1 /* $OpenBSD: uipc_socket2.c,v 1.103 2020/02/14 14:32:44 mpi Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/protosw.h> 40 #include <sys/domain.h> 41 #include <sys/socket.h> 42 #include <sys/socketvar.h> 43 #include <sys/signalvar.h> 44 #include <sys/event.h> 45 #include <sys/pool.h> 46 47 /* 48 * Primitive routines for operating on sockets and socket buffers 49 */ 50 51 u_long sb_max = SB_MAX; /* patchable */ 52 53 extern struct pool mclpools[]; 54 extern struct pool mbpool; 55 56 /* 57 * Procedures to manipulate state flags of socket 58 * and do appropriate wakeups. Normal sequence from the 59 * active (originating) side is that soisconnecting() is 60 * called during processing of connect() call, 61 * resulting in an eventual call to soisconnected() if/when the 62 * connection is established. When the connection is torn down 63 * soisdisconnecting() is called during processing of disconnect() call, 64 * and soisdisconnected() is called when the connection to the peer 65 * is totally severed. The semantics of these routines are such that 66 * connectionless protocols can call soisconnected() and soisdisconnected() 67 * only, bypassing the in-progress calls when setting up a ``connection'' 68 * takes no time. 69 * 70 * From the passive side, a socket is created with 71 * two queues of sockets: so_q0 for connections in progress 72 * and so_q for connections already made and awaiting user acceptance. 73 * As a protocol is preparing incoming connections, it creates a socket 74 * structure queued on so_q0 by calling sonewconn(). When the connection 75 * is established, soisconnected() is called, and transfers the 76 * socket structure to so_q, making it available to accept(). 77 * 78 * If a socket is closed with sockets on either 79 * so_q0 or so_q, these sockets are dropped. 80 * 81 * If higher level protocols are implemented in 82 * the kernel, the wakeups done here will sometimes 83 * cause software-interrupt process scheduling. 84 */ 85 86 void 87 soisconnecting(struct socket *so) 88 { 89 soassertlocked(so); 90 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 91 so->so_state |= SS_ISCONNECTING; 92 } 93 94 void 95 soisconnected(struct socket *so) 96 { 97 struct socket *head = so->so_head; 98 99 soassertlocked(so); 100 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 101 so->so_state |= SS_ISCONNECTED; 102 if (head && soqremque(so, 0)) { 103 soqinsque(head, so, 1); 104 sorwakeup(head); 105 wakeup_one(&head->so_timeo); 106 } else { 107 wakeup(&so->so_timeo); 108 sorwakeup(so); 109 sowwakeup(so); 110 } 111 } 112 113 void 114 soisdisconnecting(struct socket *so) 115 { 116 soassertlocked(so); 117 so->so_state &= ~SS_ISCONNECTING; 118 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 119 wakeup(&so->so_timeo); 120 sowwakeup(so); 121 sorwakeup(so); 122 } 123 124 void 125 soisdisconnected(struct socket *so) 126 { 127 soassertlocked(so); 128 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 129 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 130 wakeup(&so->so_timeo); 131 sowwakeup(so); 132 sorwakeup(so); 133 } 134 135 /* 136 * When an attempt at a new connection is noted on a socket 137 * which accepts connections, sonewconn is called. If the 138 * connection is possible (subject to space constraints, etc.) 139 * then we allocate a new structure, properly linked into the 140 * data structure of the original socket, and return this. 141 * Connstatus may be 0 or SS_ISCONNECTED. 142 */ 143 struct socket * 144 sonewconn(struct socket *head, int connstatus) 145 { 146 struct socket *so; 147 int soqueue = connstatus ? 1 : 0; 148 149 /* 150 * XXXSMP as long as `so' and `head' share the same lock, we 151 * can call soreserve() and pr_attach() below w/o expliclitly 152 * locking `so'. 153 */ 154 soassertlocked(head); 155 156 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 157 return (NULL); 158 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 159 return (NULL); 160 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 161 if (so == NULL) 162 return (NULL); 163 so->so_type = head->so_type; 164 so->so_options = head->so_options &~ SO_ACCEPTCONN; 165 so->so_linger = head->so_linger; 166 so->so_state = head->so_state | SS_NOFDREF; 167 so->so_proto = head->so_proto; 168 so->so_timeo = head->so_timeo; 169 so->so_euid = head->so_euid; 170 so->so_ruid = head->so_ruid; 171 so->so_egid = head->so_egid; 172 so->so_rgid = head->so_rgid; 173 so->so_cpid = head->so_cpid; 174 175 /* 176 * Inherit watermarks but those may get clamped in low mem situations. 177 */ 178 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 179 pool_put(&socket_pool, so); 180 return (NULL); 181 } 182 so->so_snd.sb_wat = head->so_snd.sb_wat; 183 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 184 so->so_snd.sb_timeo_nsecs = head->so_snd.sb_timeo_nsecs; 185 so->so_rcv.sb_wat = head->so_rcv.sb_wat; 186 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 187 so->so_rcv.sb_timeo_nsecs = head->so_rcv.sb_timeo_nsecs; 188 189 sigio_init(&so->so_sigio); 190 sigio_copy(&so->so_sigio, &head->so_sigio); 191 192 soqinsque(head, so, soqueue); 193 if ((*so->so_proto->pr_attach)(so, 0)) { 194 (void) soqremque(so, soqueue); 195 sigio_free(&so->so_sigio); 196 pool_put(&socket_pool, so); 197 return (NULL); 198 } 199 if (connstatus) { 200 sorwakeup(head); 201 wakeup(&head->so_timeo); 202 so->so_state |= connstatus; 203 } 204 return (so); 205 } 206 207 void 208 soqinsque(struct socket *head, struct socket *so, int q) 209 { 210 soassertlocked(head); 211 212 #ifdef DIAGNOSTIC 213 if (so->so_onq != NULL) 214 panic("soqinsque"); 215 #endif 216 217 so->so_head = head; 218 if (q == 0) { 219 head->so_q0len++; 220 so->so_onq = &head->so_q0; 221 } else { 222 head->so_qlen++; 223 so->so_onq = &head->so_q; 224 } 225 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 226 } 227 228 int 229 soqremque(struct socket *so, int q) 230 { 231 struct socket *head = so->so_head; 232 233 soassertlocked(head); 234 235 if (q == 0) { 236 if (so->so_onq != &head->so_q0) 237 return (0); 238 head->so_q0len--; 239 } else { 240 if (so->so_onq != &head->so_q) 241 return (0); 242 head->so_qlen--; 243 } 244 TAILQ_REMOVE(so->so_onq, so, so_qe); 245 so->so_onq = NULL; 246 so->so_head = NULL; 247 return (1); 248 } 249 250 /* 251 * Socantsendmore indicates that no more data will be sent on the 252 * socket; it would normally be applied to a socket when the user 253 * informs the system that no more data is to be sent, by the protocol 254 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 255 * will be received, and will normally be applied to the socket by a 256 * protocol when it detects that the peer will send no more data. 257 * Data queued for reading in the socket may yet be read. 258 */ 259 260 void 261 socantsendmore(struct socket *so) 262 { 263 soassertlocked(so); 264 so->so_state |= SS_CANTSENDMORE; 265 sowwakeup(so); 266 } 267 268 void 269 socantrcvmore(struct socket *so) 270 { 271 soassertlocked(so); 272 so->so_state |= SS_CANTRCVMORE; 273 sorwakeup(so); 274 } 275 276 int 277 solock(struct socket *so) 278 { 279 switch (so->so_proto->pr_domain->dom_family) { 280 case PF_INET: 281 case PF_INET6: 282 NET_LOCK(); 283 break; 284 case PF_UNIX: 285 case PF_ROUTE: 286 case PF_KEY: 287 default: 288 KERNEL_LOCK(); 289 break; 290 } 291 292 return (SL_LOCKED); 293 } 294 295 void 296 sounlock(struct socket *so, int s) 297 { 298 KASSERT(s == SL_LOCKED || s == SL_NOUNLOCK); 299 300 if (s != SL_LOCKED) 301 return; 302 303 switch (so->so_proto->pr_domain->dom_family) { 304 case PF_INET: 305 case PF_INET6: 306 NET_UNLOCK(); 307 break; 308 case PF_UNIX: 309 case PF_ROUTE: 310 case PF_KEY: 311 default: 312 KERNEL_UNLOCK(); 313 break; 314 } 315 } 316 317 void 318 soassertlocked(struct socket *so) 319 { 320 switch (so->so_proto->pr_domain->dom_family) { 321 case PF_INET: 322 case PF_INET6: 323 NET_ASSERT_LOCKED(); 324 break; 325 case PF_UNIX: 326 case PF_ROUTE: 327 case PF_KEY: 328 default: 329 KERNEL_ASSERT_LOCKED(); 330 break; 331 } 332 } 333 334 int 335 sosleep_nsec(struct socket *so, void *ident, int prio, const char *wmesg, 336 uint64_t nsecs) 337 { 338 if ((so->so_proto->pr_domain->dom_family != PF_UNIX) && 339 (so->so_proto->pr_domain->dom_family != PF_ROUTE) && 340 (so->so_proto->pr_domain->dom_family != PF_KEY)) { 341 return rwsleep_nsec(ident, &netlock, prio, wmesg, nsecs); 342 } else 343 return tsleep_nsec(ident, prio, wmesg, nsecs); 344 } 345 346 /* 347 * Wait for data to arrive at/drain from a socket buffer. 348 */ 349 int 350 sbwait(struct socket *so, struct sockbuf *sb) 351 { 352 int prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 353 354 soassertlocked(so); 355 356 sb->sb_flags |= SB_WAIT; 357 return sosleep_nsec(so, &sb->sb_cc, prio, "netio", sb->sb_timeo_nsecs); 358 } 359 360 int 361 sblock(struct socket *so, struct sockbuf *sb, int wait) 362 { 363 int error, prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 364 365 soassertlocked(so); 366 367 if ((sb->sb_flags & SB_LOCK) == 0) { 368 sb->sb_flags |= SB_LOCK; 369 return (0); 370 } 371 if (wait & M_NOWAIT) 372 return (EWOULDBLOCK); 373 374 while (sb->sb_flags & SB_LOCK) { 375 sb->sb_flags |= SB_WANT; 376 error = sosleep_nsec(so, &sb->sb_flags, prio, "netlck", INFSLP); 377 if (error) 378 return (error); 379 } 380 sb->sb_flags |= SB_LOCK; 381 return (0); 382 } 383 384 void 385 sbunlock(struct socket *so, struct sockbuf *sb) 386 { 387 soassertlocked(so); 388 389 sb->sb_flags &= ~SB_LOCK; 390 if (sb->sb_flags & SB_WANT) { 391 sb->sb_flags &= ~SB_WANT; 392 wakeup(&sb->sb_flags); 393 } 394 } 395 396 /* 397 * Wakeup processes waiting on a socket buffer. 398 * Do asynchronous notification via SIGIO 399 * if the socket has the SS_ASYNC flag set. 400 */ 401 void 402 sowakeup(struct socket *so, struct sockbuf *sb) 403 { 404 soassertlocked(so); 405 406 sb->sb_flags &= ~SB_SEL; 407 if (sb->sb_flags & SB_WAIT) { 408 sb->sb_flags &= ~SB_WAIT; 409 wakeup(&sb->sb_cc); 410 } 411 if (so->so_state & SS_ASYNC) 412 pgsigio(&so->so_sigio, SIGIO, 0); 413 selwakeup(&sb->sb_sel); 414 } 415 416 /* 417 * Socket buffer (struct sockbuf) utility routines. 418 * 419 * Each socket contains two socket buffers: one for sending data and 420 * one for receiving data. Each buffer contains a queue of mbufs, 421 * information about the number of mbufs and amount of data in the 422 * queue, and other fields allowing select() statements and notification 423 * on data availability to be implemented. 424 * 425 * Data stored in a socket buffer is maintained as a list of records. 426 * Each record is a list of mbufs chained together with the m_next 427 * field. Records are chained together with the m_nextpkt field. The upper 428 * level routine soreceive() expects the following conventions to be 429 * observed when placing information in the receive buffer: 430 * 431 * 1. If the protocol requires each message be preceded by the sender's 432 * name, then a record containing that name must be present before 433 * any associated data (mbuf's must be of type MT_SONAME). 434 * 2. If the protocol supports the exchange of ``access rights'' (really 435 * just additional data associated with the message), and there are 436 * ``rights'' to be received, then a record containing this data 437 * should be present (mbuf's must be of type MT_CONTROL). 438 * 3. If a name or rights record exists, then it must be followed by 439 * a data record, perhaps of zero length. 440 * 441 * Before using a new socket structure it is first necessary to reserve 442 * buffer space to the socket, by calling sbreserve(). This should commit 443 * some of the available buffer space in the system buffer pool for the 444 * socket (currently, it does nothing but enforce limits). The space 445 * should be released by calling sbrelease() when the socket is destroyed. 446 */ 447 448 int 449 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 450 { 451 soassertlocked(so); 452 453 if (sbreserve(so, &so->so_snd, sndcc)) 454 goto bad; 455 if (sbreserve(so, &so->so_rcv, rcvcc)) 456 goto bad2; 457 so->so_snd.sb_wat = sndcc; 458 so->so_rcv.sb_wat = rcvcc; 459 if (so->so_rcv.sb_lowat == 0) 460 so->so_rcv.sb_lowat = 1; 461 if (so->so_snd.sb_lowat == 0) 462 so->so_snd.sb_lowat = MCLBYTES; 463 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 464 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 465 return (0); 466 bad2: 467 sbrelease(so, &so->so_snd); 468 bad: 469 return (ENOBUFS); 470 } 471 472 /* 473 * Allot mbufs to a sockbuf. 474 * Attempt to scale mbmax so that mbcnt doesn't become limiting 475 * if buffering efficiency is near the normal case. 476 */ 477 int 478 sbreserve(struct socket *so, struct sockbuf *sb, u_long cc) 479 { 480 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 481 soassertlocked(so); 482 483 if (cc == 0 || cc > sb_max) 484 return (1); 485 sb->sb_hiwat = cc; 486 sb->sb_mbmax = max(3 * MAXMCLBYTES, cc * 8); 487 if (sb->sb_lowat > sb->sb_hiwat) 488 sb->sb_lowat = sb->sb_hiwat; 489 return (0); 490 } 491 492 /* 493 * In low memory situation, do not accept any greater than normal request. 494 */ 495 int 496 sbcheckreserve(u_long cnt, u_long defcnt) 497 { 498 if (cnt > defcnt && sbchecklowmem()) 499 return (ENOBUFS); 500 return (0); 501 } 502 503 int 504 sbchecklowmem(void) 505 { 506 static int sblowmem; 507 508 if (mclpools[0].pr_nout < mclpools[0].pr_hardlimit * 60 / 100 || 509 mbpool.pr_nout < mbpool.pr_hardlimit * 60 / 100) 510 sblowmem = 0; 511 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 80 / 100 || 512 mbpool.pr_nout > mbpool.pr_hardlimit * 80 / 100) 513 sblowmem = 1; 514 return (sblowmem); 515 } 516 517 /* 518 * Free mbufs held by a socket, and reserved mbuf space. 519 */ 520 void 521 sbrelease(struct socket *so, struct sockbuf *sb) 522 { 523 524 sbflush(so, sb); 525 sb->sb_hiwat = sb->sb_mbmax = 0; 526 } 527 528 /* 529 * Routines to add and remove 530 * data from an mbuf queue. 531 * 532 * The routines sbappend() or sbappendrecord() are normally called to 533 * append new mbufs to a socket buffer, after checking that adequate 534 * space is available, comparing the function sbspace() with the amount 535 * of data to be added. sbappendrecord() differs from sbappend() in 536 * that data supplied is treated as the beginning of a new record. 537 * To place a sender's address, optional access rights, and data in a 538 * socket receive buffer, sbappendaddr() should be used. To place 539 * access rights and data in a socket receive buffer, sbappendrights() 540 * should be used. In either case, the new data begins a new record. 541 * Note that unlike sbappend() and sbappendrecord(), these routines check 542 * for the caller that there will be enough space to store the data. 543 * Each fails if there is not enough space, or if it cannot find mbufs 544 * to store additional information in. 545 * 546 * Reliable protocols may use the socket send buffer to hold data 547 * awaiting acknowledgement. Data is normally copied from a socket 548 * send buffer in a protocol with m_copym for output to a peer, 549 * and then removing the data from the socket buffer with sbdrop() 550 * or sbdroprecord() when the data is acknowledged by the peer. 551 */ 552 553 #ifdef SOCKBUF_DEBUG 554 void 555 sblastrecordchk(struct sockbuf *sb, const char *where) 556 { 557 struct mbuf *m = sb->sb_mb; 558 559 while (m && m->m_nextpkt) 560 m = m->m_nextpkt; 561 562 if (m != sb->sb_lastrecord) { 563 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 564 sb->sb_mb, sb->sb_lastrecord, m); 565 printf("packet chain:\n"); 566 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 567 printf("\t%p\n", m); 568 panic("sblastrecordchk from %s", where); 569 } 570 } 571 572 void 573 sblastmbufchk(struct sockbuf *sb, const char *where) 574 { 575 struct mbuf *m = sb->sb_mb; 576 struct mbuf *n; 577 578 while (m && m->m_nextpkt) 579 m = m->m_nextpkt; 580 581 while (m && m->m_next) 582 m = m->m_next; 583 584 if (m != sb->sb_mbtail) { 585 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 586 sb->sb_mb, sb->sb_mbtail, m); 587 printf("packet tree:\n"); 588 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 589 printf("\t"); 590 for (n = m; n != NULL; n = n->m_next) 591 printf("%p ", n); 592 printf("\n"); 593 } 594 panic("sblastmbufchk from %s", where); 595 } 596 } 597 #endif /* SOCKBUF_DEBUG */ 598 599 #define SBLINKRECORD(sb, m0) \ 600 do { \ 601 if ((sb)->sb_lastrecord != NULL) \ 602 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 603 else \ 604 (sb)->sb_mb = (m0); \ 605 (sb)->sb_lastrecord = (m0); \ 606 } while (/*CONSTCOND*/0) 607 608 /* 609 * Append mbuf chain m to the last record in the 610 * socket buffer sb. The additional space associated 611 * the mbuf chain is recorded in sb. Empty mbufs are 612 * discarded and mbufs are compacted where possible. 613 */ 614 void 615 sbappend(struct socket *so, struct sockbuf *sb, struct mbuf *m) 616 { 617 struct mbuf *n; 618 619 if (m == NULL) 620 return; 621 622 SBLASTRECORDCHK(sb, "sbappend 1"); 623 624 if ((n = sb->sb_lastrecord) != NULL) { 625 /* 626 * XXX Would like to simply use sb_mbtail here, but 627 * XXX I need to verify that I won't miss an EOR that 628 * XXX way. 629 */ 630 do { 631 if (n->m_flags & M_EOR) { 632 sbappendrecord(so, sb, m); /* XXXXXX!!!! */ 633 return; 634 } 635 } while (n->m_next && (n = n->m_next)); 636 } else { 637 /* 638 * If this is the first record in the socket buffer, it's 639 * also the last record. 640 */ 641 sb->sb_lastrecord = m; 642 } 643 sbcompress(sb, m, n); 644 SBLASTRECORDCHK(sb, "sbappend 2"); 645 } 646 647 /* 648 * This version of sbappend() should only be used when the caller 649 * absolutely knows that there will never be more than one record 650 * in the socket buffer, that is, a stream protocol (such as TCP). 651 */ 652 void 653 sbappendstream(struct socket *so, struct sockbuf *sb, struct mbuf *m) 654 { 655 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 656 soassertlocked(so); 657 KDASSERT(m->m_nextpkt == NULL); 658 KASSERT(sb->sb_mb == sb->sb_lastrecord); 659 660 SBLASTMBUFCHK(sb, __func__); 661 662 sbcompress(sb, m, sb->sb_mbtail); 663 664 sb->sb_lastrecord = sb->sb_mb; 665 SBLASTRECORDCHK(sb, __func__); 666 } 667 668 #ifdef SOCKBUF_DEBUG 669 void 670 sbcheck(struct sockbuf *sb) 671 { 672 struct mbuf *m, *n; 673 u_long len = 0, mbcnt = 0; 674 675 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 676 for (n = m; n; n = n->m_next) { 677 len += n->m_len; 678 mbcnt += MSIZE; 679 if (n->m_flags & M_EXT) 680 mbcnt += n->m_ext.ext_size; 681 if (m != n && n->m_nextpkt) 682 panic("sbcheck nextpkt"); 683 } 684 } 685 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 686 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 687 mbcnt, sb->sb_mbcnt); 688 panic("sbcheck"); 689 } 690 } 691 #endif 692 693 /* 694 * As above, except the mbuf chain 695 * begins a new record. 696 */ 697 void 698 sbappendrecord(struct socket *so, struct sockbuf *sb, struct mbuf *m0) 699 { 700 struct mbuf *m; 701 702 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 703 soassertlocked(so); 704 705 if (m0 == NULL) 706 return; 707 708 /* 709 * Put the first mbuf on the queue. 710 * Note this permits zero length records. 711 */ 712 sballoc(sb, m0); 713 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 714 SBLINKRECORD(sb, m0); 715 m = m0->m_next; 716 m0->m_next = NULL; 717 if (m && (m0->m_flags & M_EOR)) { 718 m0->m_flags &= ~M_EOR; 719 m->m_flags |= M_EOR; 720 } 721 sbcompress(sb, m, m0); 722 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 723 } 724 725 /* 726 * As above except that OOB data 727 * is inserted at the beginning of the sockbuf, 728 * but after any other OOB data. 729 */ 730 void 731 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 732 { 733 struct mbuf *m, **mp; 734 735 if (m0 == NULL) 736 return; 737 738 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 739 740 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 741 again: 742 switch (m->m_type) { 743 744 case MT_OOBDATA: 745 continue; /* WANT next train */ 746 747 case MT_CONTROL: 748 if ((m = m->m_next) != NULL) 749 goto again; /* inspect THIS train further */ 750 } 751 break; 752 } 753 /* 754 * Put the first mbuf on the queue. 755 * Note this permits zero length records. 756 */ 757 sballoc(sb, m0); 758 m0->m_nextpkt = *mp; 759 if (*mp == NULL) { 760 /* m0 is actually the new tail */ 761 sb->sb_lastrecord = m0; 762 } 763 *mp = m0; 764 m = m0->m_next; 765 m0->m_next = NULL; 766 if (m && (m0->m_flags & M_EOR)) { 767 m0->m_flags &= ~M_EOR; 768 m->m_flags |= M_EOR; 769 } 770 sbcompress(sb, m, m0); 771 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 772 } 773 774 /* 775 * Append address and data, and optionally, control (ancillary) data 776 * to the receive queue of a socket. If present, 777 * m0 must include a packet header with total length. 778 * Returns 0 if no space in sockbuf or insufficient mbufs. 779 */ 780 int 781 sbappendaddr(struct socket *so, struct sockbuf *sb, const struct sockaddr *asa, 782 struct mbuf *m0, struct mbuf *control) 783 { 784 struct mbuf *m, *n, *nlast; 785 int space = asa->sa_len; 786 787 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 788 panic("sbappendaddr"); 789 if (m0) 790 space += m0->m_pkthdr.len; 791 for (n = control; n; n = n->m_next) { 792 space += n->m_len; 793 if (n->m_next == NULL) /* keep pointer to last control buf */ 794 break; 795 } 796 if (space > sbspace(so, sb)) 797 return (0); 798 if (asa->sa_len > MLEN) 799 return (0); 800 MGET(m, M_DONTWAIT, MT_SONAME); 801 if (m == NULL) 802 return (0); 803 m->m_len = asa->sa_len; 804 memcpy(mtod(m, caddr_t), asa, asa->sa_len); 805 if (n) 806 n->m_next = m0; /* concatenate data to control */ 807 else 808 control = m0; 809 m->m_next = control; 810 811 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 812 813 for (n = m; n->m_next != NULL; n = n->m_next) 814 sballoc(sb, n); 815 sballoc(sb, n); 816 nlast = n; 817 SBLINKRECORD(sb, m); 818 819 sb->sb_mbtail = nlast; 820 SBLASTMBUFCHK(sb, "sbappendaddr"); 821 822 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 823 824 return (1); 825 } 826 827 int 828 sbappendcontrol(struct socket *so, struct sockbuf *sb, struct mbuf *m0, 829 struct mbuf *control) 830 { 831 struct mbuf *m, *mlast, *n; 832 int space = 0; 833 834 if (control == NULL) 835 panic("sbappendcontrol"); 836 for (m = control; ; m = m->m_next) { 837 space += m->m_len; 838 if (m->m_next == NULL) 839 break; 840 } 841 n = m; /* save pointer to last control buffer */ 842 for (m = m0; m; m = m->m_next) 843 space += m->m_len; 844 if (space > sbspace(so, sb)) 845 return (0); 846 n->m_next = m0; /* concatenate data to control */ 847 848 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 849 850 for (m = control; m->m_next != NULL; m = m->m_next) 851 sballoc(sb, m); 852 sballoc(sb, m); 853 mlast = m; 854 SBLINKRECORD(sb, control); 855 856 sb->sb_mbtail = mlast; 857 SBLASTMBUFCHK(sb, "sbappendcontrol"); 858 859 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 860 861 return (1); 862 } 863 864 /* 865 * Compress mbuf chain m into the socket 866 * buffer sb following mbuf n. If n 867 * is null, the buffer is presumed empty. 868 */ 869 void 870 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 871 { 872 int eor = 0; 873 struct mbuf *o; 874 875 while (m) { 876 eor |= m->m_flags & M_EOR; 877 if (m->m_len == 0 && 878 (eor == 0 || 879 (((o = m->m_next) || (o = n)) && 880 o->m_type == m->m_type))) { 881 if (sb->sb_lastrecord == m) 882 sb->sb_lastrecord = m->m_next; 883 m = m_free(m); 884 continue; 885 } 886 if (n && (n->m_flags & M_EOR) == 0 && 887 /* m_trailingspace() checks buffer writeability */ 888 m->m_len <= ((n->m_flags & M_EXT)? n->m_ext.ext_size : 889 MCLBYTES) / 4 && /* XXX Don't copy too much */ 890 m->m_len <= m_trailingspace(n) && 891 n->m_type == m->m_type) { 892 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t), 893 m->m_len); 894 n->m_len += m->m_len; 895 sb->sb_cc += m->m_len; 896 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 897 sb->sb_datacc += m->m_len; 898 m = m_free(m); 899 continue; 900 } 901 if (n) 902 n->m_next = m; 903 else 904 sb->sb_mb = m; 905 sb->sb_mbtail = m; 906 sballoc(sb, m); 907 n = m; 908 m->m_flags &= ~M_EOR; 909 m = m->m_next; 910 n->m_next = NULL; 911 } 912 if (eor) { 913 if (n) 914 n->m_flags |= eor; 915 else 916 printf("semi-panic: sbcompress"); 917 } 918 SBLASTMBUFCHK(sb, __func__); 919 } 920 921 /* 922 * Free all mbufs in a sockbuf. 923 * Check that all resources are reclaimed. 924 */ 925 void 926 sbflush(struct socket *so, struct sockbuf *sb) 927 { 928 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 929 KASSERT((sb->sb_flags & SB_LOCK) == 0); 930 931 while (sb->sb_mbcnt) 932 sbdrop(so, sb, (int)sb->sb_cc); 933 934 KASSERT(sb->sb_cc == 0); 935 KASSERT(sb->sb_datacc == 0); 936 KASSERT(sb->sb_mb == NULL); 937 KASSERT(sb->sb_mbtail == NULL); 938 KASSERT(sb->sb_lastrecord == NULL); 939 } 940 941 /* 942 * Drop data from (the front of) a sockbuf. 943 */ 944 void 945 sbdrop(struct socket *so, struct sockbuf *sb, int len) 946 { 947 struct mbuf *m, *mn; 948 struct mbuf *next; 949 950 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 951 soassertlocked(so); 952 953 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 954 while (len > 0) { 955 if (m == NULL) { 956 if (next == NULL) 957 panic("sbdrop"); 958 m = next; 959 next = m->m_nextpkt; 960 continue; 961 } 962 if (m->m_len > len) { 963 m->m_len -= len; 964 m->m_data += len; 965 sb->sb_cc -= len; 966 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 967 sb->sb_datacc -= len; 968 break; 969 } 970 len -= m->m_len; 971 sbfree(sb, m); 972 mn = m_free(m); 973 m = mn; 974 } 975 while (m && m->m_len == 0) { 976 sbfree(sb, m); 977 mn = m_free(m); 978 m = mn; 979 } 980 if (m) { 981 sb->sb_mb = m; 982 m->m_nextpkt = next; 983 } else 984 sb->sb_mb = next; 985 /* 986 * First part is an inline SB_EMPTY_FIXUP(). Second part 987 * makes sure sb_lastrecord is up-to-date if we dropped 988 * part of the last record. 989 */ 990 m = sb->sb_mb; 991 if (m == NULL) { 992 sb->sb_mbtail = NULL; 993 sb->sb_lastrecord = NULL; 994 } else if (m->m_nextpkt == NULL) 995 sb->sb_lastrecord = m; 996 } 997 998 /* 999 * Drop a record off the front of a sockbuf 1000 * and move the next record to the front. 1001 */ 1002 void 1003 sbdroprecord(struct sockbuf *sb) 1004 { 1005 struct mbuf *m, *mn; 1006 1007 m = sb->sb_mb; 1008 if (m) { 1009 sb->sb_mb = m->m_nextpkt; 1010 do { 1011 sbfree(sb, m); 1012 mn = m_free(m); 1013 } while ((m = mn) != NULL); 1014 } 1015 SB_EMPTY_FIXUP(sb); 1016 } 1017 1018 /* 1019 * Create a "control" mbuf containing the specified data 1020 * with the specified type for presentation on a socket buffer. 1021 */ 1022 struct mbuf * 1023 sbcreatecontrol(const void *p, size_t size, int type, int level) 1024 { 1025 struct cmsghdr *cp; 1026 struct mbuf *m; 1027 1028 if (CMSG_SPACE(size) > MCLBYTES) { 1029 printf("sbcreatecontrol: message too large %zu\n", size); 1030 return (NULL); 1031 } 1032 1033 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 1034 return (NULL); 1035 if (CMSG_SPACE(size) > MLEN) { 1036 MCLGET(m, M_DONTWAIT); 1037 if ((m->m_flags & M_EXT) == 0) { 1038 m_free(m); 1039 return NULL; 1040 } 1041 } 1042 cp = mtod(m, struct cmsghdr *); 1043 memset(cp, 0, CMSG_SPACE(size)); 1044 memcpy(CMSG_DATA(cp), p, size); 1045 m->m_len = CMSG_SPACE(size); 1046 cp->cmsg_len = CMSG_LEN(size); 1047 cp->cmsg_level = level; 1048 cp->cmsg_type = type; 1049 return (m); 1050 } 1051