xref: /openbsd-src/sys/kern/uipc_socket2.c (revision db3296cf5c1dd9058ceecc3a29fe4aaa0bd26000)
1 /*	$OpenBSD: uipc_socket2.c,v 1.35 2003/07/21 22:44:50 tedu Exp $	*/
2 /*	$NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/buf.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/signalvar.h>
46 #include <sys/event.h>
47 
48 /*
49  * Primitive routines for operating on sockets and socket buffers
50  */
51 
52 /* strings for sleep message: */
53 const char	netcon[] = "netcon";
54 const char	netcls[] = "netcls";
55 const char	netio[] = "netio";
56 const char	netlck[] = "netlck";
57 
58 u_long	sb_max = SB_MAX;		/* patchable */
59 
60 /*
61  * Procedures to manipulate state flags of socket
62  * and do appropriate wakeups.  Normal sequence from the
63  * active (originating) side is that soisconnecting() is
64  * called during processing of connect() call,
65  * resulting in an eventual call to soisconnected() if/when the
66  * connection is established.  When the connection is torn down
67  * soisdisconnecting() is called during processing of disconnect() call,
68  * and soisdisconnected() is called when the connection to the peer
69  * is totally severed.  The semantics of these routines are such that
70  * connectionless protocols can call soisconnected() and soisdisconnected()
71  * only, bypassing the in-progress calls when setting up a ``connection''
72  * takes no time.
73  *
74  * From the passive side, a socket is created with
75  * two queues of sockets: so_q0 for connections in progress
76  * and so_q for connections already made and awaiting user acceptance.
77  * As a protocol is preparing incoming connections, it creates a socket
78  * structure queued on so_q0 by calling sonewconn().  When the connection
79  * is established, soisconnected() is called, and transfers the
80  * socket structure to so_q, making it available to accept().
81  *
82  * If a socket is closed with sockets on either
83  * so_q0 or so_q, these sockets are dropped.
84  *
85  * If higher level protocols are implemented in
86  * the kernel, the wakeups done here will sometimes
87  * cause software-interrupt process scheduling.
88  */
89 
90 void
91 soisconnecting(so)
92 	register struct socket *so;
93 {
94 
95 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
96 	so->so_state |= SS_ISCONNECTING;
97 }
98 
99 void
100 soisconnected(so)
101 	register struct socket *so;
102 {
103 	register struct socket *head = so->so_head;
104 
105 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
106 	so->so_state |= SS_ISCONNECTED;
107 	if (head && soqremque(so, 0)) {
108 		soqinsque(head, so, 1);
109 		sorwakeup(head);
110 		wakeup_one(&head->so_timeo);
111 	} else {
112 		wakeup(&so->so_timeo);
113 		sorwakeup(so);
114 		sowwakeup(so);
115 	}
116 }
117 
118 void
119 soisdisconnecting(so)
120 	register struct socket *so;
121 {
122 
123 	so->so_state &= ~SS_ISCONNECTING;
124 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
125 	wakeup(&so->so_timeo);
126 	sowwakeup(so);
127 	sorwakeup(so);
128 }
129 
130 void
131 soisdisconnected(so)
132 	register struct socket *so;
133 {
134 
135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
137 	wakeup(&so->so_timeo);
138 	sowwakeup(so);
139 	sorwakeup(so);
140 }
141 
142 /*
143  * When an attempt at a new connection is noted on a socket
144  * which accepts connections, sonewconn is called.  If the
145  * connection is possible (subject to space constraints, etc.)
146  * then we allocate a new structure, properly linked into the
147  * data structure of the original socket, and return this.
148  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
149  *
150  * Must be called at splsoftnet()
151  */
152 struct socket *
153 sonewconn(struct socket *head, int connstatus)
154 {
155 	struct socket *so;
156 	int soqueue = connstatus ? 1 : 0;
157 
158 	splassert(IPL_SOFTNET);
159 
160 	if (head->so_qlen + head->so_q0len > head->so_qlimit * 3)
161 		return ((struct socket *)0);
162 	so = pool_get(&socket_pool, PR_NOWAIT);
163 	if (so == NULL)
164 		return ((struct socket *)0);
165 	bzero(so, sizeof(*so));
166 	so->so_type = head->so_type;
167 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
168 	so->so_linger = head->so_linger;
169 	so->so_state = head->so_state | SS_NOFDREF;
170 	so->so_proto = head->so_proto;
171 	so->so_timeo = head->so_timeo;
172 	so->so_pgid = head->so_pgid;
173 	so->so_euid = head->so_euid;
174 	so->so_ruid = head->so_ruid;
175 	so->so_egid = head->so_egid;
176 	so->so_rgid = head->so_rgid;
177 	so->so_siguid = head->so_siguid;
178 	so->so_sigeuid = head->so_sigeuid;
179 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
180 	soqinsque(head, so, soqueue);
181 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
182 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
183 		(void) soqremque(so, soqueue);
184 		pool_put(&socket_pool, so);
185 		return ((struct socket *)0);
186 	}
187 	if (connstatus) {
188 		sorwakeup(head);
189 		wakeup(&head->so_timeo);
190 		so->so_state |= connstatus;
191 	}
192 	return (so);
193 }
194 
195 void
196 soqinsque(struct socket *head, struct socket *so, int q)
197 {
198 
199 #ifdef DIAGNOSTIC
200 	if (so->so_onq != NULL)
201 		panic("soqinsque");
202 #endif
203 
204 	so->so_head = head;
205 	if (q == 0) {
206 		head->so_q0len++;
207 		so->so_onq = &head->so_q0;
208 	} else {
209 		head->so_qlen++;
210 		so->so_onq = &head->so_q;
211 	}
212 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
213 }
214 
215 int
216 soqremque(struct socket *so, int q)
217 {
218 	struct socket *head;
219 
220 	head = so->so_head;
221 	if (q == 0) {
222 		if (so->so_onq != &head->so_q0)
223 			return (0);
224 		head->so_q0len--;
225 	} else {
226 		if (so->so_onq != &head->so_q)
227 			return (0);
228 		head->so_qlen--;
229 	}
230 	TAILQ_REMOVE(so->so_onq, so, so_qe);
231 	so->so_onq = NULL;
232 	so->so_head = NULL;
233 	return (1);
234 }
235 
236 /*
237  * Socantsendmore indicates that no more data will be sent on the
238  * socket; it would normally be applied to a socket when the user
239  * informs the system that no more data is to be sent, by the protocol
240  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
241  * will be received, and will normally be applied to the socket by a
242  * protocol when it detects that the peer will send no more data.
243  * Data queued for reading in the socket may yet be read.
244  */
245 
246 void
247 socantsendmore(so)
248 	struct socket *so;
249 {
250 
251 	so->so_state |= SS_CANTSENDMORE;
252 	sowwakeup(so);
253 }
254 
255 void
256 socantrcvmore(so)
257 	struct socket *so;
258 {
259 
260 	so->so_state |= SS_CANTRCVMORE;
261 	sorwakeup(so);
262 }
263 
264 /*
265  * Wait for data to arrive at/drain from a socket buffer.
266  */
267 int
268 sbwait(sb)
269 	struct sockbuf *sb;
270 {
271 
272 	sb->sb_flags |= SB_WAIT;
273 	return (tsleep(&sb->sb_cc,
274 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
275 	    sb->sb_timeo));
276 }
277 
278 /*
279  * Lock a sockbuf already known to be locked;
280  * return any error returned from sleep (EINTR).
281  */
282 int
283 sb_lock(sb)
284 	register struct sockbuf *sb;
285 {
286 	int error;
287 
288 	while (sb->sb_flags & SB_LOCK) {
289 		sb->sb_flags |= SB_WANT;
290 		error = tsleep(&sb->sb_flags,
291 		    (sb->sb_flags & SB_NOINTR) ?
292 		    PSOCK : PSOCK|PCATCH, netlck, 0);
293 		if (error)
294 			return (error);
295 	}
296 	sb->sb_flags |= SB_LOCK;
297 	return (0);
298 }
299 
300 /*
301  * Wakeup processes waiting on a socket buffer.
302  * Do asynchronous notification via SIGIO
303  * if the socket has the SS_ASYNC flag set.
304  */
305 void
306 sowakeup(so, sb)
307 	register struct socket *so;
308 	register struct sockbuf *sb;
309 {
310 	selwakeup(&sb->sb_sel);
311 	sb->sb_flags &= ~SB_SEL;
312 	if (sb->sb_flags & SB_WAIT) {
313 		sb->sb_flags &= ~SB_WAIT;
314 		wakeup(&sb->sb_cc);
315 	}
316 	if (so->so_state & SS_ASYNC)
317 		csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid);
318 	KNOTE(&sb->sb_sel.si_note, 0);
319 }
320 
321 /*
322  * Socket buffer (struct sockbuf) utility routines.
323  *
324  * Each socket contains two socket buffers: one for sending data and
325  * one for receiving data.  Each buffer contains a queue of mbufs,
326  * information about the number of mbufs and amount of data in the
327  * queue, and other fields allowing select() statements and notification
328  * on data availability to be implemented.
329  *
330  * Data stored in a socket buffer is maintained as a list of records.
331  * Each record is a list of mbufs chained together with the m_next
332  * field.  Records are chained together with the m_nextpkt field. The upper
333  * level routine soreceive() expects the following conventions to be
334  * observed when placing information in the receive buffer:
335  *
336  * 1. If the protocol requires each message be preceded by the sender's
337  *    name, then a record containing that name must be present before
338  *    any associated data (mbuf's must be of type MT_SONAME).
339  * 2. If the protocol supports the exchange of ``access rights'' (really
340  *    just additional data associated with the message), and there are
341  *    ``rights'' to be received, then a record containing this data
342  *    should be present (mbuf's must be of type MT_CONTROL).
343  * 3. If a name or rights record exists, then it must be followed by
344  *    a data record, perhaps of zero length.
345  *
346  * Before using a new socket structure it is first necessary to reserve
347  * buffer space to the socket, by calling sbreserve().  This should commit
348  * some of the available buffer space in the system buffer pool for the
349  * socket (currently, it does nothing but enforce limits).  The space
350  * should be released by calling sbrelease() when the socket is destroyed.
351  */
352 
353 int
354 soreserve(so, sndcc, rcvcc)
355 	register struct socket *so;
356 	u_long sndcc, rcvcc;
357 {
358 
359 	if (sbreserve(&so->so_snd, sndcc) == 0)
360 		goto bad;
361 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
362 		goto bad2;
363 	if (so->so_rcv.sb_lowat == 0)
364 		so->so_rcv.sb_lowat = 1;
365 	if (so->so_snd.sb_lowat == 0)
366 		so->so_snd.sb_lowat = MCLBYTES;
367 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
368 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
369 	return (0);
370 bad2:
371 	sbrelease(&so->so_snd);
372 bad:
373 	return (ENOBUFS);
374 }
375 
376 /*
377  * Allot mbufs to a sockbuf.
378  * Attempt to scale mbmax so that mbcnt doesn't become limiting
379  * if buffering efficiency is near the normal case.
380  */
381 int
382 sbreserve(sb, cc)
383 	struct sockbuf *sb;
384 	u_long cc;
385 {
386 
387 	if (cc == 0 ||
388 	    (u_int64_t)cc > (u_int64_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
389 		return (0);
390 	sb->sb_hiwat = cc;
391 	sb->sb_mbmax = min(cc * 2, sb_max);
392 	if (sb->sb_lowat > sb->sb_hiwat)
393 		sb->sb_lowat = sb->sb_hiwat;
394 	return (1);
395 }
396 
397 /*
398  * Free mbufs held by a socket, and reserved mbuf space.
399  */
400 void
401 sbrelease(sb)
402 	struct sockbuf *sb;
403 {
404 
405 	sbflush(sb);
406 	sb->sb_hiwat = sb->sb_mbmax = 0;
407 }
408 
409 /*
410  * Routines to add and remove
411  * data from an mbuf queue.
412  *
413  * The routines sbappend() or sbappendrecord() are normally called to
414  * append new mbufs to a socket buffer, after checking that adequate
415  * space is available, comparing the function sbspace() with the amount
416  * of data to be added.  sbappendrecord() differs from sbappend() in
417  * that data supplied is treated as the beginning of a new record.
418  * To place a sender's address, optional access rights, and data in a
419  * socket receive buffer, sbappendaddr() should be used.  To place
420  * access rights and data in a socket receive buffer, sbappendrights()
421  * should be used.  In either case, the new data begins a new record.
422  * Note that unlike sbappend() and sbappendrecord(), these routines check
423  * for the caller that there will be enough space to store the data.
424  * Each fails if there is not enough space, or if it cannot find mbufs
425  * to store additional information in.
426  *
427  * Reliable protocols may use the socket send buffer to hold data
428  * awaiting acknowledgement.  Data is normally copied from a socket
429  * send buffer in a protocol with m_copy for output to a peer,
430  * and then removing the data from the socket buffer with sbdrop()
431  * or sbdroprecord() when the data is acknowledged by the peer.
432  */
433 
434 #ifdef SOCKBUF_DEBUG
435 void
436 sblastrecordchk(struct sockbuf *sb, const char *where)
437 {
438 	struct mbuf *m = sb->sb_mb;
439 
440 	while (m && m->m_nextpkt)
441 		m = m->m_nextpkt;
442 
443 	if (m != sb->sb_lastrecord) {
444 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
445 		    sb->sb_mb, sb->sb_lastrecord, m);
446 		printf("packet chain:\n");
447 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
448 			printf("\t%p\n", m);
449 		panic("sblastrecordchk from %s", where);
450 	}
451 }
452 
453 void
454 sblastmbufchk(struct sockbuf *sb, const char *where)
455 {
456 	struct mbuf *m = sb->sb_mb;
457 	struct mbuf *n;
458 
459 	while (m && m->m_nextpkt)
460 		m = m->m_nextpkt;
461 
462 	while (m && m->m_next)
463 		m = m->m_next;
464 
465 	if (m != sb->sb_mbtail) {
466 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
467 		    sb->sb_mb, sb->sb_mbtail, m);
468 		printf("packet tree:\n");
469 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
470 			printf("\t");
471 			for (n = m; n != NULL; n = n->m_next)
472 				printf("%p ", n);
473 			printf("\n");
474 		}
475 		panic("sblastmbufchk from %s", where);
476 	}
477 }
478 #endif /* SOCKBUF_DEBUG */
479 
480 #define	SBLINKRECORD(sb, m0)						\
481 do {									\
482 	if ((sb)->sb_lastrecord != NULL)				\
483 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
484 	else								\
485 		(sb)->sb_mb = (m0);					\
486 	(sb)->sb_lastrecord = (m0);					\
487 } while (/*CONSTCOND*/0)
488 
489 /*
490  * Append mbuf chain m to the last record in the
491  * socket buffer sb.  The additional space associated
492  * the mbuf chain is recorded in sb.  Empty mbufs are
493  * discarded and mbufs are compacted where possible.
494  */
495 void
496 sbappend(sb, m)
497 	struct sockbuf *sb;
498 	struct mbuf *m;
499 {
500 	register struct mbuf *n;
501 
502 	if (m == 0)
503 		return;
504 
505 	SBLASTRECORDCHK(sb, "sbappend 1");
506 
507 	if ((n = sb->sb_lastrecord) != NULL) {
508 		/*
509 		 * XXX Would like to simply use sb_mbtail here, but
510 		 * XXX I need to verify that I won't miss an EOR that
511 		 * XXX way.
512 		 */
513 		do {
514 			if (n->m_flags & M_EOR) {
515 				sbappendrecord(sb, m); /* XXXXXX!!!! */
516 				return;
517 			}
518 		} while (n->m_next && (n = n->m_next));
519 	} else {
520 		/*
521 		 * If this is the first record in the socket buffer, it's
522 		 * also the last record.
523 		 */
524 		sb->sb_lastrecord = m;
525 	}
526 	sbcompress(sb, m, n);
527 	SBLASTRECORDCHK(sb, "sbappend 2");
528 }
529 
530 /*
531  * This version of sbappend() should only be used when the caller
532  * absolutely knows that there will never be more than one record
533  * in the socket buffer, that is, a stream protocol (such as TCP).
534  */
535 void
536 sbappendstream(struct sockbuf *sb, struct mbuf *m)
537 {
538 
539 	KDASSERT(m->m_nextpkt == NULL);
540 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
541 
542 	SBLASTMBUFCHK(sb, __func__);
543 
544 	sbcompress(sb, m, sb->sb_mbtail);
545 
546 	sb->sb_lastrecord = sb->sb_mb;
547 	SBLASTRECORDCHK(sb, __func__);
548 }
549 
550 #ifdef SOCKBUF_DEBUG
551 void
552 sbcheck(struct sockbuf *sb)
553 {
554 	struct mbuf *m;
555 	u_long len = 0, mbcnt = 0;
556 
557 	for (m = sb->sb_mb; m; m = m->m_next) {
558 		len += m->m_len;
559 		mbcnt += MSIZE;
560 		if (m->m_flags & M_EXT)
561 			mbcnt += m->m_ext.ext_size;
562 		if (m->m_nextpkt)
563 			panic("sbcheck nextpkt");
564 	}
565 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
566 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
567 		    mbcnt, sb->sb_mbcnt);
568 		panic("sbcheck");
569 	}
570 }
571 #endif
572 
573 /*
574  * As above, except the mbuf chain
575  * begins a new record.
576  */
577 void
578 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
579 {
580 	struct mbuf *m;
581 
582 	if (m0 == 0)
583 		return;
584 
585 	/*
586 	 * Put the first mbuf on the queue.
587 	 * Note this permits zero length records.
588 	 */
589 	sballoc(sb, m0);
590 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
591 	SBLINKRECORD(sb, m0);
592 	m = m0->m_next;
593 	m0->m_next = 0;
594 	if (m && (m0->m_flags & M_EOR)) {
595 		m0->m_flags &= ~M_EOR;
596 		m->m_flags |= M_EOR;
597 	}
598 	sbcompress(sb, m, m0);
599 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
600 }
601 
602 /*
603  * As above except that OOB data
604  * is inserted at the beginning of the sockbuf,
605  * but after any other OOB data.
606  */
607 void
608 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
609 {
610 	struct mbuf *m, **mp;
611 
612 	if (m0 == 0)
613 		return;
614 
615 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
616 
617 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
618 	    again:
619 		switch (m->m_type) {
620 
621 		case MT_OOBDATA:
622 			continue;		/* WANT next train */
623 
624 		case MT_CONTROL:
625 			if ((m = m->m_next) != NULL)
626 				goto again;	/* inspect THIS train further */
627 		}
628 		break;
629 	}
630 	/*
631 	 * Put the first mbuf on the queue.
632 	 * Note this permits zero length records.
633 	 */
634 	sballoc(sb, m0);
635 	m0->m_nextpkt = *mp;
636 	if (*mp == NULL) {
637 		/* m0 is actually the new tail */
638 		sb->sb_lastrecord = m0;
639 	}
640 	*mp = m0;
641 	m = m0->m_next;
642 	m0->m_next = 0;
643 	if (m && (m0->m_flags & M_EOR)) {
644 		m0->m_flags &= ~M_EOR;
645 		m->m_flags |= M_EOR;
646 	}
647 	sbcompress(sb, m, m0);
648 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
649 }
650 
651 /*
652  * Append address and data, and optionally, control (ancillary) data
653  * to the receive queue of a socket.  If present,
654  * m0 must include a packet header with total length.
655  * Returns 0 if no space in sockbuf or insufficient mbufs.
656  */
657 int
658 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
659     struct mbuf *control)
660 {
661 	struct mbuf *m, *n, *nlast;
662 	int space = asa->sa_len;
663 
664 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
665 		panic("sbappendaddr");
666 	if (m0)
667 		space += m0->m_pkthdr.len;
668 	for (n = control; n; n = n->m_next) {
669 		space += n->m_len;
670 		if (n->m_next == 0)	/* keep pointer to last control buf */
671 			break;
672 	}
673 	if (space > sbspace(sb))
674 		return (0);
675 	if (asa->sa_len > MLEN)
676 		return (0);
677 	MGET(m, M_DONTWAIT, MT_SONAME);
678 	if (m == 0)
679 		return (0);
680 	m->m_len = asa->sa_len;
681 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
682 	if (n)
683 		n->m_next = m0;		/* concatenate data to control */
684 	else
685 		control = m0;
686 	m->m_next = control;
687 
688 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
689 
690 	for (n = m; n->m_next != NULL; n = n->m_next)
691 		sballoc(sb, n);
692 	sballoc(sb, n);
693 	nlast = n;
694 	SBLINKRECORD(sb, m);
695 
696 	sb->sb_mbtail = nlast;
697 	SBLASTMBUFCHK(sb, "sbappendaddr");
698 
699 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
700 
701 	return (1);
702 }
703 
704 int
705 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
706 {
707 	struct mbuf *m, *mlast, *n;
708 	int space = 0;
709 
710 	if (control == 0)
711 		panic("sbappendcontrol");
712 	for (m = control; ; m = m->m_next) {
713 		space += m->m_len;
714 		if (m->m_next == 0)
715 			break;
716 	}
717 	n = m;			/* save pointer to last control buffer */
718 	for (m = m0; m; m = m->m_next)
719 		space += m->m_len;
720 	if (space > sbspace(sb))
721 		return (0);
722 	n->m_next = m0;			/* concatenate data to control */
723 
724 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
725 
726 	for (m = control; m->m_next != NULL; m = m->m_next)
727 		sballoc(sb, m);
728 	sballoc(sb, m);
729 	mlast = m;
730 	SBLINKRECORD(sb, control);
731 
732 	sb->sb_mbtail = mlast;
733 	SBLASTMBUFCHK(sb, "sbappendcontrol");
734 
735 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
736 
737 	return (1);
738 }
739 
740 /*
741  * Compress mbuf chain m into the socket
742  * buffer sb following mbuf n.  If n
743  * is null, the buffer is presumed empty.
744  */
745 void
746 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
747 {
748 	int eor = 0;
749 	struct mbuf *o;
750 
751 	while (m) {
752 		eor |= m->m_flags & M_EOR;
753 		if (m->m_len == 0 &&
754 		    (eor == 0 ||
755 		    (((o = m->m_next) || (o = n)) &&
756 		    o->m_type == m->m_type))) {
757 			if (sb->sb_lastrecord == m)
758 				sb->sb_lastrecord = m->m_next;
759 			m = m_free(m);
760 			continue;
761 		}
762 		if (n && (n->m_flags & M_EOR) == 0 &&
763 		    /* M_TRAILINGSPACE() checks buffer writeability */
764 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
765 		    m->m_len <= M_TRAILINGSPACE(n) &&
766 		    n->m_type == m->m_type) {
767 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
768 			    (unsigned)m->m_len);
769 			n->m_len += m->m_len;
770 			sb->sb_cc += m->m_len;
771 			m = m_free(m);
772 			continue;
773 		}
774 		if (n)
775 			n->m_next = m;
776 		else
777 			sb->sb_mb = m;
778 		sb->sb_mbtail = m;
779 		sballoc(sb, m);
780 		n = m;
781 		m->m_flags &= ~M_EOR;
782 		m = m->m_next;
783 		n->m_next = 0;
784 	}
785 	if (eor) {
786 		if (n)
787 			n->m_flags |= eor;
788 		else
789 			printf("semi-panic: sbcompress\n");
790 	}
791 	SBLASTMBUFCHK(sb, __func__);
792 }
793 
794 /*
795  * Free all mbufs in a sockbuf.
796  * Check that all resources are reclaimed.
797  */
798 void
799 sbflush(struct sockbuf *sb)
800 {
801 
802 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
803 
804 	while (sb->sb_mbcnt)
805 		sbdrop(sb, (int)sb->sb_cc);
806 
807 	KASSERT(sb->sb_cc == 0);
808 	KASSERT(sb->sb_mb == NULL);
809 	KASSERT(sb->sb_mbtail == NULL);
810 	KASSERT(sb->sb_lastrecord == NULL);
811 }
812 
813 /*
814  * Drop data from (the front of) a sockbuf.
815  */
816 void
817 sbdrop(struct sockbuf *sb, int len)
818 {
819 	struct mbuf *m, *mn;
820 	struct mbuf *next;
821 
822 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
823 	while (len > 0) {
824 		if (m == 0) {
825 			if (next == 0)
826 				panic("sbdrop");
827 			m = next;
828 			next = m->m_nextpkt;
829 			continue;
830 		}
831 		if (m->m_len > len) {
832 			m->m_len -= len;
833 			m->m_data += len;
834 			sb->sb_cc -= len;
835 			break;
836 		}
837 		len -= m->m_len;
838 		sbfree(sb, m);
839 		MFREE(m, mn);
840 		m = mn;
841 	}
842 	while (m && m->m_len == 0) {
843 		sbfree(sb, m);
844 		MFREE(m, mn);
845 		m = mn;
846 	}
847 	if (m) {
848 		sb->sb_mb = m;
849 		m->m_nextpkt = next;
850 	} else
851 		sb->sb_mb = next;
852 	/*
853 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
854 	 * makes sure sb_lastrecord is up-to-date if we dropped
855 	 * part of the last record.
856 	 */
857 	m = sb->sb_mb;
858 	if (m == NULL) {
859 		sb->sb_mbtail = NULL;
860 		sb->sb_lastrecord = NULL;
861 	} else if (m->m_nextpkt == NULL)
862 		sb->sb_lastrecord = m;
863 }
864 
865 /*
866  * Drop a record off the front of a sockbuf
867  * and move the next record to the front.
868  */
869 void
870 sbdroprecord(struct sockbuf *sb)
871 {
872 	struct mbuf *m, *mn;
873 
874 	m = sb->sb_mb;
875 	if (m) {
876 		sb->sb_mb = m->m_nextpkt;
877 		do {
878 			sbfree(sb, m);
879 			MFREE(m, mn);
880 		} while ((m = mn) != NULL);
881 	}
882 	SB_EMPTY_FIXUP(sb);
883 }
884 
885 /*
886  * Create a "control" mbuf containing the specified data
887  * with the specified type for presentation on a socket buffer.
888  */
889 struct mbuf *
890 sbcreatecontrol(p, size, type, level)
891 	caddr_t p;
892 	register int size;
893 	int type, level;
894 {
895 	register struct cmsghdr *cp;
896 	struct mbuf *m;
897 
898 	if (CMSG_SPACE(size) > MCLBYTES) {
899 		printf("sbcreatecontrol: message too large %d\n", size);
900 		return NULL;
901 	}
902 
903 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
904 		return ((struct mbuf *) NULL);
905 	if (CMSG_SPACE(size) > MLEN) {
906 		MCLGET(m, M_DONTWAIT);
907 		if ((m->m_flags & M_EXT) == 0) {
908 			m_free(m);
909 			return NULL;
910 		}
911 	}
912 	cp = mtod(m, struct cmsghdr *);
913 	bcopy(p, CMSG_DATA(cp), size);
914 	m->m_len = CMSG_SPACE(size);
915 	cp->cmsg_len = CMSG_LEN(size);
916 	cp->cmsg_level = level;
917 	cp->cmsg_type = type;
918 	return (m);
919 }
920