1 /* $OpenBSD: uipc_socket2.c,v 1.50 2009/11/09 17:53:39 nicm Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/file.h> 39 #include <sys/buf.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/protosw.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/signalvar.h> 46 #include <sys/event.h> 47 #include <sys/pool.h> 48 49 /* 50 * Primitive routines for operating on sockets and socket buffers 51 */ 52 53 u_long sb_max = SB_MAX; /* patchable */ 54 55 extern struct pool mclpools[]; 56 57 /* 58 * Procedures to manipulate state flags of socket 59 * and do appropriate wakeups. Normal sequence from the 60 * active (originating) side is that soisconnecting() is 61 * called during processing of connect() call, 62 * resulting in an eventual call to soisconnected() if/when the 63 * connection is established. When the connection is torn down 64 * soisdisconnecting() is called during processing of disconnect() call, 65 * and soisdisconnected() is called when the connection to the peer 66 * is totally severed. The semantics of these routines are such that 67 * connectionless protocols can call soisconnected() and soisdisconnected() 68 * only, bypassing the in-progress calls when setting up a ``connection'' 69 * takes no time. 70 * 71 * From the passive side, a socket is created with 72 * two queues of sockets: so_q0 for connections in progress 73 * and so_q for connections already made and awaiting user acceptance. 74 * As a protocol is preparing incoming connections, it creates a socket 75 * structure queued on so_q0 by calling sonewconn(). When the connection 76 * is established, soisconnected() is called, and transfers the 77 * socket structure to so_q, making it available to accept(). 78 * 79 * If a socket is closed with sockets on either 80 * so_q0 or so_q, these sockets are dropped. 81 * 82 * If higher level protocols are implemented in 83 * the kernel, the wakeups done here will sometimes 84 * cause software-interrupt process scheduling. 85 */ 86 87 void 88 soisconnecting(struct socket *so) 89 { 90 91 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 92 so->so_state |= SS_ISCONNECTING; 93 } 94 95 void 96 soisconnected(struct socket *so) 97 { 98 struct socket *head = so->so_head; 99 100 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 101 so->so_state |= SS_ISCONNECTED; 102 if (head && soqremque(so, 0)) { 103 soqinsque(head, so, 1); 104 sorwakeup(head); 105 wakeup_one(&head->so_timeo); 106 } else { 107 wakeup(&so->so_timeo); 108 sorwakeup(so); 109 sowwakeup(so); 110 } 111 } 112 113 void 114 soisdisconnecting(struct socket *so) 115 { 116 117 so->so_state &= ~SS_ISCONNECTING; 118 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 119 wakeup(&so->so_timeo); 120 sowwakeup(so); 121 sorwakeup(so); 122 } 123 124 void 125 soisdisconnected(struct socket *so) 126 { 127 128 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 129 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 130 wakeup(&so->so_timeo); 131 sowwakeup(so); 132 sorwakeup(so); 133 } 134 135 /* 136 * When an attempt at a new connection is noted on a socket 137 * which accepts connections, sonewconn is called. If the 138 * connection is possible (subject to space constraints, etc.) 139 * then we allocate a new structure, properly linked into the 140 * data structure of the original socket, and return this. 141 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 142 * 143 * Must be called at splsoftnet() 144 */ 145 struct socket * 146 sonewconn(struct socket *head, int connstatus) 147 { 148 struct socket *so; 149 int soqueue = connstatus ? 1 : 0; 150 extern u_long unpst_sendspace, unpst_recvspace; 151 u_long snd_sb_hiwat, rcv_sb_hiwat; 152 153 splsoftassert(IPL_SOFTNET); 154 155 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 156 return ((struct socket *)0); 157 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 158 return ((struct socket *)0); 159 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 160 if (so == NULL) 161 return ((struct socket *)0); 162 so->so_type = head->so_type; 163 so->so_options = head->so_options &~ SO_ACCEPTCONN; 164 so->so_linger = head->so_linger; 165 so->so_state = head->so_state | SS_NOFDREF; 166 so->so_proto = head->so_proto; 167 so->so_timeo = head->so_timeo; 168 so->so_pgid = head->so_pgid; 169 so->so_euid = head->so_euid; 170 so->so_ruid = head->so_ruid; 171 so->so_egid = head->so_egid; 172 so->so_rgid = head->so_rgid; 173 so->so_cpid = head->so_cpid; 174 so->so_siguid = head->so_siguid; 175 so->so_sigeuid = head->so_sigeuid; 176 177 /* 178 * If we are tight on mbuf clusters, create the new socket 179 * with the minimum. Sorry, you lose. 180 */ 181 snd_sb_hiwat = head->so_snd.sb_hiwat; 182 if (sbcheckreserve(snd_sb_hiwat, unpst_sendspace)) 183 snd_sb_hiwat = unpst_sendspace; /* and udp? */ 184 rcv_sb_hiwat = head->so_rcv.sb_hiwat; 185 if (sbcheckreserve(rcv_sb_hiwat, unpst_recvspace)) 186 rcv_sb_hiwat = unpst_recvspace; /* and udp? */ 187 188 (void) soreserve(so, snd_sb_hiwat, rcv_sb_hiwat); 189 soqinsque(head, so, soqueue); 190 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL, NULL, 191 curproc)) { 192 (void) soqremque(so, soqueue); 193 pool_put(&socket_pool, so); 194 return ((struct socket *)0); 195 } 196 if (connstatus) { 197 sorwakeup(head); 198 wakeup(&head->so_timeo); 199 so->so_state |= connstatus; 200 } 201 return (so); 202 } 203 204 void 205 soqinsque(struct socket *head, struct socket *so, int q) 206 { 207 208 #ifdef DIAGNOSTIC 209 if (so->so_onq != NULL) 210 panic("soqinsque"); 211 #endif 212 213 so->so_head = head; 214 if (q == 0) { 215 head->so_q0len++; 216 so->so_onq = &head->so_q0; 217 } else { 218 head->so_qlen++; 219 so->so_onq = &head->so_q; 220 } 221 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 222 } 223 224 int 225 soqremque(struct socket *so, int q) 226 { 227 struct socket *head; 228 229 head = so->so_head; 230 if (q == 0) { 231 if (so->so_onq != &head->so_q0) 232 return (0); 233 head->so_q0len--; 234 } else { 235 if (so->so_onq != &head->so_q) 236 return (0); 237 head->so_qlen--; 238 } 239 TAILQ_REMOVE(so->so_onq, so, so_qe); 240 so->so_onq = NULL; 241 so->so_head = NULL; 242 return (1); 243 } 244 245 /* 246 * Socantsendmore indicates that no more data will be sent on the 247 * socket; it would normally be applied to a socket when the user 248 * informs the system that no more data is to be sent, by the protocol 249 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 250 * will be received, and will normally be applied to the socket by a 251 * protocol when it detects that the peer will send no more data. 252 * Data queued for reading in the socket may yet be read. 253 */ 254 255 void 256 socantsendmore(struct socket *so) 257 { 258 259 so->so_state |= SS_CANTSENDMORE; 260 sowwakeup(so); 261 } 262 263 void 264 socantrcvmore(struct socket *so) 265 { 266 267 so->so_state |= SS_CANTRCVMORE; 268 sorwakeup(so); 269 } 270 271 /* 272 * Wait for data to arrive at/drain from a socket buffer. 273 */ 274 int 275 sbwait(struct sockbuf *sb) 276 { 277 278 sb->sb_flags |= SB_WAIT; 279 return (tsleep(&sb->sb_cc, 280 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "netio", 281 sb->sb_timeo)); 282 } 283 284 /* 285 * Lock a sockbuf already known to be locked; 286 * return any error returned from sleep (EINTR). 287 */ 288 int 289 sb_lock(struct sockbuf *sb) 290 { 291 int error; 292 293 while (sb->sb_flags & SB_LOCK) { 294 sb->sb_flags |= SB_WANT; 295 error = tsleep(&sb->sb_flags, 296 (sb->sb_flags & SB_NOINTR) ? 297 PSOCK : PSOCK|PCATCH, "netlck", 0); 298 if (error) 299 return (error); 300 } 301 sb->sb_flags |= SB_LOCK; 302 return (0); 303 } 304 305 /* 306 * Wakeup processes waiting on a socket buffer. 307 * Do asynchronous notification via SIGIO 308 * if the socket has the SS_ASYNC flag set. 309 */ 310 void 311 sowakeup(struct socket *so, struct sockbuf *sb) 312 { 313 selwakeup(&sb->sb_sel); 314 sb->sb_flags &= ~SB_SEL; 315 if (sb->sb_flags & SB_WAIT) { 316 sb->sb_flags &= ~SB_WAIT; 317 wakeup(&sb->sb_cc); 318 } 319 if (so->so_state & SS_ASYNC) 320 csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid); 321 } 322 323 /* 324 * Socket buffer (struct sockbuf) utility routines. 325 * 326 * Each socket contains two socket buffers: one for sending data and 327 * one for receiving data. Each buffer contains a queue of mbufs, 328 * information about the number of mbufs and amount of data in the 329 * queue, and other fields allowing select() statements and notification 330 * on data availability to be implemented. 331 * 332 * Data stored in a socket buffer is maintained as a list of records. 333 * Each record is a list of mbufs chained together with the m_next 334 * field. Records are chained together with the m_nextpkt field. The upper 335 * level routine soreceive() expects the following conventions to be 336 * observed when placing information in the receive buffer: 337 * 338 * 1. If the protocol requires each message be preceded by the sender's 339 * name, then a record containing that name must be present before 340 * any associated data (mbuf's must be of type MT_SONAME). 341 * 2. If the protocol supports the exchange of ``access rights'' (really 342 * just additional data associated with the message), and there are 343 * ``rights'' to be received, then a record containing this data 344 * should be present (mbuf's must be of type MT_CONTROL). 345 * 3. If a name or rights record exists, then it must be followed by 346 * a data record, perhaps of zero length. 347 * 348 * Before using a new socket structure it is first necessary to reserve 349 * buffer space to the socket, by calling sbreserve(). This should commit 350 * some of the available buffer space in the system buffer pool for the 351 * socket (currently, it does nothing but enforce limits). The space 352 * should be released by calling sbrelease() when the socket is destroyed. 353 */ 354 355 int 356 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 357 { 358 359 if (sbreserve(&so->so_snd, sndcc)) 360 goto bad; 361 if (sbreserve(&so->so_rcv, rcvcc)) 362 goto bad2; 363 if (so->so_rcv.sb_lowat == 0) 364 so->so_rcv.sb_lowat = 1; 365 if (so->so_snd.sb_lowat == 0) 366 so->so_snd.sb_lowat = MCLBYTES; 367 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 368 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 369 return (0); 370 bad2: 371 sbrelease(&so->so_snd); 372 bad: 373 return (ENOBUFS); 374 } 375 376 /* 377 * Allot mbufs to a sockbuf. 378 * Attempt to scale mbmax so that mbcnt doesn't become limiting 379 * if buffering efficiency is near the normal case. 380 */ 381 int 382 sbreserve(struct sockbuf *sb, u_long cc) 383 { 384 385 if (cc == 0 || cc > sb_max) 386 return (1); 387 sb->sb_hiwat = cc; 388 sb->sb_mbmax = min(cc * 2, sb_max + (sb_max / MCLBYTES) * MSIZE); 389 if (sb->sb_lowat > sb->sb_hiwat) 390 sb->sb_lowat = sb->sb_hiwat; 391 return (0); 392 } 393 394 /* 395 * If over 50% of mbuf clusters in use, do not accept any 396 * greater than normal request. 397 */ 398 int 399 sbcheckreserve(u_long cnt, u_long defcnt) 400 { 401 if (cnt > defcnt && 402 mclpools[0].pr_nout> mclpools[0].pr_hardlimit / 2) 403 return (ENOBUFS); 404 return (0); 405 } 406 407 /* 408 * Free mbufs held by a socket, and reserved mbuf space. 409 */ 410 void 411 sbrelease(struct sockbuf *sb) 412 { 413 414 sbflush(sb); 415 sb->sb_hiwat = sb->sb_mbmax = 0; 416 } 417 418 /* 419 * Routines to add and remove 420 * data from an mbuf queue. 421 * 422 * The routines sbappend() or sbappendrecord() are normally called to 423 * append new mbufs to a socket buffer, after checking that adequate 424 * space is available, comparing the function sbspace() with the amount 425 * of data to be added. sbappendrecord() differs from sbappend() in 426 * that data supplied is treated as the beginning of a new record. 427 * To place a sender's address, optional access rights, and data in a 428 * socket receive buffer, sbappendaddr() should be used. To place 429 * access rights and data in a socket receive buffer, sbappendrights() 430 * should be used. In either case, the new data begins a new record. 431 * Note that unlike sbappend() and sbappendrecord(), these routines check 432 * for the caller that there will be enough space to store the data. 433 * Each fails if there is not enough space, or if it cannot find mbufs 434 * to store additional information in. 435 * 436 * Reliable protocols may use the socket send buffer to hold data 437 * awaiting acknowledgement. Data is normally copied from a socket 438 * send buffer in a protocol with m_copy for output to a peer, 439 * and then removing the data from the socket buffer with sbdrop() 440 * or sbdroprecord() when the data is acknowledged by the peer. 441 */ 442 443 #ifdef SOCKBUF_DEBUG 444 void 445 sblastrecordchk(struct sockbuf *sb, const char *where) 446 { 447 struct mbuf *m = sb->sb_mb; 448 449 while (m && m->m_nextpkt) 450 m = m->m_nextpkt; 451 452 if (m != sb->sb_lastrecord) { 453 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 454 sb->sb_mb, sb->sb_lastrecord, m); 455 printf("packet chain:\n"); 456 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 457 printf("\t%p\n", m); 458 panic("sblastrecordchk from %s", where); 459 } 460 } 461 462 void 463 sblastmbufchk(struct sockbuf *sb, const char *where) 464 { 465 struct mbuf *m = sb->sb_mb; 466 struct mbuf *n; 467 468 while (m && m->m_nextpkt) 469 m = m->m_nextpkt; 470 471 while (m && m->m_next) 472 m = m->m_next; 473 474 if (m != sb->sb_mbtail) { 475 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 476 sb->sb_mb, sb->sb_mbtail, m); 477 printf("packet tree:\n"); 478 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 479 printf("\t"); 480 for (n = m; n != NULL; n = n->m_next) 481 printf("%p ", n); 482 printf("\n"); 483 } 484 panic("sblastmbufchk from %s", where); 485 } 486 } 487 #endif /* SOCKBUF_DEBUG */ 488 489 #define SBLINKRECORD(sb, m0) \ 490 do { \ 491 if ((sb)->sb_lastrecord != NULL) \ 492 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 493 else \ 494 (sb)->sb_mb = (m0); \ 495 (sb)->sb_lastrecord = (m0); \ 496 } while (/*CONSTCOND*/0) 497 498 /* 499 * Append mbuf chain m to the last record in the 500 * socket buffer sb. The additional space associated 501 * the mbuf chain is recorded in sb. Empty mbufs are 502 * discarded and mbufs are compacted where possible. 503 */ 504 void 505 sbappend(struct sockbuf *sb, struct mbuf *m) 506 { 507 struct mbuf *n; 508 509 if (m == NULL) 510 return; 511 512 SBLASTRECORDCHK(sb, "sbappend 1"); 513 514 if ((n = sb->sb_lastrecord) != NULL) { 515 /* 516 * XXX Would like to simply use sb_mbtail here, but 517 * XXX I need to verify that I won't miss an EOR that 518 * XXX way. 519 */ 520 do { 521 if (n->m_flags & M_EOR) { 522 sbappendrecord(sb, m); /* XXXXXX!!!! */ 523 return; 524 } 525 } while (n->m_next && (n = n->m_next)); 526 } else { 527 /* 528 * If this is the first record in the socket buffer, it's 529 * also the last record. 530 */ 531 sb->sb_lastrecord = m; 532 } 533 sbcompress(sb, m, n); 534 SBLASTRECORDCHK(sb, "sbappend 2"); 535 } 536 537 /* 538 * This version of sbappend() should only be used when the caller 539 * absolutely knows that there will never be more than one record 540 * in the socket buffer, that is, a stream protocol (such as TCP). 541 */ 542 void 543 sbappendstream(struct sockbuf *sb, struct mbuf *m) 544 { 545 546 KDASSERT(m->m_nextpkt == NULL); 547 KASSERT(sb->sb_mb == sb->sb_lastrecord); 548 549 SBLASTMBUFCHK(sb, __func__); 550 551 sbcompress(sb, m, sb->sb_mbtail); 552 553 sb->sb_lastrecord = sb->sb_mb; 554 SBLASTRECORDCHK(sb, __func__); 555 } 556 557 #ifdef SOCKBUF_DEBUG 558 void 559 sbcheck(struct sockbuf *sb) 560 { 561 struct mbuf *m; 562 u_long len = 0, mbcnt = 0; 563 564 for (m = sb->sb_mb; m; m = m->m_next) { 565 len += m->m_len; 566 mbcnt += MSIZE; 567 if (m->m_flags & M_EXT) 568 mbcnt += m->m_ext.ext_size; 569 if (m->m_nextpkt) 570 panic("sbcheck nextpkt"); 571 } 572 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 573 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 574 mbcnt, sb->sb_mbcnt); 575 panic("sbcheck"); 576 } 577 } 578 #endif 579 580 /* 581 * As above, except the mbuf chain 582 * begins a new record. 583 */ 584 void 585 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 586 { 587 struct mbuf *m; 588 589 if (m0 == NULL) 590 return; 591 592 /* 593 * Put the first mbuf on the queue. 594 * Note this permits zero length records. 595 */ 596 sballoc(sb, m0); 597 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 598 SBLINKRECORD(sb, m0); 599 m = m0->m_next; 600 m0->m_next = NULL; 601 if (m && (m0->m_flags & M_EOR)) { 602 m0->m_flags &= ~M_EOR; 603 m->m_flags |= M_EOR; 604 } 605 sbcompress(sb, m, m0); 606 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 607 } 608 609 /* 610 * As above except that OOB data 611 * is inserted at the beginning of the sockbuf, 612 * but after any other OOB data. 613 */ 614 void 615 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 616 { 617 struct mbuf *m, **mp; 618 619 if (m0 == NULL) 620 return; 621 622 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 623 624 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 625 again: 626 switch (m->m_type) { 627 628 case MT_OOBDATA: 629 continue; /* WANT next train */ 630 631 case MT_CONTROL: 632 if ((m = m->m_next) != NULL) 633 goto again; /* inspect THIS train further */ 634 } 635 break; 636 } 637 /* 638 * Put the first mbuf on the queue. 639 * Note this permits zero length records. 640 */ 641 sballoc(sb, m0); 642 m0->m_nextpkt = *mp; 643 if (*mp == NULL) { 644 /* m0 is actually the new tail */ 645 sb->sb_lastrecord = m0; 646 } 647 *mp = m0; 648 m = m0->m_next; 649 m0->m_next = NULL; 650 if (m && (m0->m_flags & M_EOR)) { 651 m0->m_flags &= ~M_EOR; 652 m->m_flags |= M_EOR; 653 } 654 sbcompress(sb, m, m0); 655 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 656 } 657 658 /* 659 * Append address and data, and optionally, control (ancillary) data 660 * to the receive queue of a socket. If present, 661 * m0 must include a packet header with total length. 662 * Returns 0 if no space in sockbuf or insufficient mbufs. 663 */ 664 int 665 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, 666 struct mbuf *control) 667 { 668 struct mbuf *m, *n, *nlast; 669 int space = asa->sa_len; 670 671 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 672 panic("sbappendaddr"); 673 if (m0) 674 space += m0->m_pkthdr.len; 675 for (n = control; n; n = n->m_next) { 676 space += n->m_len; 677 if (n->m_next == NULL) /* keep pointer to last control buf */ 678 break; 679 } 680 if (space > sbspace(sb)) 681 return (0); 682 if (asa->sa_len > MLEN) 683 return (0); 684 MGET(m, M_DONTWAIT, MT_SONAME); 685 if (m == NULL) 686 return (0); 687 m->m_len = asa->sa_len; 688 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 689 if (n) 690 n->m_next = m0; /* concatenate data to control */ 691 else 692 control = m0; 693 m->m_next = control; 694 695 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 696 697 for (n = m; n->m_next != NULL; n = n->m_next) 698 sballoc(sb, n); 699 sballoc(sb, n); 700 nlast = n; 701 SBLINKRECORD(sb, m); 702 703 sb->sb_mbtail = nlast; 704 SBLASTMBUFCHK(sb, "sbappendaddr"); 705 706 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 707 708 return (1); 709 } 710 711 int 712 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 713 { 714 struct mbuf *m, *mlast, *n; 715 int space = 0; 716 717 if (control == NULL) 718 panic("sbappendcontrol"); 719 for (m = control; ; m = m->m_next) { 720 space += m->m_len; 721 if (m->m_next == NULL) 722 break; 723 } 724 n = m; /* save pointer to last control buffer */ 725 for (m = m0; m; m = m->m_next) 726 space += m->m_len; 727 if (space > sbspace(sb)) 728 return (0); 729 n->m_next = m0; /* concatenate data to control */ 730 731 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 732 733 for (m = control; m->m_next != NULL; m = m->m_next) 734 sballoc(sb, m); 735 sballoc(sb, m); 736 mlast = m; 737 SBLINKRECORD(sb, control); 738 739 sb->sb_mbtail = mlast; 740 SBLASTMBUFCHK(sb, "sbappendcontrol"); 741 742 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 743 744 return (1); 745 } 746 747 /* 748 * Compress mbuf chain m into the socket 749 * buffer sb following mbuf n. If n 750 * is null, the buffer is presumed empty. 751 */ 752 void 753 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 754 { 755 int eor = 0; 756 struct mbuf *o; 757 758 while (m) { 759 eor |= m->m_flags & M_EOR; 760 if (m->m_len == 0 && 761 (eor == 0 || 762 (((o = m->m_next) || (o = n)) && 763 o->m_type == m->m_type))) { 764 if (sb->sb_lastrecord == m) 765 sb->sb_lastrecord = m->m_next; 766 m = m_free(m); 767 continue; 768 } 769 if (n && (n->m_flags & M_EOR) == 0 && 770 /* M_TRAILINGSPACE() checks buffer writeability */ 771 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 772 m->m_len <= M_TRAILINGSPACE(n) && 773 n->m_type == m->m_type) { 774 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 775 (unsigned)m->m_len); 776 n->m_len += m->m_len; 777 sb->sb_cc += m->m_len; 778 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 779 sb->sb_datacc += m->m_len; 780 m = m_free(m); 781 continue; 782 } 783 if (n) 784 n->m_next = m; 785 else 786 sb->sb_mb = m; 787 sb->sb_mbtail = m; 788 sballoc(sb, m); 789 n = m; 790 m->m_flags &= ~M_EOR; 791 m = m->m_next; 792 n->m_next = NULL; 793 } 794 if (eor) { 795 if (n) 796 n->m_flags |= eor; 797 else 798 printf("semi-panic: sbcompress"); 799 } 800 SBLASTMBUFCHK(sb, __func__); 801 } 802 803 /* 804 * Free all mbufs in a sockbuf. 805 * Check that all resources are reclaimed. 806 */ 807 void 808 sbflush(struct sockbuf *sb) 809 { 810 811 KASSERT((sb->sb_flags & SB_LOCK) == 0); 812 813 while (sb->sb_mbcnt) 814 sbdrop(sb, (int)sb->sb_cc); 815 816 KASSERT(sb->sb_cc == 0); 817 KASSERT(sb->sb_datacc == 0); 818 KASSERT(sb->sb_mb == NULL); 819 KASSERT(sb->sb_mbtail == NULL); 820 KASSERT(sb->sb_lastrecord == NULL); 821 } 822 823 /* 824 * Drop data from (the front of) a sockbuf. 825 */ 826 void 827 sbdrop(struct sockbuf *sb, int len) 828 { 829 struct mbuf *m, *mn; 830 struct mbuf *next; 831 832 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 833 while (len > 0) { 834 if (m == NULL) { 835 if (next == NULL) 836 panic("sbdrop"); 837 m = next; 838 next = m->m_nextpkt; 839 continue; 840 } 841 if (m->m_len > len) { 842 m->m_len -= len; 843 m->m_data += len; 844 sb->sb_cc -= len; 845 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 846 sb->sb_datacc -= len; 847 break; 848 } 849 len -= m->m_len; 850 sbfree(sb, m); 851 MFREE(m, mn); 852 m = mn; 853 } 854 while (m && m->m_len == 0) { 855 sbfree(sb, m); 856 MFREE(m, mn); 857 m = mn; 858 } 859 if (m) { 860 sb->sb_mb = m; 861 m->m_nextpkt = next; 862 } else 863 sb->sb_mb = next; 864 /* 865 * First part is an inline SB_EMPTY_FIXUP(). Second part 866 * makes sure sb_lastrecord is up-to-date if we dropped 867 * part of the last record. 868 */ 869 m = sb->sb_mb; 870 if (m == NULL) { 871 sb->sb_mbtail = NULL; 872 sb->sb_lastrecord = NULL; 873 } else if (m->m_nextpkt == NULL) 874 sb->sb_lastrecord = m; 875 } 876 877 /* 878 * Drop a record off the front of a sockbuf 879 * and move the next record to the front. 880 */ 881 void 882 sbdroprecord(struct sockbuf *sb) 883 { 884 struct mbuf *m, *mn; 885 886 m = sb->sb_mb; 887 if (m) { 888 sb->sb_mb = m->m_nextpkt; 889 do { 890 sbfree(sb, m); 891 MFREE(m, mn); 892 } while ((m = mn) != NULL); 893 } 894 SB_EMPTY_FIXUP(sb); 895 } 896 897 /* 898 * Create a "control" mbuf containing the specified data 899 * with the specified type for presentation on a socket buffer. 900 */ 901 struct mbuf * 902 sbcreatecontrol(caddr_t p, int size, int type, int level) 903 { 904 struct cmsghdr *cp; 905 struct mbuf *m; 906 907 if (CMSG_SPACE(size) > MCLBYTES) { 908 printf("sbcreatecontrol: message too large %d\n", size); 909 return NULL; 910 } 911 912 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 913 return ((struct mbuf *) NULL); 914 if (CMSG_SPACE(size) > MLEN) { 915 MCLGET(m, M_DONTWAIT); 916 if ((m->m_flags & M_EXT) == 0) { 917 m_free(m); 918 return NULL; 919 } 920 } 921 cp = mtod(m, struct cmsghdr *); 922 bcopy(p, CMSG_DATA(cp), size); 923 m->m_len = CMSG_SPACE(size); 924 cp->cmsg_len = CMSG_LEN(size); 925 cp->cmsg_level = level; 926 cp->cmsg_type = type; 927 return (m); 928 } 929