sender's address, optional access rights, and data in a 452 * socket receive buffer, sbappendaddr() should be used. To place 453 * access rights and data in a socket receive buffer, sbappendrights() 454 * should be used. In either case, the new data begins a new record. 455 * Note that unlike sbappend() and sbappendrecord(), these routines check 456 * for the caller that there will be enough space to store the data. 457 * Each fails if there is not enough space, or if it cannot find mbufs 458 * to store additional information in. 459 * 460 * Reliable protocols may use the socket send buffer to hold data 461 * awaiting acknowledgement. Data is normally copied from a socket 462 * send buffer in a protocol with m_copym for output to a peer, 463 * and then removing the data from the socket buffer with sbdrop() 464 * or sbdroprecord() when the data is acknowledged by the peer. 465 */ 466 467 #ifdef SOCKBUF_DEBUG 468 void 469 sblastrecordchk(struct sockbuf *sb, const char *where) 470 { 471 struct mbuf *m = sb->sb_mb; 472 473 while (m && m->m_nextpkt) 474 m = m->m_nextpkt; 475 476 if (m != sb->sb_lastrecord) { 477 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 478 sb->sb_mb, sb->sb_lastrecord, m); 479 printf("packet chain:\n"); 480 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 481 printf("\t%p\n", m); 482 panic("sblastrecordchk from %s", where); 483 } 484 } 485 486 void 487 sblastmbufchk(struct sockbuf *sb, const char *where) 488 { 489 struct mbuf *m = sb->sb_mb; 490 struct mbuf *n; 491 492 while (m && m->m_nextpkt) 493 m = m->m_nextpkt; 494 495 while (m && m->m_next) 496 m = m->m_next; 497 498 if (m != sb->sb_mbtail) { 499 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 500 sb->sb_mb, sb->sb_mbtail, m); 501 printf("packet tree:\n"); 502 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 503 printf("\t"); 504 for (n = m; n != NULL; n = n->m_next) 505 printf("%p ", n); 506 printf("\n"); 507 } 508 panic("sblastmbufchk from %s", where); 509 } 510 } 511 #endif /* SOCKBUF_DEBUG */ 512 513 #define SBLINKRECORD(sb, m0) \ 514 do { \ 515 if ((sb)->sb_lastrecord != NULL) \ 516 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 517 else \ 518 (sb)->sb_mb = (m0); \ 519 (sb)->sb_lastrecord = (m0); \ 520 } while (/*CONSTCOND*/0) 521 522 /* 523 * Append mbuf chain m to the last record in the 524 * socket buffer sb. The additional space associated 525 * the mbuf chain is recorded in sb. Empty mbufs are 526 * discarded and mbufs are compacted where possible. 527 */ 528 void 529 sbappend(struct sockbuf *sb, struct mbuf *m) 530 { 531 struct mbuf *n; 532 533 if (m == NULL) 534 return; 535 536 SBLASTRECORDCHK(sb, "sbappend 1"); 537 538 if ((n = sb->sb_lastrecord) != NULL) { 539 /* 540 * XXX Would like to simply use sb_mbtail here, but 541 * XXX I need to verify that I won't miss an EOR that 542 * XXX way. 543 */ 544 do { 545 if (n->m_flags & M_EOR) { 546 sbappendrecord(sb, m); /* XXXXXX!!!! */ 547 return; 548 } 549 } while (n->m_next && (n = n->m_next)); 550 } else { 551 /* 552 * If this is the first record in the socket buffer, it's 553 * also the last record. 554 */ 555 sb->sb_lastrecord = m; 556 } 557 sbcompress(sb, m, n); 558 SBLASTRECORDCHK(sb, "sbappend 2"); 559 } 560 561 /* 562 * This version of sbappend() should only be used when the caller 563 * absolutely knows that there will never be more than one record 564 * in the socket buffer, that is, a stream protocol (such as TCP). 565 */ 566 void 567 sbappendstream(struct sockbuf *sb, struct mbuf *m) 568 { 569 570 KDASSERT(m->m_nextpkt == NULL); 571 KASSERT(sb->sb_mb == sb->sb_lastrecord); 572 573 SBLASTMBUFCHK(sb, __func__); 574 575 sbcompress(sb, m, sb->sb_mbtail); 576 577 sb->sb_lastrecord = sb->sb_mb; 578 SBLASTRECORDCHK(sb, __func__); 579 } 580 581 #ifdef SOCKBUF_DEBUG 582 void 583 sbcheck(struct sockbuf *sb) 584 { 585 struct mbuf *m, *n; 586 u_long len = 0, mbcnt = 0; 587 588 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 589 for (n = m; n; n = n->m_next) { 590 len += n->m_len; 591 mbcnt += MSIZE; 592 if (n->m_flags & M_EXT) 593 mbcnt += n->m_ext.ext_size; 594 if (m != n && n->m_nextpkt) 595 panic("sbcheck nextpkt"); 596 } 597 } 598 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 599 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 600 mbcnt, sb->sb_mbcnt); 601 panic("sbcheck"); 602 } 603 } 604 #endif 605 606 /* 607 * As above, except the mbuf chain 608 * begins a new record. 609 */ 610 void 611 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 612 { 613 struct mbuf *m; 614 615 if (m0 == NULL) 616 return; 617 618 /* 619 * Put the first mbuf on the queue. 620 * Note this permits zero length records. 621 */ 622 sballoc(sb, m0); 623 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 624 SBLINKRECORD(sb, m0); 625 m = m0->m_next; 626 m0->m_next = NULL; 627 if (m && (m0->m_flags & M_EOR)) { 628 m0->m_flags &= ~M_EOR; 629 m->m_flags |= M_EOR; 630 } 631 sbcompress(sb, m, m0); 632 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 633 } 634 635 /* 636 * As above except that OOB data 637 * is inserted at the beginning of the sockbuf, 638 * but after any other OOB data. 639 */ 640 void 641 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 642 { 643 struct mbuf *m, **mp; 644 645 if (m0 == NULL) 646 return; 647 648 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 649 650 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 651 again: 652 switch (m->m_type) { 653 654 case MT_OOBDATA: 655 continue; /* WANT next train */ 656 657 case MT_CONTROL: 658 if ((m = m->m_next) != NULL) 659 goto again; /* inspect THIS train further */ 660 } 661 break; 662 } 663 /* 664 * Put the first mbuf on the queue. 665 * Note this permits zero length records. 666 */ 667 sballoc(sb, m0); 668 m0->m_nextpkt = *mp; 669 if (*mp == NULL) { 670 /* m0 is actually the new tail */ 671 sb->sb_lastrecord = m0; 672 } 673 *mp = m0; 674 m = m0->m_next; 675 m0->m_next = NULL; 676 if (m && (m0->m_flags & M_EOR)) { 677 m0->m_flags &= ~M_EOR; 678 m->m_flags |= M_EOR; 679 } 680 sbcompress(sb, m, m0); 681 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 682 } 683 684 /* 685 * Append address and data, and optionally, control (ancillary) data 686 * to the receive queue of a socket. If present, 687 * m0 must include a packet header with total length. 688 * Returns 0 if no space in sockbuf or insufficient mbufs. 689 */ 690 int 691 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, 692 struct mbuf *control) 693 { 694 struct mbuf *m, *n, *nlast; 695 int space = asa->sa_len; 696 697 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 698 panic("sbappendaddr"); 699 if (m0) 700 space += m0->m_pkthdr.len; 701 for (n = control; n; n = n->m_next) { 702 space += n->m_len; 703 if (n->m_next == NULL) /* keep pointer to last control buf */ 704 break; 705 } 706 if (space > sbspace(sb)) 707 return (0); 708 if (asa->sa_len > MLEN) 709 return (0); 710 MGET(m, M_DONTWAIT, MT_SONAME); 711 if (m == NULL) 712 return (0); 713 m->m_len = asa->sa_len; 714 memcpy(mtod(m, caddr_t), asa, asa->sa_len); 715 if (n) 716 n->m_next = m0; /* concatenate data to control */ 717 else 718 control = m0; 719 m->m_next = control; 720 721 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 722 723 for (n = m; n->m_next != NULL; n = n->m_next) 724 sballoc(sb, n); 725 sballoc(sb, n); 726 nlast = n; 727 SBLINKRECORD(sb, m); 728 729 sb->sb_mbtail = nlast; 730 SBLASTMBUFCHK(sb, "sbappendaddr"); 731 732 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 733 734 return (1); 735 } 736 737 int 738 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 739 { 740 struct mbuf *m, *mlast, *n; 741 int space = 0; 742 743 if (control == NULL) 744 panic("sbappendcontrol"); 745 for (m = control; ; m = m->m_next) { 746 space += m->m_len; 747 if (m->m_next == NULL) 748 break; 749 } 750 n = m; /* save pointer to last control buffer */ 751 for (m = m0; m; m = m->m_next) 752 space += m->m_len; 753 if (space > sbspace(sb)) 754 return (0); 755 n->m_next = m0; /* concatenate data to control */ 756 757 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 758 759 for (m = control; m->m_next != NULL; m = m->m_next) 760 sballoc(sb, m); 761 sballoc(sb, m); 762 mlast = m; 763 SBLINKRECORD(sb, control); 764 765 sb->sb_mbtail = mlast; 766 SBLASTMBUFCHK(sb, "sbappendcontrol"); 767 768 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 769 770 return (1); 771 } 772 773 /* 774 * Compress mbuf chain m into the socket 775 * buffer sb following mbuf n. If n 776 * is null, the buffer is presumed empty. 777 */ 778 void 779 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 780 { 781 int eor = 0; 782 struct mbuf *o; 783 784 while (m) { 785 eor |= m->m_flags & M_EOR; 786 if (m->m_len == 0 && 787 (eor == 0 || 788 (((o = m->m_next) || (o = n)) && 789 o->m_type == m->m_type))) { 790 if (sb->sb_lastrecord == m) 791 sb->sb_lastrecord = m->m_next; 792 m = m_free(m); 793 continue; 794 } 795 if (n && (n->m_flags & M_EOR) == 0 && 796 /* M_TRAILINGSPACE() checks buffer writeability */ 797 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 798 m->m_len <= M_TRAILINGSPACE(n) && 799 n->m_type == m->m_type) { 800 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t), 801 m->m_len); 802 n->m_len += m->m_len; 803 sb->sb_cc += m->m_len; 804 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 805 sb->sb_datacc += m->m_len; 806 m = m_free(m); 807 continue; 808 } 809 if (n) 810 n->m_next = m; 811 else 812 sb->sb_mb = m; 813 sb->sb_mbtail = m; 814 sballoc(sb, m); 815 n = m; 816 m->m_flags &= ~M_EOR; 817 m = m->m_next; 818 n->m_next = NULL; 819 } 820 if (eor) { 821 if (n) 822 n->m_flags |= eor; 823 else 824 printf("semi-panic: sbcompress"); 825 } 826 SBLASTMBUFCHK(sb, __func__); 827 } 828 829 /* 830 * Free all mbufs in a sockbuf. 831 * Check that all resources are reclaimed. 832 */ 833 void 834 sbflush(struct sockbuf *sb) 835 { 836 837 rw_assert_unlocked(&sb->sb_lock); 838 839 while (sb->sb_mbcnt) 840 sbdrop(sb, (int)sb->sb_cc); 841 842 KASSERT(sb->sb_cc == 0); 843 KASSERT(sb->sb_datacc == 0); 844 KASSERT(sb->sb_mb == NULL); 845 KASSERT(sb->sb_mbtail == NULL); 846 KASSERT(sb->sb_lastrecord == NULL); 847 } 848 849 /* 850 * Drop data from (the front of) a sockbuf. 851 */ 852 void 853 sbdrop(struct sockbuf *sb, int len) 854 { 855 struct mbuf *m, *mn; 856 struct mbuf *next; 857 858 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 859 while (len > 0) { 860 if (m == NULL) { 861 if (next == NULL) 862 panic("sbdrop"); 863 m = next; 864 next = m->m_nextpkt; 865 continue; 866 } 867 if (m->m_len > len) { 868 m->m_len -= len; 869 m->m_data += len; 870 sb->sb_cc -= len; 871 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 872 sb->sb_datacc -= len; 873 break; 874 } 875 len -= m->m_len; 876 sbfree(sb, m); 877 mn = m_free(m); 878 m = mn; 879 } 880 while (m && m->m_len == 0) { 881 sbfree(sb, m); 882 mn = m_free(m); 883 m = mn; 884 } 885 if (m) { 886 sb->sb_mb = m; 887 m->m_nextpkt = next; 888 } else 889 sb->sb_mb = next; 890 /* 891 * First part is an inline SB_EMPTY_FIXUP(). Second part 892 * makes sure sb_lastrecord is up-to-date if we dropped 893 * part of the last record. 894 */ 895 m = sb->sb_mb; 896 if (m == NULL) { 897 sb->sb_mbtail = NULL; 898 sb->sb_lastrecord = NULL; 899 } else if (m->m_nextpkt == NULL) 900 sb->sb_lastrecord = m; 901 } 902 903 /* 904 * Drop a record off the front of a sockbuf 905 * and move the next record to the front. 906 */ 907 void 908 sbdroprecord(struct sockbuf *sb) 909 { 910 struct mbuf *m, *mn; 911 912 m = sb->sb_mb; 913 if (m) { 914 sb->sb_mb = m->m_nextpkt; 915 do { 916 sbfree(sb, m); 917 mn = m_free(m); 918 } while ((m = mn) != NULL); 919 } 920 SB_EMPTY_FIXUP(sb); 921 } 922 923 /* 924 * Create a "control" mbuf containing the specified data 925 * with the specified type for presentation on a socket buffer. 926 */ 927 struct mbuf * 928 sbcreatecontrol(caddr_t p, int size, int type, int level) 929 { 930 struct cmsghdr *cp; 931 struct mbuf *m; 932 933 if (CMSG_SPACE(size) > MCLBYTES) { 934 printf("sbcreatecontrol: message too large %d\n", size); 935 return NULL; 936 } 937 938 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 939 return (NULL); 940 if (CMSG_SPACE(size) > MLEN) { 941 MCLGET(m, M_DONTWAIT); 942 if ((m->m_flags & M_EXT) == 0) { 943 m_free(m); 944 return NULL; 945 } 946 } 947 cp = mtod(m, struct cmsghdr *); 948 memset(cp, 0, CMSG_SPACE(size)); 949 memcpy(CMSG_DATA(cp), p, size); 950 m->m_len = CMSG_SPACE(size); 951 cp->cmsg_len = CMSG_LEN(size); 952 cp->cmsg_level = level; 953 cp->cmsg_type = type; 954 return (m); 955 } 956