xref: /openbsd-src/sys/kern/uipc_socket2.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: uipc_socket2.c,v 1.48 2009/03/30 14:29:30 blambert Exp $	*/
2 /*	$NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/buf.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/signalvar.h>
46 #include <sys/event.h>
47 #include <sys/pool.h>
48 
49 /*
50  * Primitive routines for operating on sockets and socket buffers
51  */
52 
53 /* strings for sleep message: */
54 const char	netcon[] = "netcon";
55 const char	netcls[] = "netcls";
56 const char	netio[] = "netio";
57 const char	netlck[] = "netlck";
58 
59 u_long	sb_max = SB_MAX;		/* patchable */
60 
61 extern struct pool mclpools[];
62 
63 /*
64  * Procedures to manipulate state flags of socket
65  * and do appropriate wakeups.  Normal sequence from the
66  * active (originating) side is that soisconnecting() is
67  * called during processing of connect() call,
68  * resulting in an eventual call to soisconnected() if/when the
69  * connection is established.  When the connection is torn down
70  * soisdisconnecting() is called during processing of disconnect() call,
71  * and soisdisconnected() is called when the connection to the peer
72  * is totally severed.  The semantics of these routines are such that
73  * connectionless protocols can call soisconnected() and soisdisconnected()
74  * only, bypassing the in-progress calls when setting up a ``connection''
75  * takes no time.
76  *
77  * From the passive side, a socket is created with
78  * two queues of sockets: so_q0 for connections in progress
79  * and so_q for connections already made and awaiting user acceptance.
80  * As a protocol is preparing incoming connections, it creates a socket
81  * structure queued on so_q0 by calling sonewconn().  When the connection
82  * is established, soisconnected() is called, and transfers the
83  * socket structure to so_q, making it available to accept().
84  *
85  * If a socket is closed with sockets on either
86  * so_q0 or so_q, these sockets are dropped.
87  *
88  * If higher level protocols are implemented in
89  * the kernel, the wakeups done here will sometimes
90  * cause software-interrupt process scheduling.
91  */
92 
93 void
94 soisconnecting(struct socket *so)
95 {
96 
97 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
98 	so->so_state |= SS_ISCONNECTING;
99 }
100 
101 void
102 soisconnected(struct socket *so)
103 {
104 	struct socket *head = so->so_head;
105 
106 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 	so->so_state |= SS_ISCONNECTED;
108 	if (head && soqremque(so, 0)) {
109 		soqinsque(head, so, 1);
110 		sorwakeup(head);
111 		wakeup_one(&head->so_timeo);
112 	} else {
113 		wakeup(&so->so_timeo);
114 		sorwakeup(so);
115 		sowwakeup(so);
116 	}
117 }
118 
119 void
120 soisdisconnecting(struct socket *so)
121 {
122 
123 	so->so_state &= ~SS_ISCONNECTING;
124 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
125 	wakeup(&so->so_timeo);
126 	sowwakeup(so);
127 	sorwakeup(so);
128 }
129 
130 void
131 soisdisconnected(struct socket *so)
132 {
133 
134 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
135 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
136 	wakeup(&so->so_timeo);
137 	sowwakeup(so);
138 	sorwakeup(so);
139 }
140 
141 /*
142  * When an attempt at a new connection is noted on a socket
143  * which accepts connections, sonewconn is called.  If the
144  * connection is possible (subject to space constraints, etc.)
145  * then we allocate a new structure, properly linked into the
146  * data structure of the original socket, and return this.
147  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
148  *
149  * Must be called at splsoftnet()
150  */
151 struct socket *
152 sonewconn(struct socket *head, int connstatus)
153 {
154 	struct socket *so;
155 	int soqueue = connstatus ? 1 : 0;
156 	extern u_long unpst_sendspace, unpst_recvspace;
157 	u_long snd_sb_hiwat, rcv_sb_hiwat;
158 
159 	splsoftassert(IPL_SOFTNET);
160 
161 	if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100)
162 		return ((struct socket *)0);
163 	if (head->so_qlen + head->so_q0len > head->so_qlimit * 3)
164 		return ((struct socket *)0);
165 	so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO);
166 	if (so == NULL)
167 		return ((struct socket *)0);
168 	so->so_type = head->so_type;
169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 	so->so_linger = head->so_linger;
171 	so->so_state = head->so_state | SS_NOFDREF;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	so->so_euid = head->so_euid;
176 	so->so_ruid = head->so_ruid;
177 	so->so_egid = head->so_egid;
178 	so->so_rgid = head->so_rgid;
179 	so->so_cpid = head->so_cpid;
180 	so->so_siguid = head->so_siguid;
181 	so->so_sigeuid = head->so_sigeuid;
182 
183 	/*
184 	 * If we are tight on mbuf clusters, create the new socket
185 	 * with the minimum.  Sorry, you lose.
186 	 */
187 	snd_sb_hiwat = head->so_snd.sb_hiwat;
188 	if (sbcheckreserve(snd_sb_hiwat, unpst_sendspace))
189 		snd_sb_hiwat = unpst_sendspace;		/* and udp? */
190 	rcv_sb_hiwat = head->so_rcv.sb_hiwat;
191 	if (sbcheckreserve(rcv_sb_hiwat, unpst_recvspace))
192 		rcv_sb_hiwat = unpst_recvspace;		/* and udp? */
193 
194 	(void) soreserve(so, snd_sb_hiwat, rcv_sb_hiwat);
195 	soqinsque(head, so, soqueue);
196 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL, NULL,
197 	    curproc)) {
198 		(void) soqremque(so, soqueue);
199 		pool_put(&socket_pool, so);
200 		return ((struct socket *)0);
201 	}
202 	if (connstatus) {
203 		sorwakeup(head);
204 		wakeup(&head->so_timeo);
205 		so->so_state |= connstatus;
206 	}
207 	return (so);
208 }
209 
210 void
211 soqinsque(struct socket *head, struct socket *so, int q)
212 {
213 
214 #ifdef DIAGNOSTIC
215 	if (so->so_onq != NULL)
216 		panic("soqinsque");
217 #endif
218 
219 	so->so_head = head;
220 	if (q == 0) {
221 		head->so_q0len++;
222 		so->so_onq = &head->so_q0;
223 	} else {
224 		head->so_qlen++;
225 		so->so_onq = &head->so_q;
226 	}
227 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
228 }
229 
230 int
231 soqremque(struct socket *so, int q)
232 {
233 	struct socket *head;
234 
235 	head = so->so_head;
236 	if (q == 0) {
237 		if (so->so_onq != &head->so_q0)
238 			return (0);
239 		head->so_q0len--;
240 	} else {
241 		if (so->so_onq != &head->so_q)
242 			return (0);
243 		head->so_qlen--;
244 	}
245 	TAILQ_REMOVE(so->so_onq, so, so_qe);
246 	so->so_onq = NULL;
247 	so->so_head = NULL;
248 	return (1);
249 }
250 
251 /*
252  * Socantsendmore indicates that no more data will be sent on the
253  * socket; it would normally be applied to a socket when the user
254  * informs the system that no more data is to be sent, by the protocol
255  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
256  * will be received, and will normally be applied to the socket by a
257  * protocol when it detects that the peer will send no more data.
258  * Data queued for reading in the socket may yet be read.
259  */
260 
261 void
262 socantsendmore(struct socket *so)
263 {
264 
265 	so->so_state |= SS_CANTSENDMORE;
266 	sowwakeup(so);
267 }
268 
269 void
270 socantrcvmore(struct socket *so)
271 {
272 
273 	so->so_state |= SS_CANTRCVMORE;
274 	sorwakeup(so);
275 }
276 
277 /*
278  * Wait for data to arrive at/drain from a socket buffer.
279  */
280 int
281 sbwait(struct sockbuf *sb)
282 {
283 
284 	sb->sb_flags |= SB_WAIT;
285 	return (tsleep(&sb->sb_cc,
286 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
287 	    sb->sb_timeo));
288 }
289 
290 /*
291  * Lock a sockbuf already known to be locked;
292  * return any error returned from sleep (EINTR).
293  */
294 int
295 sb_lock(struct sockbuf *sb)
296 {
297 	int error;
298 
299 	while (sb->sb_flags & SB_LOCK) {
300 		sb->sb_flags |= SB_WANT;
301 		error = tsleep(&sb->sb_flags,
302 		    (sb->sb_flags & SB_NOINTR) ?
303 		    PSOCK : PSOCK|PCATCH, netlck, 0);
304 		if (error)
305 			return (error);
306 	}
307 	sb->sb_flags |= SB_LOCK;
308 	return (0);
309 }
310 
311 /*
312  * Wakeup processes waiting on a socket buffer.
313  * Do asynchronous notification via SIGIO
314  * if the socket has the SS_ASYNC flag set.
315  */
316 void
317 sowakeup(struct socket *so, struct sockbuf *sb)
318 {
319 	selwakeup(&sb->sb_sel);
320 	sb->sb_flags &= ~SB_SEL;
321 	if (sb->sb_flags & SB_WAIT) {
322 		sb->sb_flags &= ~SB_WAIT;
323 		wakeup(&sb->sb_cc);
324 	}
325 	if (so->so_state & SS_ASYNC)
326 		csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid);
327 	KNOTE(&sb->sb_sel.si_note, 0);
328 }
329 
330 /*
331  * Socket buffer (struct sockbuf) utility routines.
332  *
333  * Each socket contains two socket buffers: one for sending data and
334  * one for receiving data.  Each buffer contains a queue of mbufs,
335  * information about the number of mbufs and amount of data in the
336  * queue, and other fields allowing select() statements and notification
337  * on data availability to be implemented.
338  *
339  * Data stored in a socket buffer is maintained as a list of records.
340  * Each record is a list of mbufs chained together with the m_next
341  * field.  Records are chained together with the m_nextpkt field. The upper
342  * level routine soreceive() expects the following conventions to be
343  * observed when placing information in the receive buffer:
344  *
345  * 1. If the protocol requires each message be preceded by the sender's
346  *    name, then a record containing that name must be present before
347  *    any associated data (mbuf's must be of type MT_SONAME).
348  * 2. If the protocol supports the exchange of ``access rights'' (really
349  *    just additional data associated with the message), and there are
350  *    ``rights'' to be received, then a record containing this data
351  *    should be present (mbuf's must be of type MT_CONTROL).
352  * 3. If a name or rights record exists, then it must be followed by
353  *    a data record, perhaps of zero length.
354  *
355  * Before using a new socket structure it is first necessary to reserve
356  * buffer space to the socket, by calling sbreserve().  This should commit
357  * some of the available buffer space in the system buffer pool for the
358  * socket (currently, it does nothing but enforce limits).  The space
359  * should be released by calling sbrelease() when the socket is destroyed.
360  */
361 
362 int
363 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
364 {
365 
366 	if (sbreserve(&so->so_snd, sndcc))
367 		goto bad;
368 	if (sbreserve(&so->so_rcv, rcvcc))
369 		goto bad2;
370 	if (so->so_rcv.sb_lowat == 0)
371 		so->so_rcv.sb_lowat = 1;
372 	if (so->so_snd.sb_lowat == 0)
373 		so->so_snd.sb_lowat = MCLBYTES;
374 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
375 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
376 	return (0);
377 bad2:
378 	sbrelease(&so->so_snd);
379 bad:
380 	return (ENOBUFS);
381 }
382 
383 /*
384  * Allot mbufs to a sockbuf.
385  * Attempt to scale mbmax so that mbcnt doesn't become limiting
386  * if buffering efficiency is near the normal case.
387  */
388 int
389 sbreserve(struct sockbuf *sb, u_long cc)
390 {
391 
392 	if (cc == 0 || cc > sb_max)
393 		return (1);
394 	sb->sb_hiwat = cc;
395 	sb->sb_mbmax = min(cc * 2, sb_max + (sb_max / MCLBYTES) * MSIZE);
396 	if (sb->sb_lowat > sb->sb_hiwat)
397 		sb->sb_lowat = sb->sb_hiwat;
398 	return (0);
399 }
400 
401 /*
402  * If over 50% of mbuf clusters in use, do not accept any
403  * greater than normal request.
404  */
405 int
406 sbcheckreserve(u_long cnt, u_long defcnt)
407 {
408 	if (cnt > defcnt &&
409 	    mclpools[0].pr_nout> mclpools[0].pr_hardlimit / 2)
410 		return (ENOBUFS);
411 	return (0);
412 }
413 
414 /*
415  * Free mbufs held by a socket, and reserved mbuf space.
416  */
417 void
418 sbrelease(struct sockbuf *sb)
419 {
420 
421 	sbflush(sb);
422 	sb->sb_hiwat = sb->sb_mbmax = 0;
423 }
424 
425 /*
426  * Routines to add and remove
427  * data from an mbuf queue.
428  *
429  * The routines sbappend() or sbappendrecord() are normally called to
430  * append new mbufs to a socket buffer, after checking that adequate
431  * space is available, comparing the function sbspace() with the amount
432  * of data to be added.  sbappendrecord() differs from sbappend() in
433  * that data supplied is treated as the beginning of a new record.
434  * To place a sender's address, optional access rights, and data in a
435  * socket receive buffer, sbappendaddr() should be used.  To place
436  * access rights and data in a socket receive buffer, sbappendrights()
437  * should be used.  In either case, the new data begins a new record.
438  * Note that unlike sbappend() and sbappendrecord(), these routines check
439  * for the caller that there will be enough space to store the data.
440  * Each fails if there is not enough space, or if it cannot find mbufs
441  * to store additional information in.
442  *
443  * Reliable protocols may use the socket send buffer to hold data
444  * awaiting acknowledgement.  Data is normally copied from a socket
445  * send buffer in a protocol with m_copy for output to a peer,
446  * and then removing the data from the socket buffer with sbdrop()
447  * or sbdroprecord() when the data is acknowledged by the peer.
448  */
449 
450 #ifdef SOCKBUF_DEBUG
451 void
452 sblastrecordchk(struct sockbuf *sb, const char *where)
453 {
454 	struct mbuf *m = sb->sb_mb;
455 
456 	while (m && m->m_nextpkt)
457 		m = m->m_nextpkt;
458 
459 	if (m != sb->sb_lastrecord) {
460 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
461 		    sb->sb_mb, sb->sb_lastrecord, m);
462 		printf("packet chain:\n");
463 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
464 			printf("\t%p\n", m);
465 		panic("sblastrecordchk from %s", where);
466 	}
467 }
468 
469 void
470 sblastmbufchk(struct sockbuf *sb, const char *where)
471 {
472 	struct mbuf *m = sb->sb_mb;
473 	struct mbuf *n;
474 
475 	while (m && m->m_nextpkt)
476 		m = m->m_nextpkt;
477 
478 	while (m && m->m_next)
479 		m = m->m_next;
480 
481 	if (m != sb->sb_mbtail) {
482 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
483 		    sb->sb_mb, sb->sb_mbtail, m);
484 		printf("packet tree:\n");
485 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
486 			printf("\t");
487 			for (n = m; n != NULL; n = n->m_next)
488 				printf("%p ", n);
489 			printf("\n");
490 		}
491 		panic("sblastmbufchk from %s", where);
492 	}
493 }
494 #endif /* SOCKBUF_DEBUG */
495 
496 #define	SBLINKRECORD(sb, m0)						\
497 do {									\
498 	if ((sb)->sb_lastrecord != NULL)				\
499 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
500 	else								\
501 		(sb)->sb_mb = (m0);					\
502 	(sb)->sb_lastrecord = (m0);					\
503 } while (/*CONSTCOND*/0)
504 
505 /*
506  * Append mbuf chain m to the last record in the
507  * socket buffer sb.  The additional space associated
508  * the mbuf chain is recorded in sb.  Empty mbufs are
509  * discarded and mbufs are compacted where possible.
510  */
511 void
512 sbappend(struct sockbuf *sb, struct mbuf *m)
513 {
514 	struct mbuf *n;
515 
516 	if (m == NULL)
517 		return;
518 
519 	SBLASTRECORDCHK(sb, "sbappend 1");
520 
521 	if ((n = sb->sb_lastrecord) != NULL) {
522 		/*
523 		 * XXX Would like to simply use sb_mbtail here, but
524 		 * XXX I need to verify that I won't miss an EOR that
525 		 * XXX way.
526 		 */
527 		do {
528 			if (n->m_flags & M_EOR) {
529 				sbappendrecord(sb, m); /* XXXXXX!!!! */
530 				return;
531 			}
532 		} while (n->m_next && (n = n->m_next));
533 	} else {
534 		/*
535 		 * If this is the first record in the socket buffer, it's
536 		 * also the last record.
537 		 */
538 		sb->sb_lastrecord = m;
539 	}
540 	sbcompress(sb, m, n);
541 	SBLASTRECORDCHK(sb, "sbappend 2");
542 }
543 
544 /*
545  * This version of sbappend() should only be used when the caller
546  * absolutely knows that there will never be more than one record
547  * in the socket buffer, that is, a stream protocol (such as TCP).
548  */
549 void
550 sbappendstream(struct sockbuf *sb, struct mbuf *m)
551 {
552 
553 	KDASSERT(m->m_nextpkt == NULL);
554 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
555 
556 	SBLASTMBUFCHK(sb, __func__);
557 
558 	sbcompress(sb, m, sb->sb_mbtail);
559 
560 	sb->sb_lastrecord = sb->sb_mb;
561 	SBLASTRECORDCHK(sb, __func__);
562 }
563 
564 #ifdef SOCKBUF_DEBUG
565 void
566 sbcheck(struct sockbuf *sb)
567 {
568 	struct mbuf *m;
569 	u_long len = 0, mbcnt = 0;
570 
571 	for (m = sb->sb_mb; m; m = m->m_next) {
572 		len += m->m_len;
573 		mbcnt += MSIZE;
574 		if (m->m_flags & M_EXT)
575 			mbcnt += m->m_ext.ext_size;
576 		if (m->m_nextpkt)
577 			panic("sbcheck nextpkt");
578 	}
579 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
580 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
581 		    mbcnt, sb->sb_mbcnt);
582 		panic("sbcheck");
583 	}
584 }
585 #endif
586 
587 /*
588  * As above, except the mbuf chain
589  * begins a new record.
590  */
591 void
592 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
593 {
594 	struct mbuf *m;
595 
596 	if (m0 == NULL)
597 		return;
598 
599 	/*
600 	 * Put the first mbuf on the queue.
601 	 * Note this permits zero length records.
602 	 */
603 	sballoc(sb, m0);
604 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
605 	SBLINKRECORD(sb, m0);
606 	m = m0->m_next;
607 	m0->m_next = NULL;
608 	if (m && (m0->m_flags & M_EOR)) {
609 		m0->m_flags &= ~M_EOR;
610 		m->m_flags |= M_EOR;
611 	}
612 	sbcompress(sb, m, m0);
613 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
614 }
615 
616 /*
617  * As above except that OOB data
618  * is inserted at the beginning of the sockbuf,
619  * but after any other OOB data.
620  */
621 void
622 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
623 {
624 	struct mbuf *m, **mp;
625 
626 	if (m0 == NULL)
627 		return;
628 
629 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
630 
631 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
632 	    again:
633 		switch (m->m_type) {
634 
635 		case MT_OOBDATA:
636 			continue;		/* WANT next train */
637 
638 		case MT_CONTROL:
639 			if ((m = m->m_next) != NULL)
640 				goto again;	/* inspect THIS train further */
641 		}
642 		break;
643 	}
644 	/*
645 	 * Put the first mbuf on the queue.
646 	 * Note this permits zero length records.
647 	 */
648 	sballoc(sb, m0);
649 	m0->m_nextpkt = *mp;
650 	if (*mp == NULL) {
651 		/* m0 is actually the new tail */
652 		sb->sb_lastrecord = m0;
653 	}
654 	*mp = m0;
655 	m = m0->m_next;
656 	m0->m_next = NULL;
657 	if (m && (m0->m_flags & M_EOR)) {
658 		m0->m_flags &= ~M_EOR;
659 		m->m_flags |= M_EOR;
660 	}
661 	sbcompress(sb, m, m0);
662 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
663 }
664 
665 /*
666  * Append address and data, and optionally, control (ancillary) data
667  * to the receive queue of a socket.  If present,
668  * m0 must include a packet header with total length.
669  * Returns 0 if no space in sockbuf or insufficient mbufs.
670  */
671 int
672 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
673     struct mbuf *control)
674 {
675 	struct mbuf *m, *n, *nlast;
676 	int space = asa->sa_len;
677 
678 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
679 		panic("sbappendaddr");
680 	if (m0)
681 		space += m0->m_pkthdr.len;
682 	for (n = control; n; n = n->m_next) {
683 		space += n->m_len;
684 		if (n->m_next == NULL)	/* keep pointer to last control buf */
685 			break;
686 	}
687 	if (space > sbspace(sb))
688 		return (0);
689 	if (asa->sa_len > MLEN)
690 		return (0);
691 	MGET(m, M_DONTWAIT, MT_SONAME);
692 	if (m == NULL)
693 		return (0);
694 	m->m_len = asa->sa_len;
695 	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
696 	if (n)
697 		n->m_next = m0;		/* concatenate data to control */
698 	else
699 		control = m0;
700 	m->m_next = control;
701 
702 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
703 
704 	for (n = m; n->m_next != NULL; n = n->m_next)
705 		sballoc(sb, n);
706 	sballoc(sb, n);
707 	nlast = n;
708 	SBLINKRECORD(sb, m);
709 
710 	sb->sb_mbtail = nlast;
711 	SBLASTMBUFCHK(sb, "sbappendaddr");
712 
713 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
714 
715 	return (1);
716 }
717 
718 int
719 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
720 {
721 	struct mbuf *m, *mlast, *n;
722 	int space = 0;
723 
724 	if (control == NULL)
725 		panic("sbappendcontrol");
726 	for (m = control; ; m = m->m_next) {
727 		space += m->m_len;
728 		if (m->m_next == NULL)
729 			break;
730 	}
731 	n = m;			/* save pointer to last control buffer */
732 	for (m = m0; m; m = m->m_next)
733 		space += m->m_len;
734 	if (space > sbspace(sb))
735 		return (0);
736 	n->m_next = m0;			/* concatenate data to control */
737 
738 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
739 
740 	for (m = control; m->m_next != NULL; m = m->m_next)
741 		sballoc(sb, m);
742 	sballoc(sb, m);
743 	mlast = m;
744 	SBLINKRECORD(sb, control);
745 
746 	sb->sb_mbtail = mlast;
747 	SBLASTMBUFCHK(sb, "sbappendcontrol");
748 
749 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
750 
751 	return (1);
752 }
753 
754 /*
755  * Compress mbuf chain m into the socket
756  * buffer sb following mbuf n.  If n
757  * is null, the buffer is presumed empty.
758  */
759 void
760 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
761 {
762 	int eor = 0;
763 	struct mbuf *o;
764 
765 	while (m) {
766 		eor |= m->m_flags & M_EOR;
767 		if (m->m_len == 0 &&
768 		    (eor == 0 ||
769 		    (((o = m->m_next) || (o = n)) &&
770 		    o->m_type == m->m_type))) {
771 			if (sb->sb_lastrecord == m)
772 				sb->sb_lastrecord = m->m_next;
773 			m = m_free(m);
774 			continue;
775 		}
776 		if (n && (n->m_flags & M_EOR) == 0 &&
777 		    /* M_TRAILINGSPACE() checks buffer writeability */
778 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
779 		    m->m_len <= M_TRAILINGSPACE(n) &&
780 		    n->m_type == m->m_type) {
781 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
782 			    (unsigned)m->m_len);
783 			n->m_len += m->m_len;
784 			sb->sb_cc += m->m_len;
785 			if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME)
786 				sb->sb_datacc += m->m_len;
787 			m = m_free(m);
788 			continue;
789 		}
790 		if (n)
791 			n->m_next = m;
792 		else
793 			sb->sb_mb = m;
794 		sb->sb_mbtail = m;
795 		sballoc(sb, m);
796 		n = m;
797 		m->m_flags &= ~M_EOR;
798 		m = m->m_next;
799 		n->m_next = NULL;
800 	}
801 	if (eor) {
802 		if (n)
803 			n->m_flags |= eor;
804 		else
805 			printf("semi-panic: sbcompress");
806 	}
807 	SBLASTMBUFCHK(sb, __func__);
808 }
809 
810 /*
811  * Free all mbufs in a sockbuf.
812  * Check that all resources are reclaimed.
813  */
814 void
815 sbflush(struct sockbuf *sb)
816 {
817 
818 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
819 
820 	while (sb->sb_mbcnt)
821 		sbdrop(sb, (int)sb->sb_cc);
822 
823 	KASSERT(sb->sb_cc == 0);
824 	KASSERT(sb->sb_datacc == 0);
825 	KASSERT(sb->sb_mb == NULL);
826 	KASSERT(sb->sb_mbtail == NULL);
827 	KASSERT(sb->sb_lastrecord == NULL);
828 }
829 
830 /*
831  * Drop data from (the front of) a sockbuf.
832  */
833 void
834 sbdrop(struct sockbuf *sb, int len)
835 {
836 	struct mbuf *m, *mn;
837 	struct mbuf *next;
838 
839 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
840 	while (len > 0) {
841 		if (m == NULL) {
842 			if (next == NULL)
843 				panic("sbdrop");
844 			m = next;
845 			next = m->m_nextpkt;
846 			continue;
847 		}
848 		if (m->m_len > len) {
849 			m->m_len -= len;
850 			m->m_data += len;
851 			sb->sb_cc -= len;
852 			if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME)
853 				sb->sb_datacc -= len;
854 			break;
855 		}
856 		len -= m->m_len;
857 		sbfree(sb, m);
858 		MFREE(m, mn);
859 		m = mn;
860 	}
861 	while (m && m->m_len == 0) {
862 		sbfree(sb, m);
863 		MFREE(m, mn);
864 		m = mn;
865 	}
866 	if (m) {
867 		sb->sb_mb = m;
868 		m->m_nextpkt = next;
869 	} else
870 		sb->sb_mb = next;
871 	/*
872 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
873 	 * makes sure sb_lastrecord is up-to-date if we dropped
874 	 * part of the last record.
875 	 */
876 	m = sb->sb_mb;
877 	if (m == NULL) {
878 		sb->sb_mbtail = NULL;
879 		sb->sb_lastrecord = NULL;
880 	} else if (m->m_nextpkt == NULL)
881 		sb->sb_lastrecord = m;
882 }
883 
884 /*
885  * Drop a record off the front of a sockbuf
886  * and move the next record to the front.
887  */
888 void
889 sbdroprecord(struct sockbuf *sb)
890 {
891 	struct mbuf *m, *mn;
892 
893 	m = sb->sb_mb;
894 	if (m) {
895 		sb->sb_mb = m->m_nextpkt;
896 		do {
897 			sbfree(sb, m);
898 			MFREE(m, mn);
899 		} while ((m = mn) != NULL);
900 	}
901 	SB_EMPTY_FIXUP(sb);
902 }
903 
904 /*
905  * Create a "control" mbuf containing the specified data
906  * with the specified type for presentation on a socket buffer.
907  */
908 struct mbuf *
909 sbcreatecontrol(caddr_t p, int size, int type, int level)
910 {
911 	struct cmsghdr *cp;
912 	struct mbuf *m;
913 
914 	if (CMSG_SPACE(size) > MCLBYTES) {
915 		printf("sbcreatecontrol: message too large %d\n", size);
916 		return NULL;
917 	}
918 
919 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
920 		return ((struct mbuf *) NULL);
921 	if (CMSG_SPACE(size) > MLEN) {
922 		MCLGET(m, M_DONTWAIT);
923 		if ((m->m_flags & M_EXT) == 0) {
924 			m_free(m);
925 			return NULL;
926 		}
927 	}
928 	cp = mtod(m, struct cmsghdr *);
929 	bcopy(p, CMSG_DATA(cp), size);
930 	m->m_len = CMSG_SPACE(size);
931 	cp->cmsg_len = CMSG_LEN(size);
932 	cp->cmsg_level = level;
933 	cp->cmsg_type = type;
934 	return (m);
935 }
936