1 /* $OpenBSD: uipc_socket2.c,v 1.96 2018/07/10 10:02:14 bluhm Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/protosw.h> 40 #include <sys/domain.h> 41 #include <sys/socket.h> 42 #include <sys/socketvar.h> 43 #include <sys/signalvar.h> 44 #include <sys/event.h> 45 #include <sys/pool.h> 46 47 /* 48 * Primitive routines for operating on sockets and socket buffers 49 */ 50 51 u_long sb_max = SB_MAX; /* patchable */ 52 53 extern struct pool mclpools[]; 54 extern struct pool mbpool; 55 56 /* 57 * Procedures to manipulate state flags of socket 58 * and do appropriate wakeups. Normal sequence from the 59 * active (originating) side is that soisconnecting() is 60 * called during processing of connect() call, 61 * resulting in an eventual call to soisconnected() if/when the 62 * connection is established. When the connection is torn down 63 * soisdisconnecting() is called during processing of disconnect() call, 64 * and soisdisconnected() is called when the connection to the peer 65 * is totally severed. The semantics of these routines are such that 66 * connectionless protocols can call soisconnected() and soisdisconnected() 67 * only, bypassing the in-progress calls when setting up a ``connection'' 68 * takes no time. 69 * 70 * From the passive side, a socket is created with 71 * two queues of sockets: so_q0 for connections in progress 72 * and so_q for connections already made and awaiting user acceptance. 73 * As a protocol is preparing incoming connections, it creates a socket 74 * structure queued on so_q0 by calling sonewconn(). When the connection 75 * is established, soisconnected() is called, and transfers the 76 * socket structure to so_q, making it available to accept(). 77 * 78 * If a socket is closed with sockets on either 79 * so_q0 or so_q, these sockets are dropped. 80 * 81 * If higher level protocols are implemented in 82 * the kernel, the wakeups done here will sometimes 83 * cause software-interrupt process scheduling. 84 */ 85 86 void 87 soisconnecting(struct socket *so) 88 { 89 soassertlocked(so); 90 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 91 so->so_state |= SS_ISCONNECTING; 92 } 93 94 void 95 soisconnected(struct socket *so) 96 { 97 struct socket *head = so->so_head; 98 99 soassertlocked(so); 100 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 101 so->so_state |= SS_ISCONNECTED; 102 if (head && soqremque(so, 0)) { 103 soqinsque(head, so, 1); 104 sorwakeup(head); 105 wakeup_one(&head->so_timeo); 106 } else { 107 wakeup(&so->so_timeo); 108 sorwakeup(so); 109 sowwakeup(so); 110 } 111 } 112 113 void 114 soisdisconnecting(struct socket *so) 115 { 116 soassertlocked(so); 117 so->so_state &= ~SS_ISCONNECTING; 118 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 119 wakeup(&so->so_timeo); 120 sowwakeup(so); 121 sorwakeup(so); 122 } 123 124 void 125 soisdisconnected(struct socket *so) 126 { 127 soassertlocked(so); 128 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 129 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 130 wakeup(&so->so_timeo); 131 sowwakeup(so); 132 sorwakeup(so); 133 } 134 135 /* 136 * When an attempt at a new connection is noted on a socket 137 * which accepts connections, sonewconn is called. If the 138 * connection is possible (subject to space constraints, etc.) 139 * then we allocate a new structure, properly linked into the 140 * data structure of the original socket, and return this. 141 * Connstatus may be 0 or SS_ISCONNECTED. 142 */ 143 struct socket * 144 sonewconn(struct socket *head, int connstatus) 145 { 146 struct socket *so; 147 int soqueue = connstatus ? 1 : 0; 148 149 /* 150 * XXXSMP as long as `so' and `head' share the same lock, we 151 * can call soreserve() and pr_attach() below w/o expliclitly 152 * locking `so'. 153 */ 154 soassertlocked(head); 155 156 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 157 return (NULL); 158 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 159 return (NULL); 160 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 161 if (so == NULL) 162 return (NULL); 163 so->so_type = head->so_type; 164 so->so_options = head->so_options &~ SO_ACCEPTCONN; 165 so->so_linger = head->so_linger; 166 so->so_state = head->so_state | SS_NOFDREF; 167 so->so_proto = head->so_proto; 168 so->so_timeo = head->so_timeo; 169 so->so_pgid = head->so_pgid; 170 so->so_euid = head->so_euid; 171 so->so_ruid = head->so_ruid; 172 so->so_egid = head->so_egid; 173 so->so_rgid = head->so_rgid; 174 so->so_cpid = head->so_cpid; 175 so->so_siguid = head->so_siguid; 176 so->so_sigeuid = head->so_sigeuid; 177 178 /* 179 * Inherit watermarks but those may get clamped in low mem situations. 180 */ 181 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 182 pool_put(&socket_pool, so); 183 return (NULL); 184 } 185 so->so_snd.sb_wat = head->so_snd.sb_wat; 186 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 187 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 188 so->so_rcv.sb_wat = head->so_rcv.sb_wat; 189 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 190 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 191 192 soqinsque(head, so, soqueue); 193 if ((*so->so_proto->pr_attach)(so, 0)) { 194 (void) soqremque(so, soqueue); 195 pool_put(&socket_pool, so); 196 return (NULL); 197 } 198 if (connstatus) { 199 sorwakeup(head); 200 wakeup(&head->so_timeo); 201 so->so_state |= connstatus; 202 } 203 return (so); 204 } 205 206 void 207 soqinsque(struct socket *head, struct socket *so, int q) 208 { 209 soassertlocked(head); 210 211 #ifdef DIAGNOSTIC 212 if (so->so_onq != NULL) 213 panic("soqinsque"); 214 #endif 215 216 so->so_head = head; 217 if (q == 0) { 218 head->so_q0len++; 219 so->so_onq = &head->so_q0; 220 } else { 221 head->so_qlen++; 222 so->so_onq = &head->so_q; 223 } 224 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 225 } 226 227 int 228 soqremque(struct socket *so, int q) 229 { 230 struct socket *head = so->so_head; 231 232 soassertlocked(head); 233 234 if (q == 0) { 235 if (so->so_onq != &head->so_q0) 236 return (0); 237 head->so_q0len--; 238 } else { 239 if (so->so_onq != &head->so_q) 240 return (0); 241 head->so_qlen--; 242 } 243 TAILQ_REMOVE(so->so_onq, so, so_qe); 244 so->so_onq = NULL; 245 so->so_head = NULL; 246 return (1); 247 } 248 249 /* 250 * Socantsendmore indicates that no more data will be sent on the 251 * socket; it would normally be applied to a socket when the user 252 * informs the system that no more data is to be sent, by the protocol 253 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 254 * will be received, and will normally be applied to the socket by a 255 * protocol when it detects that the peer will send no more data. 256 * Data queued for reading in the socket may yet be read. 257 */ 258 259 void 260 socantsendmore(struct socket *so) 261 { 262 soassertlocked(so); 263 so->so_state |= SS_CANTSENDMORE; 264 sowwakeup(so); 265 } 266 267 void 268 socantrcvmore(struct socket *so) 269 { 270 soassertlocked(so); 271 so->so_state |= SS_CANTRCVMORE; 272 sorwakeup(so); 273 } 274 275 int 276 solock(struct socket *so) 277 { 278 switch (so->so_proto->pr_domain->dom_family) { 279 case PF_INET: 280 case PF_INET6: 281 NET_LOCK(); 282 break; 283 case PF_UNIX: 284 case PF_ROUTE: 285 case PF_KEY: 286 default: 287 KERNEL_LOCK(); 288 break; 289 } 290 291 return (SL_LOCKED); 292 } 293 294 void 295 sounlock(struct socket *so, int s) 296 { 297 KASSERT(s == SL_LOCKED || s == SL_NOUNLOCK); 298 299 if (s != SL_LOCKED) 300 return; 301 302 switch (so->so_proto->pr_domain->dom_family) { 303 case PF_INET: 304 case PF_INET6: 305 NET_UNLOCK(); 306 break; 307 case PF_UNIX: 308 case PF_ROUTE: 309 case PF_KEY: 310 default: 311 KERNEL_UNLOCK(); 312 break; 313 } 314 } 315 316 void 317 soassertlocked(struct socket *so) 318 { 319 switch (so->so_proto->pr_domain->dom_family) { 320 case PF_INET: 321 case PF_INET6: 322 NET_ASSERT_LOCKED(); 323 break; 324 case PF_UNIX: 325 case PF_ROUTE: 326 case PF_KEY: 327 default: 328 KERNEL_ASSERT_LOCKED(); 329 break; 330 } 331 } 332 333 int 334 sosleep(struct socket *so, void *ident, int prio, const char *wmesg, int timo) 335 { 336 if ((so->so_proto->pr_domain->dom_family != PF_UNIX) && 337 (so->so_proto->pr_domain->dom_family != PF_ROUTE) && 338 (so->so_proto->pr_domain->dom_family != PF_KEY)) { 339 return rwsleep(ident, &netlock, prio, wmesg, timo); 340 } else 341 return tsleep(ident, prio, wmesg, timo); 342 } 343 344 /* 345 * Wait for data to arrive at/drain from a socket buffer. 346 */ 347 int 348 sbwait(struct socket *so, struct sockbuf *sb) 349 { 350 int prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 351 352 soassertlocked(so); 353 354 sb->sb_flags |= SB_WAIT; 355 return (sosleep(so, &sb->sb_cc, prio, "netio", sb->sb_timeo)); 356 } 357 358 int 359 sblock(struct socket *so, struct sockbuf *sb, int wait) 360 { 361 int error, prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 362 363 soassertlocked(so); 364 365 if ((sb->sb_flags & SB_LOCK) == 0) { 366 sb->sb_flags |= SB_LOCK; 367 return (0); 368 } 369 if (wait & M_NOWAIT) 370 return (EWOULDBLOCK); 371 372 while (sb->sb_flags & SB_LOCK) { 373 sb->sb_flags |= SB_WANT; 374 error = sosleep(so, &sb->sb_flags, prio, "netlck", 0); 375 if (error) 376 return (error); 377 } 378 sb->sb_flags |= SB_LOCK; 379 return (0); 380 } 381 382 void 383 sbunlock(struct socket *so, struct sockbuf *sb) 384 { 385 soassertlocked(so); 386 387 sb->sb_flags &= ~SB_LOCK; 388 if (sb->sb_flags & SB_WANT) { 389 sb->sb_flags &= ~SB_WANT; 390 wakeup(&sb->sb_flags); 391 } 392 } 393 394 /* 395 * Wakeup processes waiting on a socket buffer. 396 * Do asynchronous notification via SIGIO 397 * if the socket has the SS_ASYNC flag set. 398 */ 399 void 400 sowakeup(struct socket *so, struct sockbuf *sb) 401 { 402 soassertlocked(so); 403 404 sb->sb_flags &= ~SB_SEL; 405 if (sb->sb_flags & SB_WAIT) { 406 sb->sb_flags &= ~SB_WAIT; 407 wakeup(&sb->sb_cc); 408 } 409 KERNEL_LOCK(); 410 if (so->so_state & SS_ASYNC) 411 csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid); 412 selwakeup(&sb->sb_sel); 413 KERNEL_UNLOCK(); 414 } 415 416 /* 417 * Socket buffer (struct sockbuf) utility routines. 418 * 419 * Each socket contains two socket buffers: one for sending data and 420 * one for receiving data. Each buffer contains a queue of mbufs, 421 * information about the number of mbufs and amount of data in the 422 * queue, and other fields allowing select() statements and notification 423 * on data availability to be implemented. 424 * 425 * Data stored in a socket buffer is maintained as a list of records. 426 * Each record is a list of mbufs chained together with the m_next 427 * field. Records are chained together with the m_nextpkt field. The upper 428 * level routine soreceive() expects the following conventions to be 429 * observed when placing information in the receive buffer: 430 * 431 * 1. If the protocol requires each message be preceded by the sender's 432 * name, then a record containing that name must be present before 433 * any associated data (mbuf's must be of type MT_SONAME). 434 * 2. If the protocol supports the exchange of ``access rights'' (really 435 * just additional data associated with the message), and there are 436 * ``rights'' to be received, then a record containing this data 437 * should be present (mbuf's must be of type MT_CONTROL). 438 * 3. If a name or rights record exists, then it must be followed by 439 * a data record, perhaps of zero length. 440 * 441 * Before using a new socket structure it is first necessary to reserve 442 * buffer space to the socket, by calling sbreserve(). This should commit 443 * some of the available buffer space in the system buffer pool for the 444 * socket (currently, it does nothing but enforce limits). The space 445 * should be released by calling sbrelease() when the socket is destroyed. 446 */ 447 448 int 449 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 450 { 451 soassertlocked(so); 452 453 if (sbreserve(so, &so->so_snd, sndcc)) 454 goto bad; 455 if (sbreserve(so, &so->so_rcv, rcvcc)) 456 goto bad2; 457 so->so_snd.sb_wat = sndcc; 458 so->so_rcv.sb_wat = rcvcc; 459 if (so->so_rcv.sb_lowat == 0) 460 so->so_rcv.sb_lowat = 1; 461 if (so->so_snd.sb_lowat == 0) 462 so->so_snd.sb_lowat = MCLBYTES; 463 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 464 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 465 return (0); 466 bad2: 467 sbrelease(so, &so->so_snd); 468 bad: 469 return (ENOBUFS); 470 } 471 472 /* 473 * Allot mbufs to a sockbuf. 474 * Attempt to scale mbmax so that mbcnt doesn't become limiting 475 * if buffering efficiency is near the normal case. 476 */ 477 int 478 sbreserve(struct socket *so, struct sockbuf *sb, u_long cc) 479 { 480 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 481 soassertlocked(so); 482 483 if (cc == 0 || cc > sb_max) 484 return (1); 485 sb->sb_hiwat = cc; 486 sb->sb_mbmax = max(3 * MAXMCLBYTES, 487 min(cc * 2, sb_max + (sb_max / MCLBYTES) * MSIZE)); 488 if (sb->sb_lowat > sb->sb_hiwat) 489 sb->sb_lowat = sb->sb_hiwat; 490 return (0); 491 } 492 493 /* 494 * In low memory situation, do not accept any greater than normal request. 495 */ 496 int 497 sbcheckreserve(u_long cnt, u_long defcnt) 498 { 499 if (cnt > defcnt && sbchecklowmem()) 500 return (ENOBUFS); 501 return (0); 502 } 503 504 int 505 sbchecklowmem(void) 506 { 507 static int sblowmem; 508 509 if (mclpools[0].pr_nout < mclpools[0].pr_hardlimit * 60 / 100 || 510 mbpool.pr_nout < mbpool.pr_hardlimit * 60 / 100) 511 sblowmem = 0; 512 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 80 / 100 || 513 mbpool.pr_nout > mbpool.pr_hardlimit * 80 / 100) 514 sblowmem = 1; 515 return (sblowmem); 516 } 517 518 /* 519 * Free mbufs held by a socket, and reserved mbuf space. 520 */ 521 void 522 sbrelease(struct socket *so, struct sockbuf *sb) 523 { 524 525 sbflush(so, sb); 526 sb->sb_hiwat = sb->sb_mbmax = 0; 527 } 528 529 /* 530 * Routines to add and remove 531 * data from an mbuf queue. 532 * 533 * The routines sbappend() or sbappendrecord() are normally called to 534 * append new mbufs to a socket buffer, after checking that adequate 535 * space is available, comparing the function sbspace() with the amount 536 * of data to be added. sbappendrecord() differs from sbappend() in 537 * that data supplied is treated as the beginning of a new record. 538 * To place a sender's address, optional access rights, and data in a 539 * socket receive buffer, sbappendaddr() should be used. To place 540 * access rights and data in a socket receive buffer, sbappendrights() 541 * should be used. In either case, the new data begins a new record. 542 * Note that unlike sbappend() and sbappendrecord(), these routines check 543 * for the caller that there will be enough space to store the data. 544 * Each fails if there is not enough space, or if it cannot find mbufs 545 * to store additional information in. 546 * 547 * Reliable protocols may use the socket send buffer to hold data 548 * awaiting acknowledgement. Data is normally copied from a socket 549 * send buffer in a protocol with m_copym for output to a peer, 550 * and then removing the data from the socket buffer with sbdrop() 551 * or sbdroprecord() when the data is acknowledged by the peer. 552 */ 553 554 #ifdef SOCKBUF_DEBUG 555 void 556 sblastrecordchk(struct sockbuf *sb, const char *where) 557 { 558 struct mbuf *m = sb->sb_mb; 559 560 while (m && m->m_nextpkt) 561 m = m->m_nextpkt; 562 563 if (m != sb->sb_lastrecord) { 564 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 565 sb->sb_mb, sb->sb_lastrecord, m); 566 printf("packet chain:\n"); 567 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 568 printf("\t%p\n", m); 569 panic("sblastrecordchk from %s", where); 570 } 571 } 572 573 void 574 sblastmbufchk(struct sockbuf *sb, const char *where) 575 { 576 struct mbuf *m = sb->sb_mb; 577 struct mbuf *n; 578 579 while (m && m->m_nextpkt) 580 m = m->m_nextpkt; 581 582 while (m && m->m_next) 583 m = m->m_next; 584 585 if (m != sb->sb_mbtail) { 586 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 587 sb->sb_mb, sb->sb_mbtail, m); 588 printf("packet tree:\n"); 589 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 590 printf("\t"); 591 for (n = m; n != NULL; n = n->m_next) 592 printf("%p ", n); 593 printf("\n"); 594 } 595 panic("sblastmbufchk from %s", where); 596 } 597 } 598 #endif /* SOCKBUF_DEBUG */ 599 600 #define SBLINKRECORD(sb, m0) \ 601 do { \ 602 if ((sb)->sb_lastrecord != NULL) \ 603 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 604 else \ 605 (sb)->sb_mb = (m0); \ 606 (sb)->sb_lastrecord = (m0); \ 607 } while (/*CONSTCOND*/0) 608 609 /* 610 * Append mbuf chain m to the last record in the 611 * socket buffer sb. The additional space associated 612 * the mbuf chain is recorded in sb. Empty mbufs are 613 * discarded and mbufs are compacted where possible. 614 */ 615 void 616 sbappend(struct socket *so, struct sockbuf *sb, struct mbuf *m) 617 { 618 struct mbuf *n; 619 620 if (m == NULL) 621 return; 622 623 SBLASTRECORDCHK(sb, "sbappend 1"); 624 625 if ((n = sb->sb_lastrecord) != NULL) { 626 /* 627 * XXX Would like to simply use sb_mbtail here, but 628 * XXX I need to verify that I won't miss an EOR that 629 * XXX way. 630 */ 631 do { 632 if (n->m_flags & M_EOR) { 633 sbappendrecord(so, sb, m); /* XXXXXX!!!! */ 634 return; 635 } 636 } while (n->m_next && (n = n->m_next)); 637 } else { 638 /* 639 * If this is the first record in the socket buffer, it's 640 * also the last record. 641 */ 642 sb->sb_lastrecord = m; 643 } 644 sbcompress(sb, m, n); 645 SBLASTRECORDCHK(sb, "sbappend 2"); 646 } 647 648 /* 649 * This version of sbappend() should only be used when the caller 650 * absolutely knows that there will never be more than one record 651 * in the socket buffer, that is, a stream protocol (such as TCP). 652 */ 653 void 654 sbappendstream(struct socket *so, struct sockbuf *sb, struct mbuf *m) 655 { 656 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 657 soassertlocked(so); 658 KDASSERT(m->m_nextpkt == NULL); 659 KASSERT(sb->sb_mb == sb->sb_lastrecord); 660 661 SBLASTMBUFCHK(sb, __func__); 662 663 sbcompress(sb, m, sb->sb_mbtail); 664 665 sb->sb_lastrecord = sb->sb_mb; 666 SBLASTRECORDCHK(sb, __func__); 667 } 668 669 #ifdef SOCKBUF_DEBUG 670 void 671 sbcheck(struct sockbuf *sb) 672 { 673 struct mbuf *m, *n; 674 u_long len = 0, mbcnt = 0; 675 676 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 677 for (n = m; n; n = n->m_next) { 678 len += n->m_len; 679 mbcnt += MSIZE; 680 if (n->m_flags & M_EXT) 681 mbcnt += n->m_ext.ext_size; 682 if (m != n && n->m_nextpkt) 683 panic("sbcheck nextpkt"); 684 } 685 } 686 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 687 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 688 mbcnt, sb->sb_mbcnt); 689 panic("sbcheck"); 690 } 691 } 692 #endif 693 694 /* 695 * As above, except the mbuf chain 696 * begins a new record. 697 */ 698 void 699 sbappendrecord(struct socket *so, struct sockbuf *sb, struct mbuf *m0) 700 { 701 struct mbuf *m; 702 703 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 704 soassertlocked(so); 705 706 if (m0 == NULL) 707 return; 708 709 /* 710 * Put the first mbuf on the queue. 711 * Note this permits zero length records. 712 */ 713 sballoc(sb, m0); 714 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 715 SBLINKRECORD(sb, m0); 716 m = m0->m_next; 717 m0->m_next = NULL; 718 if (m && (m0->m_flags & M_EOR)) { 719 m0->m_flags &= ~M_EOR; 720 m->m_flags |= M_EOR; 721 } 722 sbcompress(sb, m, m0); 723 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 724 } 725 726 /* 727 * As above except that OOB data 728 * is inserted at the beginning of the sockbuf, 729 * but after any other OOB data. 730 */ 731 void 732 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 733 { 734 struct mbuf *m, **mp; 735 736 if (m0 == NULL) 737 return; 738 739 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 740 741 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 742 again: 743 switch (m->m_type) { 744 745 case MT_OOBDATA: 746 continue; /* WANT next train */ 747 748 case MT_CONTROL: 749 if ((m = m->m_next) != NULL) 750 goto again; /* inspect THIS train further */ 751 } 752 break; 753 } 754 /* 755 * Put the first mbuf on the queue. 756 * Note this permits zero length records. 757 */ 758 sballoc(sb, m0); 759 m0->m_nextpkt = *mp; 760 if (*mp == NULL) { 761 /* m0 is actually the new tail */ 762 sb->sb_lastrecord = m0; 763 } 764 *mp = m0; 765 m = m0->m_next; 766 m0->m_next = NULL; 767 if (m && (m0->m_flags & M_EOR)) { 768 m0->m_flags &= ~M_EOR; 769 m->m_flags |= M_EOR; 770 } 771 sbcompress(sb, m, m0); 772 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 773 } 774 775 /* 776 * Append address and data, and optionally, control (ancillary) data 777 * to the receive queue of a socket. If present, 778 * m0 must include a packet header with total length. 779 * Returns 0 if no space in sockbuf or insufficient mbufs. 780 */ 781 int 782 sbappendaddr(struct socket *so, struct sockbuf *sb, const struct sockaddr *asa, 783 struct mbuf *m0, struct mbuf *control) 784 { 785 struct mbuf *m, *n, *nlast; 786 int space = asa->sa_len; 787 788 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 789 panic("sbappendaddr"); 790 if (m0) 791 space += m0->m_pkthdr.len; 792 for (n = control; n; n = n->m_next) { 793 space += n->m_len; 794 if (n->m_next == NULL) /* keep pointer to last control buf */ 795 break; 796 } 797 if (space > sbspace(so, sb)) 798 return (0); 799 if (asa->sa_len > MLEN) 800 return (0); 801 MGET(m, M_DONTWAIT, MT_SONAME); 802 if (m == NULL) 803 return (0); 804 m->m_len = asa->sa_len; 805 memcpy(mtod(m, caddr_t), asa, asa->sa_len); 806 if (n) 807 n->m_next = m0; /* concatenate data to control */ 808 else 809 control = m0; 810 m->m_next = control; 811 812 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 813 814 for (n = m; n->m_next != NULL; n = n->m_next) 815 sballoc(sb, n); 816 sballoc(sb, n); 817 nlast = n; 818 SBLINKRECORD(sb, m); 819 820 sb->sb_mbtail = nlast; 821 SBLASTMBUFCHK(sb, "sbappendaddr"); 822 823 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 824 825 return (1); 826 } 827 828 int 829 sbappendcontrol(struct socket *so, struct sockbuf *sb, struct mbuf *m0, 830 struct mbuf *control) 831 { 832 struct mbuf *m, *mlast, *n; 833 int space = 0; 834 835 if (control == NULL) 836 panic("sbappendcontrol"); 837 for (m = control; ; m = m->m_next) { 838 space += m->m_len; 839 if (m->m_next == NULL) 840 break; 841 } 842 n = m; /* save pointer to last control buffer */ 843 for (m = m0; m; m = m->m_next) 844 space += m->m_len; 845 if (space > sbspace(so, sb)) 846 return (0); 847 n->m_next = m0; /* concatenate data to control */ 848 849 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 850 851 for (m = control; m->m_next != NULL; m = m->m_next) 852 sballoc(sb, m); 853 sballoc(sb, m); 854 mlast = m; 855 SBLINKRECORD(sb, control); 856 857 sb->sb_mbtail = mlast; 858 SBLASTMBUFCHK(sb, "sbappendcontrol"); 859 860 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 861 862 return (1); 863 } 864 865 /* 866 * Compress mbuf chain m into the socket 867 * buffer sb following mbuf n. If n 868 * is null, the buffer is presumed empty. 869 */ 870 void 871 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 872 { 873 int eor = 0; 874 struct mbuf *o; 875 876 while (m) { 877 eor |= m->m_flags & M_EOR; 878 if (m->m_len == 0 && 879 (eor == 0 || 880 (((o = m->m_next) || (o = n)) && 881 o->m_type == m->m_type))) { 882 if (sb->sb_lastrecord == m) 883 sb->sb_lastrecord = m->m_next; 884 m = m_free(m); 885 continue; 886 } 887 if (n && (n->m_flags & M_EOR) == 0 && 888 /* M_TRAILINGSPACE() checks buffer writeability */ 889 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 890 m->m_len <= M_TRAILINGSPACE(n) && 891 n->m_type == m->m_type) { 892 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t), 893 m->m_len); 894 n->m_len += m->m_len; 895 sb->sb_cc += m->m_len; 896 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 897 sb->sb_datacc += m->m_len; 898 m = m_free(m); 899 continue; 900 } 901 if (n) 902 n->m_next = m; 903 else 904 sb->sb_mb = m; 905 sb->sb_mbtail = m; 906 sballoc(sb, m); 907 n = m; 908 m->m_flags &= ~M_EOR; 909 m = m->m_next; 910 n->m_next = NULL; 911 } 912 if (eor) { 913 if (n) 914 n->m_flags |= eor; 915 else 916 printf("semi-panic: sbcompress"); 917 } 918 SBLASTMBUFCHK(sb, __func__); 919 } 920 921 /* 922 * Free all mbufs in a sockbuf. 923 * Check that all resources are reclaimed. 924 */ 925 void 926 sbflush(struct socket *so, struct sockbuf *sb) 927 { 928 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 929 KASSERT((sb->sb_flags & SB_LOCK) == 0); 930 931 while (sb->sb_mbcnt) 932 sbdrop(so, sb, (int)sb->sb_cc); 933 934 KASSERT(sb->sb_cc == 0); 935 KASSERT(sb->sb_datacc == 0); 936 KASSERT(sb->sb_mb == NULL); 937 KASSERT(sb->sb_mbtail == NULL); 938 KASSERT(sb->sb_lastrecord == NULL); 939 } 940 941 /* 942 * Drop data from (the front of) a sockbuf. 943 */ 944 void 945 sbdrop(struct socket *so, struct sockbuf *sb, int len) 946 { 947 struct mbuf *m, *mn; 948 struct mbuf *next; 949 950 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 951 soassertlocked(so); 952 953 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 954 while (len > 0) { 955 if (m == NULL) { 956 if (next == NULL) 957 panic("sbdrop"); 958 m = next; 959 next = m->m_nextpkt; 960 continue; 961 } 962 if (m->m_len > len) { 963 m->m_len -= len; 964 m->m_data += len; 965 sb->sb_cc -= len; 966 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 967 sb->sb_datacc -= len; 968 break; 969 } 970 len -= m->m_len; 971 sbfree(sb, m); 972 mn = m_free(m); 973 m = mn; 974 } 975 while (m && m->m_len == 0) { 976 sbfree(sb, m); 977 mn = m_free(m); 978 m = mn; 979 } 980 if (m) { 981 sb->sb_mb = m; 982 m->m_nextpkt = next; 983 } else 984 sb->sb_mb = next; 985 /* 986 * First part is an inline SB_EMPTY_FIXUP(). Second part 987 * makes sure sb_lastrecord is up-to-date if we dropped 988 * part of the last record. 989 */ 990 m = sb->sb_mb; 991 if (m == NULL) { 992 sb->sb_mbtail = NULL; 993 sb->sb_lastrecord = NULL; 994 } else if (m->m_nextpkt == NULL) 995 sb->sb_lastrecord = m; 996 } 997 998 /* 999 * Drop a record off the front of a sockbuf 1000 * and move the next record to the front. 1001 */ 1002 void 1003 sbdroprecord(struct sockbuf *sb) 1004 { 1005 struct mbuf *m, *mn; 1006 1007 m = sb->sb_mb; 1008 if (m) { 1009 sb->sb_mb = m->m_nextpkt; 1010 do { 1011 sbfree(sb, m); 1012 mn = m_free(m); 1013 } while ((m = mn) != NULL); 1014 } 1015 SB_EMPTY_FIXUP(sb); 1016 } 1017 1018 /* 1019 * Create a "control" mbuf containing the specified data 1020 * with the specified type for presentation on a socket buffer. 1021 */ 1022 struct mbuf * 1023 sbcreatecontrol(caddr_t p, int size, int type, int level) 1024 { 1025 struct cmsghdr *cp; 1026 struct mbuf *m; 1027 1028 if (CMSG_SPACE(size) > MCLBYTES) { 1029 printf("sbcreatecontrol: message too large %d\n", size); 1030 return NULL; 1031 } 1032 1033 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 1034 return (NULL); 1035 if (CMSG_SPACE(size) > MLEN) { 1036 MCLGET(m, M_DONTWAIT); 1037 if ((m->m_flags & M_EXT) == 0) { 1038 m_free(m); 1039 return NULL; 1040 } 1041 } 1042 cp = mtod(m, struct cmsghdr *); 1043 memset(cp, 0, CMSG_SPACE(size)); 1044 memcpy(CMSG_DATA(cp), p, size); 1045 m->m_len = CMSG_SPACE(size); 1046 cp->cmsg_len = CMSG_LEN(size); 1047 cp->cmsg_level = level; 1048 cp->cmsg_type = type; 1049 return (m); 1050 } 1051