1 /* $OpenBSD: uipc_socket2.c,v 1.101 2019/04/16 13:15:32 yasuoka Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/protosw.h> 40 #include <sys/domain.h> 41 #include <sys/socket.h> 42 #include <sys/socketvar.h> 43 #include <sys/signalvar.h> 44 #include <sys/event.h> 45 #include <sys/pool.h> 46 47 /* 48 * Primitive routines for operating on sockets and socket buffers 49 */ 50 51 u_long sb_max = SB_MAX; /* patchable */ 52 53 extern struct pool mclpools[]; 54 extern struct pool mbpool; 55 56 /* 57 * Procedures to manipulate state flags of socket 58 * and do appropriate wakeups. Normal sequence from the 59 * active (originating) side is that soisconnecting() is 60 * called during processing of connect() call, 61 * resulting in an eventual call to soisconnected() if/when the 62 * connection is established. When the connection is torn down 63 * soisdisconnecting() is called during processing of disconnect() call, 64 * and soisdisconnected() is called when the connection to the peer 65 * is totally severed. The semantics of these routines are such that 66 * connectionless protocols can call soisconnected() and soisdisconnected() 67 * only, bypassing the in-progress calls when setting up a ``connection'' 68 * takes no time. 69 * 70 * From the passive side, a socket is created with 71 * two queues of sockets: so_q0 for connections in progress 72 * and so_q for connections already made and awaiting user acceptance. 73 * As a protocol is preparing incoming connections, it creates a socket 74 * structure queued on so_q0 by calling sonewconn(). When the connection 75 * is established, soisconnected() is called, and transfers the 76 * socket structure to so_q, making it available to accept(). 77 * 78 * If a socket is closed with sockets on either 79 * so_q0 or so_q, these sockets are dropped. 80 * 81 * If higher level protocols are implemented in 82 * the kernel, the wakeups done here will sometimes 83 * cause software-interrupt process scheduling. 84 */ 85 86 void 87 soisconnecting(struct socket *so) 88 { 89 soassertlocked(so); 90 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 91 so->so_state |= SS_ISCONNECTING; 92 } 93 94 void 95 soisconnected(struct socket *so) 96 { 97 struct socket *head = so->so_head; 98 99 soassertlocked(so); 100 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 101 so->so_state |= SS_ISCONNECTED; 102 if (head && soqremque(so, 0)) { 103 soqinsque(head, so, 1); 104 sorwakeup(head); 105 wakeup_one(&head->so_timeo); 106 } else { 107 wakeup(&so->so_timeo); 108 sorwakeup(so); 109 sowwakeup(so); 110 } 111 } 112 113 void 114 soisdisconnecting(struct socket *so) 115 { 116 soassertlocked(so); 117 so->so_state &= ~SS_ISCONNECTING; 118 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 119 wakeup(&so->so_timeo); 120 sowwakeup(so); 121 sorwakeup(so); 122 } 123 124 void 125 soisdisconnected(struct socket *so) 126 { 127 soassertlocked(so); 128 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 129 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 130 wakeup(&so->so_timeo); 131 sowwakeup(so); 132 sorwakeup(so); 133 } 134 135 /* 136 * When an attempt at a new connection is noted on a socket 137 * which accepts connections, sonewconn is called. If the 138 * connection is possible (subject to space constraints, etc.) 139 * then we allocate a new structure, properly linked into the 140 * data structure of the original socket, and return this. 141 * Connstatus may be 0 or SS_ISCONNECTED. 142 */ 143 struct socket * 144 sonewconn(struct socket *head, int connstatus) 145 { 146 struct socket *so; 147 int soqueue = connstatus ? 1 : 0; 148 149 /* 150 * XXXSMP as long as `so' and `head' share the same lock, we 151 * can call soreserve() and pr_attach() below w/o expliclitly 152 * locking `so'. 153 */ 154 soassertlocked(head); 155 156 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 157 return (NULL); 158 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 159 return (NULL); 160 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 161 if (so == NULL) 162 return (NULL); 163 so->so_type = head->so_type; 164 so->so_options = head->so_options &~ SO_ACCEPTCONN; 165 so->so_linger = head->so_linger; 166 so->so_state = head->so_state | SS_NOFDREF; 167 so->so_proto = head->so_proto; 168 so->so_timeo = head->so_timeo; 169 so->so_euid = head->so_euid; 170 so->so_ruid = head->so_ruid; 171 so->so_egid = head->so_egid; 172 so->so_rgid = head->so_rgid; 173 so->so_cpid = head->so_cpid; 174 175 /* 176 * Inherit watermarks but those may get clamped in low mem situations. 177 */ 178 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 179 pool_put(&socket_pool, so); 180 return (NULL); 181 } 182 so->so_snd.sb_wat = head->so_snd.sb_wat; 183 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 184 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 185 so->so_rcv.sb_wat = head->so_rcv.sb_wat; 186 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 187 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 188 189 sigio_init(&so->so_sigio); 190 sigio_copy(&so->so_sigio, &head->so_sigio); 191 192 soqinsque(head, so, soqueue); 193 if ((*so->so_proto->pr_attach)(so, 0)) { 194 (void) soqremque(so, soqueue); 195 sigio_free(&so->so_sigio); 196 pool_put(&socket_pool, so); 197 return (NULL); 198 } 199 if (connstatus) { 200 sorwakeup(head); 201 wakeup(&head->so_timeo); 202 so->so_state |= connstatus; 203 } 204 return (so); 205 } 206 207 void 208 soqinsque(struct socket *head, struct socket *so, int q) 209 { 210 soassertlocked(head); 211 212 #ifdef DIAGNOSTIC 213 if (so->so_onq != NULL) 214 panic("soqinsque"); 215 #endif 216 217 so->so_head = head; 218 if (q == 0) { 219 head->so_q0len++; 220 so->so_onq = &head->so_q0; 221 } else { 222 head->so_qlen++; 223 so->so_onq = &head->so_q; 224 } 225 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 226 } 227 228 int 229 soqremque(struct socket *so, int q) 230 { 231 struct socket *head = so->so_head; 232 233 soassertlocked(head); 234 235 if (q == 0) { 236 if (so->so_onq != &head->so_q0) 237 return (0); 238 head->so_q0len--; 239 } else { 240 if (so->so_onq != &head->so_q) 241 return (0); 242 head->so_qlen--; 243 } 244 TAILQ_REMOVE(so->so_onq, so, so_qe); 245 so->so_onq = NULL; 246 so->so_head = NULL; 247 return (1); 248 } 249 250 /* 251 * Socantsendmore indicates that no more data will be sent on the 252 * socket; it would normally be applied to a socket when the user 253 * informs the system that no more data is to be sent, by the protocol 254 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 255 * will be received, and will normally be applied to the socket by a 256 * protocol when it detects that the peer will send no more data. 257 * Data queued for reading in the socket may yet be read. 258 */ 259 260 void 261 socantsendmore(struct socket *so) 262 { 263 soassertlocked(so); 264 so->so_state |= SS_CANTSENDMORE; 265 sowwakeup(so); 266 } 267 268 void 269 socantrcvmore(struct socket *so) 270 { 271 soassertlocked(so); 272 so->so_state |= SS_CANTRCVMORE; 273 sorwakeup(so); 274 } 275 276 int 277 solock(struct socket *so) 278 { 279 switch (so->so_proto->pr_domain->dom_family) { 280 case PF_INET: 281 case PF_INET6: 282 NET_LOCK(); 283 break; 284 case PF_UNIX: 285 case PF_ROUTE: 286 case PF_KEY: 287 default: 288 KERNEL_LOCK(); 289 break; 290 } 291 292 return (SL_LOCKED); 293 } 294 295 void 296 sounlock(struct socket *so, int s) 297 { 298 KASSERT(s == SL_LOCKED || s == SL_NOUNLOCK); 299 300 if (s != SL_LOCKED) 301 return; 302 303 switch (so->so_proto->pr_domain->dom_family) { 304 case PF_INET: 305 case PF_INET6: 306 NET_UNLOCK(); 307 break; 308 case PF_UNIX: 309 case PF_ROUTE: 310 case PF_KEY: 311 default: 312 KERNEL_UNLOCK(); 313 break; 314 } 315 } 316 317 void 318 soassertlocked(struct socket *so) 319 { 320 switch (so->so_proto->pr_domain->dom_family) { 321 case PF_INET: 322 case PF_INET6: 323 NET_ASSERT_LOCKED(); 324 break; 325 case PF_UNIX: 326 case PF_ROUTE: 327 case PF_KEY: 328 default: 329 KERNEL_ASSERT_LOCKED(); 330 break; 331 } 332 } 333 334 int 335 sosleep(struct socket *so, void *ident, int prio, const char *wmesg, int timo) 336 { 337 if ((so->so_proto->pr_domain->dom_family != PF_UNIX) && 338 (so->so_proto->pr_domain->dom_family != PF_ROUTE) && 339 (so->so_proto->pr_domain->dom_family != PF_KEY)) { 340 return rwsleep(ident, &netlock, prio, wmesg, timo); 341 } else 342 return tsleep(ident, prio, wmesg, timo); 343 } 344 345 /* 346 * Wait for data to arrive at/drain from a socket buffer. 347 */ 348 int 349 sbwait(struct socket *so, struct sockbuf *sb) 350 { 351 int prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 352 353 soassertlocked(so); 354 355 sb->sb_flags |= SB_WAIT; 356 return (sosleep(so, &sb->sb_cc, prio, "netio", sb->sb_timeo)); 357 } 358 359 int 360 sblock(struct socket *so, struct sockbuf *sb, int wait) 361 { 362 int error, prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 363 364 soassertlocked(so); 365 366 if ((sb->sb_flags & SB_LOCK) == 0) { 367 sb->sb_flags |= SB_LOCK; 368 return (0); 369 } 370 if (wait & M_NOWAIT) 371 return (EWOULDBLOCK); 372 373 while (sb->sb_flags & SB_LOCK) { 374 sb->sb_flags |= SB_WANT; 375 error = sosleep(so, &sb->sb_flags, prio, "netlck", 0); 376 if (error) 377 return (error); 378 } 379 sb->sb_flags |= SB_LOCK; 380 return (0); 381 } 382 383 void 384 sbunlock(struct socket *so, struct sockbuf *sb) 385 { 386 soassertlocked(so); 387 388 sb->sb_flags &= ~SB_LOCK; 389 if (sb->sb_flags & SB_WANT) { 390 sb->sb_flags &= ~SB_WANT; 391 wakeup(&sb->sb_flags); 392 } 393 } 394 395 /* 396 * Wakeup processes waiting on a socket buffer. 397 * Do asynchronous notification via SIGIO 398 * if the socket has the SS_ASYNC flag set. 399 */ 400 void 401 sowakeup(struct socket *so, struct sockbuf *sb) 402 { 403 soassertlocked(so); 404 405 sb->sb_flags &= ~SB_SEL; 406 if (sb->sb_flags & SB_WAIT) { 407 sb->sb_flags &= ~SB_WAIT; 408 wakeup(&sb->sb_cc); 409 } 410 KERNEL_LOCK(); 411 if (so->so_state & SS_ASYNC) 412 pgsigio(&so->so_sigio, SIGIO, 0); 413 selwakeup(&sb->sb_sel); 414 KERNEL_UNLOCK(); 415 } 416 417 /* 418 * Socket buffer (struct sockbuf) utility routines. 419 * 420 * Each socket contains two socket buffers: one for sending data and 421 * one for receiving data. Each buffer contains a queue of mbufs, 422 * information about the number of mbufs and amount of data in the 423 * queue, and other fields allowing select() statements and notification 424 * on data availability to be implemented. 425 * 426 * Data stored in a socket buffer is maintained as a list of records. 427 * Each record is a list of mbufs chained together with the m_next 428 * field. Records are chained together with the m_nextpkt field. The upper 429 * level routine soreceive() expects the following conventions to be 430 * observed when placing information in the receive buffer: 431 * 432 * 1. If the protocol requires each message be preceded by the sender's 433 * name, then a record containing that name must be present before 434 * any associated data (mbuf's must be of type MT_SONAME). 435 * 2. If the protocol supports the exchange of ``access rights'' (really 436 * just additional data associated with the message), and there are 437 * ``rights'' to be received, then a record containing this data 438 * should be present (mbuf's must be of type MT_CONTROL). 439 * 3. If a name or rights record exists, then it must be followed by 440 * a data record, perhaps of zero length. 441 * 442 * Before using a new socket structure it is first necessary to reserve 443 * buffer space to the socket, by calling sbreserve(). This should commit 444 * some of the available buffer space in the system buffer pool for the 445 * socket (currently, it does nothing but enforce limits). The space 446 * should be released by calling sbrelease() when the socket is destroyed. 447 */ 448 449 int 450 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 451 { 452 soassertlocked(so); 453 454 if (sbreserve(so, &so->so_snd, sndcc)) 455 goto bad; 456 if (sbreserve(so, &so->so_rcv, rcvcc)) 457 goto bad2; 458 so->so_snd.sb_wat = sndcc; 459 so->so_rcv.sb_wat = rcvcc; 460 if (so->so_rcv.sb_lowat == 0) 461 so->so_rcv.sb_lowat = 1; 462 if (so->so_snd.sb_lowat == 0) 463 so->so_snd.sb_lowat = MCLBYTES; 464 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 465 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 466 return (0); 467 bad2: 468 sbrelease(so, &so->so_snd); 469 bad: 470 return (ENOBUFS); 471 } 472 473 /* 474 * Allot mbufs to a sockbuf. 475 * Attempt to scale mbmax so that mbcnt doesn't become limiting 476 * if buffering efficiency is near the normal case. 477 */ 478 int 479 sbreserve(struct socket *so, struct sockbuf *sb, u_long cc) 480 { 481 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 482 soassertlocked(so); 483 484 if (cc == 0 || cc > sb_max) 485 return (1); 486 sb->sb_hiwat = cc; 487 sb->sb_mbmax = max(3 * MAXMCLBYTES, cc * 8); 488 if (sb->sb_lowat > sb->sb_hiwat) 489 sb->sb_lowat = sb->sb_hiwat; 490 return (0); 491 } 492 493 /* 494 * In low memory situation, do not accept any greater than normal request. 495 */ 496 int 497 sbcheckreserve(u_long cnt, u_long defcnt) 498 { 499 if (cnt > defcnt && sbchecklowmem()) 500 return (ENOBUFS); 501 return (0); 502 } 503 504 int 505 sbchecklowmem(void) 506 { 507 static int sblowmem; 508 509 if (mclpools[0].pr_nout < mclpools[0].pr_hardlimit * 60 / 100 || 510 mbpool.pr_nout < mbpool.pr_hardlimit * 60 / 100) 511 sblowmem = 0; 512 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 80 / 100 || 513 mbpool.pr_nout > mbpool.pr_hardlimit * 80 / 100) 514 sblowmem = 1; 515 return (sblowmem); 516 } 517 518 /* 519 * Free mbufs held by a socket, and reserved mbuf space. 520 */ 521 void 522 sbrelease(struct socket *so, struct sockbuf *sb) 523 { 524 525 sbflush(so, sb); 526 sb->sb_hiwat = sb->sb_mbmax = 0; 527 } 528 529 /* 530 * Routines to add and remove 531 * data from an mbuf queue. 532 * 533 * The routines sbappend() or sbappendrecord() are normally called to 534 * append new mbufs to a socket buffer, after checking that adequate 535 * space is available, comparing the function sbspace() with the amount 536 * of data to be added. sbappendrecord() differs from sbappend() in 537 * that data supplied is treated as the beginning of a new record. 538 * To place a sender's address, optional access rights, and data in a 539 * socket receive buffer, sbappendaddr() should be used. To place 540 * access rights and data in a socket receive buffer, sbappendrights() 541 * should be used. In either case, the new data begins a new record. 542 * Note that unlike sbappend() and sbappendrecord(), these routines check 543 * for the caller that there will be enough space to store the data. 544 * Each fails if there is not enough space, or if it cannot find mbufs 545 * to store additional information in. 546 * 547 * Reliable protocols may use the socket send buffer to hold data 548 * awaiting acknowledgement. Data is normally copied from a socket 549 * send buffer in a protocol with m_copym for output to a peer, 550 * and then removing the data from the socket buffer with sbdrop() 551 * or sbdroprecord() when the data is acknowledged by the peer. 552 */ 553 554 #ifdef SOCKBUF_DEBUG 555 void 556 sblastrecordchk(struct sockbuf *sb, const char *where) 557 { 558 struct mbuf *m = sb->sb_mb; 559 560 while (m && m->m_nextpkt) 561 m = m->m_nextpkt; 562 563 if (m != sb->sb_lastrecord) { 564 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 565 sb->sb_mb, sb->sb_lastrecord, m); 566 printf("packet chain:\n"); 567 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 568 printf("\t%p\n", m); 569 panic("sblastrecordchk from %s", where); 570 } 571 } 572 573 void 574 sblastmbufchk(struct sockbuf *sb, const char *where) 575 { 576 struct mbuf *m = sb->sb_mb; 577 struct mbuf *n; 578 579 while (m && m->m_nextpkt) 580 m = m->m_nextpkt; 581 582 while (m && m->m_next) 583 m = m->m_next; 584 585 if (m != sb->sb_mbtail) { 586 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 587 sb->sb_mb, sb->sb_mbtail, m); 588 printf("packet tree:\n"); 589 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 590 printf("\t"); 591 for (n = m; n != NULL; n = n->m_next) 592 printf("%p ", n); 593 printf("\n"); 594 } 595 panic("sblastmbufchk from %s", where); 596 } 597 } 598 #endif /* SOCKBUF_DEBUG */ 599 600 #define SBLINKRECORD(sb, m0) \ 601 do { \ 602 if ((sb)->sb_lastrecord != NULL) \ 603 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 604 else \ 605 (sb)->sb_mb = (m0); \ 606 (sb)->sb_lastrecord = (m0); \ 607 } while (/*CONSTCOND*/0) 608 609 /* 610 * Append mbuf chain m to the last record in the 611 * socket buffer sb. The additional space associated 612 * the mbuf chain is recorded in sb. Empty mbufs are 613 * discarded and mbufs are compacted where possible. 614 */ 615 void 616 sbappend(struct socket *so, struct sockbuf *sb, struct mbuf *m) 617 { 618 struct mbuf *n; 619 620 if (m == NULL) 621 return; 622 623 SBLASTRECORDCHK(sb, "sbappend 1"); 624 625 if ((n = sb->sb_lastrecord) != NULL) { 626 /* 627 * XXX Would like to simply use sb_mbtail here, but 628 * XXX I need to verify that I won't miss an EOR that 629 * XXX way. 630 */ 631 do { 632 if (n->m_flags & M_EOR) { 633 sbappendrecord(so, sb, m); /* XXXXXX!!!! */ 634 return; 635 } 636 } while (n->m_next && (n = n->m_next)); 637 } else { 638 /* 639 * If this is the first record in the socket buffer, it's 640 * also the last record. 641 */ 642 sb->sb_lastrecord = m; 643 } 644 sbcompress(sb, m, n); 645 SBLASTRECORDCHK(sb, "sbappend 2"); 646 } 647 648 /* 649 * This version of sbappend() should only be used when the caller 650 * absolutely knows that there will never be more than one record 651 * in the socket buffer, that is, a stream protocol (such as TCP). 652 */ 653 void 654 sbappendstream(struct socket *so, struct sockbuf *sb, struct mbuf *m) 655 { 656 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 657 soassertlocked(so); 658 KDASSERT(m->m_nextpkt == NULL); 659 KASSERT(sb->sb_mb == sb->sb_lastrecord); 660 661 SBLASTMBUFCHK(sb, __func__); 662 663 sbcompress(sb, m, sb->sb_mbtail); 664 665 sb->sb_lastrecord = sb->sb_mb; 666 SBLASTRECORDCHK(sb, __func__); 667 } 668 669 #ifdef SOCKBUF_DEBUG 670 void 671 sbcheck(struct sockbuf *sb) 672 { 673 struct mbuf *m, *n; 674 u_long len = 0, mbcnt = 0; 675 676 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 677 for (n = m; n; n = n->m_next) { 678 len += n->m_len; 679 mbcnt += MSIZE; 680 if (n->m_flags & M_EXT) 681 mbcnt += n->m_ext.ext_size; 682 if (m != n && n->m_nextpkt) 683 panic("sbcheck nextpkt"); 684 } 685 } 686 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 687 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 688 mbcnt, sb->sb_mbcnt); 689 panic("sbcheck"); 690 } 691 } 692 #endif 693 694 /* 695 * As above, except the mbuf chain 696 * begins a new record. 697 */ 698 void 699 sbappendrecord(struct socket *so, struct sockbuf *sb, struct mbuf *m0) 700 { 701 struct mbuf *m; 702 703 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 704 soassertlocked(so); 705 706 if (m0 == NULL) 707 return; 708 709 /* 710 * Put the first mbuf on the queue. 711 * Note this permits zero length records. 712 */ 713 sballoc(sb, m0); 714 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 715 SBLINKRECORD(sb, m0); 716 m = m0->m_next; 717 m0->m_next = NULL; 718 if (m && (m0->m_flags & M_EOR)) { 719 m0->m_flags &= ~M_EOR; 720 m->m_flags |= M_EOR; 721 } 722 sbcompress(sb, m, m0); 723 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 724 } 725 726 /* 727 * As above except that OOB data 728 * is inserted at the beginning of the sockbuf, 729 * but after any other OOB data. 730 */ 731 void 732 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 733 { 734 struct mbuf *m, **mp; 735 736 if (m0 == NULL) 737 return; 738 739 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 740 741 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 742 again: 743 switch (m->m_type) { 744 745 case MT_OOBDATA: 746 continue; /* WANT next train */ 747 748 case MT_CONTROL: 749 if ((m = m->m_next) != NULL) 750 goto again; /* inspect THIS train further */ 751 } 752 break; 753 } 754 /* 755 * Put the first mbuf on the queue. 756 * Note this permits zero length records. 757 */ 758 sballoc(sb, m0); 759 m0->m_nextpkt = *mp; 760 if (*mp == NULL) { 761 /* m0 is actually the new tail */ 762 sb->sb_lastrecord = m0; 763 } 764 *mp = m0; 765 m = m0->m_next; 766 m0->m_next = NULL; 767 if (m && (m0->m_flags & M_EOR)) { 768 m0->m_flags &= ~M_EOR; 769 m->m_flags |= M_EOR; 770 } 771 sbcompress(sb, m, m0); 772 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 773 } 774 775 /* 776 * Append address and data, and optionally, control (ancillary) data 777 * to the receive queue of a socket. If present, 778 * m0 must include a packet header with total length. 779 * Returns 0 if no space in sockbuf or insufficient mbufs. 780 */ 781 int 782 sbappendaddr(struct socket *so, struct sockbuf *sb, const struct sockaddr *asa, 783 struct mbuf *m0, struct mbuf *control) 784 { 785 struct mbuf *m, *n, *nlast; 786 int space = asa->sa_len; 787 788 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 789 panic("sbappendaddr"); 790 if (m0) 791 space += m0->m_pkthdr.len; 792 for (n = control; n; n = n->m_next) { 793 space += n->m_len; 794 if (n->m_next == NULL) /* keep pointer to last control buf */ 795 break; 796 } 797 if (space > sbspace(so, sb)) 798 return (0); 799 if (asa->sa_len > MLEN) 800 return (0); 801 MGET(m, M_DONTWAIT, MT_SONAME); 802 if (m == NULL) 803 return (0); 804 m->m_len = asa->sa_len; 805 memcpy(mtod(m, caddr_t), asa, asa->sa_len); 806 if (n) 807 n->m_next = m0; /* concatenate data to control */ 808 else 809 control = m0; 810 m->m_next = control; 811 812 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 813 814 for (n = m; n->m_next != NULL; n = n->m_next) 815 sballoc(sb, n); 816 sballoc(sb, n); 817 nlast = n; 818 SBLINKRECORD(sb, m); 819 820 sb->sb_mbtail = nlast; 821 SBLASTMBUFCHK(sb, "sbappendaddr"); 822 823 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 824 825 return (1); 826 } 827 828 int 829 sbappendcontrol(struct socket *so, struct sockbuf *sb, struct mbuf *m0, 830 struct mbuf *control) 831 { 832 struct mbuf *m, *mlast, *n; 833 int space = 0; 834 835 if (control == NULL) 836 panic("sbappendcontrol"); 837 for (m = control; ; m = m->m_next) { 838 space += m->m_len; 839 if (m->m_next == NULL) 840 break; 841 } 842 n = m; /* save pointer to last control buffer */ 843 for (m = m0; m; m = m->m_next) 844 space += m->m_len; 845 if (space > sbspace(so, sb)) 846 return (0); 847 n->m_next = m0; /* concatenate data to control */ 848 849 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 850 851 for (m = control; m->m_next != NULL; m = m->m_next) 852 sballoc(sb, m); 853 sballoc(sb, m); 854 mlast = m; 855 SBLINKRECORD(sb, control); 856 857 sb->sb_mbtail = mlast; 858 SBLASTMBUFCHK(sb, "sbappendcontrol"); 859 860 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 861 862 return (1); 863 } 864 865 /* 866 * Compress mbuf chain m into the socket 867 * buffer sb following mbuf n. If n 868 * is null, the buffer is presumed empty. 869 */ 870 void 871 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 872 { 873 int eor = 0; 874 struct mbuf *o; 875 876 while (m) { 877 eor |= m->m_flags & M_EOR; 878 if (m->m_len == 0 && 879 (eor == 0 || 880 (((o = m->m_next) || (o = n)) && 881 o->m_type == m->m_type))) { 882 if (sb->sb_lastrecord == m) 883 sb->sb_lastrecord = m->m_next; 884 m = m_free(m); 885 continue; 886 } 887 if (n && (n->m_flags & M_EOR) == 0 && 888 /* m_trailingspace() checks buffer writeability */ 889 m->m_len <= ((n->m_flags & M_EXT)? n->m_ext.ext_size : 890 MCLBYTES) / 4 && /* XXX Don't copy too much */ 891 m->m_len <= m_trailingspace(n) && 892 n->m_type == m->m_type) { 893 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t), 894 m->m_len); 895 n->m_len += m->m_len; 896 sb->sb_cc += m->m_len; 897 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 898 sb->sb_datacc += m->m_len; 899 m = m_free(m); 900 continue; 901 } 902 if (n) 903 n->m_next = m; 904 else 905 sb->sb_mb = m; 906 sb->sb_mbtail = m; 907 sballoc(sb, m); 908 n = m; 909 m->m_flags &= ~M_EOR; 910 m = m->m_next; 911 n->m_next = NULL; 912 } 913 if (eor) { 914 if (n) 915 n->m_flags |= eor; 916 else 917 printf("semi-panic: sbcompress"); 918 } 919 SBLASTMBUFCHK(sb, __func__); 920 } 921 922 /* 923 * Free all mbufs in a sockbuf. 924 * Check that all resources are reclaimed. 925 */ 926 void 927 sbflush(struct socket *so, struct sockbuf *sb) 928 { 929 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 930 KASSERT((sb->sb_flags & SB_LOCK) == 0); 931 932 while (sb->sb_mbcnt) 933 sbdrop(so, sb, (int)sb->sb_cc); 934 935 KASSERT(sb->sb_cc == 0); 936 KASSERT(sb->sb_datacc == 0); 937 KASSERT(sb->sb_mb == NULL); 938 KASSERT(sb->sb_mbtail == NULL); 939 KASSERT(sb->sb_lastrecord == NULL); 940 } 941 942 /* 943 * Drop data from (the front of) a sockbuf. 944 */ 945 void 946 sbdrop(struct socket *so, struct sockbuf *sb, int len) 947 { 948 struct mbuf *m, *mn; 949 struct mbuf *next; 950 951 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 952 soassertlocked(so); 953 954 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 955 while (len > 0) { 956 if (m == NULL) { 957 if (next == NULL) 958 panic("sbdrop"); 959 m = next; 960 next = m->m_nextpkt; 961 continue; 962 } 963 if (m->m_len > len) { 964 m->m_len -= len; 965 m->m_data += len; 966 sb->sb_cc -= len; 967 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 968 sb->sb_datacc -= len; 969 break; 970 } 971 len -= m->m_len; 972 sbfree(sb, m); 973 mn = m_free(m); 974 m = mn; 975 } 976 while (m && m->m_len == 0) { 977 sbfree(sb, m); 978 mn = m_free(m); 979 m = mn; 980 } 981 if (m) { 982 sb->sb_mb = m; 983 m->m_nextpkt = next; 984 } else 985 sb->sb_mb = next; 986 /* 987 * First part is an inline SB_EMPTY_FIXUP(). Second part 988 * makes sure sb_lastrecord is up-to-date if we dropped 989 * part of the last record. 990 */ 991 m = sb->sb_mb; 992 if (m == NULL) { 993 sb->sb_mbtail = NULL; 994 sb->sb_lastrecord = NULL; 995 } else if (m->m_nextpkt == NULL) 996 sb->sb_lastrecord = m; 997 } 998 999 /* 1000 * Drop a record off the front of a sockbuf 1001 * and move the next record to the front. 1002 */ 1003 void 1004 sbdroprecord(struct sockbuf *sb) 1005 { 1006 struct mbuf *m, *mn; 1007 1008 m = sb->sb_mb; 1009 if (m) { 1010 sb->sb_mb = m->m_nextpkt; 1011 do { 1012 sbfree(sb, m); 1013 mn = m_free(m); 1014 } while ((m = mn) != NULL); 1015 } 1016 SB_EMPTY_FIXUP(sb); 1017 } 1018 1019 /* 1020 * Create a "control" mbuf containing the specified data 1021 * with the specified type for presentation on a socket buffer. 1022 */ 1023 struct mbuf * 1024 sbcreatecontrol(const void *p, size_t size, int type, int level) 1025 { 1026 struct cmsghdr *cp; 1027 struct mbuf *m; 1028 1029 if (CMSG_SPACE(size) > MCLBYTES) { 1030 printf("sbcreatecontrol: message too large %zu\n", size); 1031 return (NULL); 1032 } 1033 1034 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 1035 return (NULL); 1036 if (CMSG_SPACE(size) > MLEN) { 1037 MCLGET(m, M_DONTWAIT); 1038 if ((m->m_flags & M_EXT) == 0) { 1039 m_free(m); 1040 return NULL; 1041 } 1042 } 1043 cp = mtod(m, struct cmsghdr *); 1044 memset(cp, 0, CMSG_SPACE(size)); 1045 memcpy(CMSG_DATA(cp), p, size); 1046 m->m_len = CMSG_SPACE(size); 1047 cp->cmsg_len = CMSG_LEN(size); 1048 cp->cmsg_level = level; 1049 cp->cmsg_type = type; 1050 return (m); 1051 } 1052