1 /* $OpenBSD: uipc_socket2.c,v 1.49 2009/08/10 16:49:39 thib Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/file.h> 39 #include <sys/buf.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/protosw.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/signalvar.h> 46 #include <sys/event.h> 47 #include <sys/pool.h> 48 49 /* 50 * Primitive routines for operating on sockets and socket buffers 51 */ 52 53 u_long sb_max = SB_MAX; /* patchable */ 54 55 extern struct pool mclpools[]; 56 57 /* 58 * Procedures to manipulate state flags of socket 59 * and do appropriate wakeups. Normal sequence from the 60 * active (originating) side is that soisconnecting() is 61 * called during processing of connect() call, 62 * resulting in an eventual call to soisconnected() if/when the 63 * connection is established. When the connection is torn down 64 * soisdisconnecting() is called during processing of disconnect() call, 65 * and soisdisconnected() is called when the connection to the peer 66 * is totally severed. The semantics of these routines are such that 67 * connectionless protocols can call soisconnected() and soisdisconnected() 68 * only, bypassing the in-progress calls when setting up a ``connection'' 69 * takes no time. 70 * 71 * From the passive side, a socket is created with 72 * two queues of sockets: so_q0 for connections in progress 73 * and so_q for connections already made and awaiting user acceptance. 74 * As a protocol is preparing incoming connections, it creates a socket 75 * structure queued on so_q0 by calling sonewconn(). When the connection 76 * is established, soisconnected() is called, and transfers the 77 * socket structure to so_q, making it available to accept(). 78 * 79 * If a socket is closed with sockets on either 80 * so_q0 or so_q, these sockets are dropped. 81 * 82 * If higher level protocols are implemented in 83 * the kernel, the wakeups done here will sometimes 84 * cause software-interrupt process scheduling. 85 */ 86 87 void 88 soisconnecting(struct socket *so) 89 { 90 91 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 92 so->so_state |= SS_ISCONNECTING; 93 } 94 95 void 96 soisconnected(struct socket *so) 97 { 98 struct socket *head = so->so_head; 99 100 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 101 so->so_state |= SS_ISCONNECTED; 102 if (head && soqremque(so, 0)) { 103 soqinsque(head, so, 1); 104 sorwakeup(head); 105 wakeup_one(&head->so_timeo); 106 } else { 107 wakeup(&so->so_timeo); 108 sorwakeup(so); 109 sowwakeup(so); 110 } 111 } 112 113 void 114 soisdisconnecting(struct socket *so) 115 { 116 117 so->so_state &= ~SS_ISCONNECTING; 118 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 119 wakeup(&so->so_timeo); 120 sowwakeup(so); 121 sorwakeup(so); 122 } 123 124 void 125 soisdisconnected(struct socket *so) 126 { 127 128 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 129 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 130 wakeup(&so->so_timeo); 131 sowwakeup(so); 132 sorwakeup(so); 133 } 134 135 /* 136 * When an attempt at a new connection is noted on a socket 137 * which accepts connections, sonewconn is called. If the 138 * connection is possible (subject to space constraints, etc.) 139 * then we allocate a new structure, properly linked into the 140 * data structure of the original socket, and return this. 141 * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. 142 * 143 * Must be called at splsoftnet() 144 */ 145 struct socket * 146 sonewconn(struct socket *head, int connstatus) 147 { 148 struct socket *so; 149 int soqueue = connstatus ? 1 : 0; 150 extern u_long unpst_sendspace, unpst_recvspace; 151 u_long snd_sb_hiwat, rcv_sb_hiwat; 152 153 splsoftassert(IPL_SOFTNET); 154 155 if (mclpools[0].pr_nout > mclpools[0].pr_hardlimit * 95 / 100) 156 return ((struct socket *)0); 157 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 158 return ((struct socket *)0); 159 so = pool_get(&socket_pool, PR_NOWAIT|PR_ZERO); 160 if (so == NULL) 161 return ((struct socket *)0); 162 so->so_type = head->so_type; 163 so->so_options = head->so_options &~ SO_ACCEPTCONN; 164 so->so_linger = head->so_linger; 165 so->so_state = head->so_state | SS_NOFDREF; 166 so->so_proto = head->so_proto; 167 so->so_timeo = head->so_timeo; 168 so->so_pgid = head->so_pgid; 169 so->so_euid = head->so_euid; 170 so->so_ruid = head->so_ruid; 171 so->so_egid = head->so_egid; 172 so->so_rgid = head->so_rgid; 173 so->so_cpid = head->so_cpid; 174 so->so_siguid = head->so_siguid; 175 so->so_sigeuid = head->so_sigeuid; 176 177 /* 178 * If we are tight on mbuf clusters, create the new socket 179 * with the minimum. Sorry, you lose. 180 */ 181 snd_sb_hiwat = head->so_snd.sb_hiwat; 182 if (sbcheckreserve(snd_sb_hiwat, unpst_sendspace)) 183 snd_sb_hiwat = unpst_sendspace; /* and udp? */ 184 rcv_sb_hiwat = head->so_rcv.sb_hiwat; 185 if (sbcheckreserve(rcv_sb_hiwat, unpst_recvspace)) 186 rcv_sb_hiwat = unpst_recvspace; /* and udp? */ 187 188 (void) soreserve(so, snd_sb_hiwat, rcv_sb_hiwat); 189 soqinsque(head, so, soqueue); 190 if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL, NULL, 191 curproc)) { 192 (void) soqremque(so, soqueue); 193 pool_put(&socket_pool, so); 194 return ((struct socket *)0); 195 } 196 if (connstatus) { 197 sorwakeup(head); 198 wakeup(&head->so_timeo); 199 so->so_state |= connstatus; 200 } 201 return (so); 202 } 203 204 void 205 soqinsque(struct socket *head, struct socket *so, int q) 206 { 207 208 #ifdef DIAGNOSTIC 209 if (so->so_onq != NULL) 210 panic("soqinsque"); 211 #endif 212 213 so->so_head = head; 214 if (q == 0) { 215 head->so_q0len++; 216 so->so_onq = &head->so_q0; 217 } else { 218 head->so_qlen++; 219 so->so_onq = &head->so_q; 220 } 221 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 222 } 223 224 int 225 soqremque(struct socket *so, int q) 226 { 227 struct socket *head; 228 229 head = so->so_head; 230 if (q == 0) { 231 if (so->so_onq != &head->so_q0) 232 return (0); 233 head->so_q0len--; 234 } else { 235 if (so->so_onq != &head->so_q) 236 return (0); 237 head->so_qlen--; 238 } 239 TAILQ_REMOVE(so->so_onq, so, so_qe); 240 so->so_onq = NULL; 241 so->so_head = NULL; 242 return (1); 243 } 244 245 /* 246 * Socantsendmore indicates that no more data will be sent on the 247 * socket; it would normally be applied to a socket when the user 248 * informs the system that no more data is to be sent, by the protocol 249 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 250 * will be received, and will normally be applied to the socket by a 251 * protocol when it detects that the peer will send no more data. 252 * Data queued for reading in the socket may yet be read. 253 */ 254 255 void 256 socantsendmore(struct socket *so) 257 { 258 259 so->so_state |= SS_CANTSENDMORE; 260 sowwakeup(so); 261 } 262 263 void 264 socantrcvmore(struct socket *so) 265 { 266 267 so->so_state |= SS_CANTRCVMORE; 268 sorwakeup(so); 269 } 270 271 /* 272 * Wait for data to arrive at/drain from a socket buffer. 273 */ 274 int 275 sbwait(struct sockbuf *sb) 276 { 277 278 sb->sb_flags |= SB_WAIT; 279 return (tsleep(&sb->sb_cc, 280 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "netio", 281 sb->sb_timeo)); 282 } 283 284 /* 285 * Lock a sockbuf already known to be locked; 286 * return any error returned from sleep (EINTR). 287 */ 288 int 289 sb_lock(struct sockbuf *sb) 290 { 291 int error; 292 293 while (sb->sb_flags & SB_LOCK) { 294 sb->sb_flags |= SB_WANT; 295 error = tsleep(&sb->sb_flags, 296 (sb->sb_flags & SB_NOINTR) ? 297 PSOCK : PSOCK|PCATCH, "netlck", 0); 298 if (error) 299 return (error); 300 } 301 sb->sb_flags |= SB_LOCK; 302 return (0); 303 } 304 305 /* 306 * Wakeup processes waiting on a socket buffer. 307 * Do asynchronous notification via SIGIO 308 * if the socket has the SS_ASYNC flag set. 309 */ 310 void 311 sowakeup(struct socket *so, struct sockbuf *sb) 312 { 313 selwakeup(&sb->sb_sel); 314 sb->sb_flags &= ~SB_SEL; 315 if (sb->sb_flags & SB_WAIT) { 316 sb->sb_flags &= ~SB_WAIT; 317 wakeup(&sb->sb_cc); 318 } 319 if (so->so_state & SS_ASYNC) 320 csignal(so->so_pgid, SIGIO, so->so_siguid, so->so_sigeuid); 321 KNOTE(&sb->sb_sel.si_note, 0); 322 } 323 324 /* 325 * Socket buffer (struct sockbuf) utility routines. 326 * 327 * Each socket contains two socket buffers: one for sending data and 328 * one for receiving data. Each buffer contains a queue of mbufs, 329 * information about the number of mbufs and amount of data in the 330 * queue, and other fields allowing select() statements and notification 331 * on data availability to be implemented. 332 * 333 * Data stored in a socket buffer is maintained as a list of records. 334 * Each record is a list of mbufs chained together with the m_next 335 * field. Records are chained together with the m_nextpkt field. The upper 336 * level routine soreceive() expects the following conventions to be 337 * observed when placing information in the receive buffer: 338 * 339 * 1. If the protocol requires each message be preceded by the sender's 340 * name, then a record containing that name must be present before 341 * any associated data (mbuf's must be of type MT_SONAME). 342 * 2. If the protocol supports the exchange of ``access rights'' (really 343 * just additional data associated with the message), and there are 344 * ``rights'' to be received, then a record containing this data 345 * should be present (mbuf's must be of type MT_CONTROL). 346 * 3. If a name or rights record exists, then it must be followed by 347 * a data record, perhaps of zero length. 348 * 349 * Before using a new socket structure it is first necessary to reserve 350 * buffer space to the socket, by calling sbreserve(). This should commit 351 * some of the available buffer space in the system buffer pool for the 352 * socket (currently, it does nothing but enforce limits). The space 353 * should be released by calling sbrelease() when the socket is destroyed. 354 */ 355 356 int 357 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 358 { 359 360 if (sbreserve(&so->so_snd, sndcc)) 361 goto bad; 362 if (sbreserve(&so->so_rcv, rcvcc)) 363 goto bad2; 364 if (so->so_rcv.sb_lowat == 0) 365 so->so_rcv.sb_lowat = 1; 366 if (so->so_snd.sb_lowat == 0) 367 so->so_snd.sb_lowat = MCLBYTES; 368 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 369 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 370 return (0); 371 bad2: 372 sbrelease(&so->so_snd); 373 bad: 374 return (ENOBUFS); 375 } 376 377 /* 378 * Allot mbufs to a sockbuf. 379 * Attempt to scale mbmax so that mbcnt doesn't become limiting 380 * if buffering efficiency is near the normal case. 381 */ 382 int 383 sbreserve(struct sockbuf *sb, u_long cc) 384 { 385 386 if (cc == 0 || cc > sb_max) 387 return (1); 388 sb->sb_hiwat = cc; 389 sb->sb_mbmax = min(cc * 2, sb_max + (sb_max / MCLBYTES) * MSIZE); 390 if (sb->sb_lowat > sb->sb_hiwat) 391 sb->sb_lowat = sb->sb_hiwat; 392 return (0); 393 } 394 395 /* 396 * If over 50% of mbuf clusters in use, do not accept any 397 * greater than normal request. 398 */ 399 int 400 sbcheckreserve(u_long cnt, u_long defcnt) 401 { 402 if (cnt > defcnt && 403 mclpools[0].pr_nout> mclpools[0].pr_hardlimit / 2) 404 return (ENOBUFS); 405 return (0); 406 } 407 408 /* 409 * Free mbufs held by a socket, and reserved mbuf space. 410 */ 411 void 412 sbrelease(struct sockbuf *sb) 413 { 414 415 sbflush(sb); 416 sb->sb_hiwat = sb->sb_mbmax = 0; 417 } 418 419 /* 420 * Routines to add and remove 421 * data from an mbuf queue. 422 * 423 * The routines sbappend() or sbappendrecord() are normally called to 424 * append new mbufs to a socket buffer, after checking that adequate 425 * space is available, comparing the function sbspace() with the amount 426 * of data to be added. sbappendrecord() differs from sbappend() in 427 * that data supplied is treated as the beginning of a new record. 428 * To place a sender's address, optional access rights, and data in a 429 * socket receive buffer, sbappendaddr() should be used. To place 430 * access rights and data in a socket receive buffer, sbappendrights() 431 * should be used. In either case, the new data begins a new record. 432 * Note that unlike sbappend() and sbappendrecord(), these routines check 433 * for the caller that there will be enough space to store the data. 434 * Each fails if there is not enough space, or if it cannot find mbufs 435 * to store additional information in. 436 * 437 * Reliable protocols may use the socket send buffer to hold data 438 * awaiting acknowledgement. Data is normally copied from a socket 439 * send buffer in a protocol with m_copy for output to a peer, 440 * and then removing the data from the socket buffer with sbdrop() 441 * or sbdroprecord() when the data is acknowledged by the peer. 442 */ 443 444 #ifdef SOCKBUF_DEBUG 445 void 446 sblastrecordchk(struct sockbuf *sb, const char *where) 447 { 448 struct mbuf *m = sb->sb_mb; 449 450 while (m && m->m_nextpkt) 451 m = m->m_nextpkt; 452 453 if (m != sb->sb_lastrecord) { 454 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 455 sb->sb_mb, sb->sb_lastrecord, m); 456 printf("packet chain:\n"); 457 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 458 printf("\t%p\n", m); 459 panic("sblastrecordchk from %s", where); 460 } 461 } 462 463 void 464 sblastmbufchk(struct sockbuf *sb, const char *where) 465 { 466 struct mbuf *m = sb->sb_mb; 467 struct mbuf *n; 468 469 while (m && m->m_nextpkt) 470 m = m->m_nextpkt; 471 472 while (m && m->m_next) 473 m = m->m_next; 474 475 if (m != sb->sb_mbtail) { 476 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 477 sb->sb_mb, sb->sb_mbtail, m); 478 printf("packet tree:\n"); 479 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 480 printf("\t"); 481 for (n = m; n != NULL; n = n->m_next) 482 printf("%p ", n); 483 printf("\n"); 484 } 485 panic("sblastmbufchk from %s", where); 486 } 487 } 488 #endif /* SOCKBUF_DEBUG */ 489 490 #define SBLINKRECORD(sb, m0) \ 491 do { \ 492 if ((sb)->sb_lastrecord != NULL) \ 493 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 494 else \ 495 (sb)->sb_mb = (m0); \ 496 (sb)->sb_lastrecord = (m0); \ 497 } while (/*CONSTCOND*/0) 498 499 /* 500 * Append mbuf chain m to the last record in the 501 * socket buffer sb. The additional space associated 502 * the mbuf chain is recorded in sb. Empty mbufs are 503 * discarded and mbufs are compacted where possible. 504 */ 505 void 506 sbappend(struct sockbuf *sb, struct mbuf *m) 507 { 508 struct mbuf *n; 509 510 if (m == NULL) 511 return; 512 513 SBLASTRECORDCHK(sb, "sbappend 1"); 514 515 if ((n = sb->sb_lastrecord) != NULL) { 516 /* 517 * XXX Would like to simply use sb_mbtail here, but 518 * XXX I need to verify that I won't miss an EOR that 519 * XXX way. 520 */ 521 do { 522 if (n->m_flags & M_EOR) { 523 sbappendrecord(sb, m); /* XXXXXX!!!! */ 524 return; 525 } 526 } while (n->m_next && (n = n->m_next)); 527 } else { 528 /* 529 * If this is the first record in the socket buffer, it's 530 * also the last record. 531 */ 532 sb->sb_lastrecord = m; 533 } 534 sbcompress(sb, m, n); 535 SBLASTRECORDCHK(sb, "sbappend 2"); 536 } 537 538 /* 539 * This version of sbappend() should only be used when the caller 540 * absolutely knows that there will never be more than one record 541 * in the socket buffer, that is, a stream protocol (such as TCP). 542 */ 543 void 544 sbappendstream(struct sockbuf *sb, struct mbuf *m) 545 { 546 547 KDASSERT(m->m_nextpkt == NULL); 548 KASSERT(sb->sb_mb == sb->sb_lastrecord); 549 550 SBLASTMBUFCHK(sb, __func__); 551 552 sbcompress(sb, m, sb->sb_mbtail); 553 554 sb->sb_lastrecord = sb->sb_mb; 555 SBLASTRECORDCHK(sb, __func__); 556 } 557 558 #ifdef SOCKBUF_DEBUG 559 void 560 sbcheck(struct sockbuf *sb) 561 { 562 struct mbuf *m; 563 u_long len = 0, mbcnt = 0; 564 565 for (m = sb->sb_mb; m; m = m->m_next) { 566 len += m->m_len; 567 mbcnt += MSIZE; 568 if (m->m_flags & M_EXT) 569 mbcnt += m->m_ext.ext_size; 570 if (m->m_nextpkt) 571 panic("sbcheck nextpkt"); 572 } 573 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 574 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 575 mbcnt, sb->sb_mbcnt); 576 panic("sbcheck"); 577 } 578 } 579 #endif 580 581 /* 582 * As above, except the mbuf chain 583 * begins a new record. 584 */ 585 void 586 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 587 { 588 struct mbuf *m; 589 590 if (m0 == NULL) 591 return; 592 593 /* 594 * Put the first mbuf on the queue. 595 * Note this permits zero length records. 596 */ 597 sballoc(sb, m0); 598 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 599 SBLINKRECORD(sb, m0); 600 m = m0->m_next; 601 m0->m_next = NULL; 602 if (m && (m0->m_flags & M_EOR)) { 603 m0->m_flags &= ~M_EOR; 604 m->m_flags |= M_EOR; 605 } 606 sbcompress(sb, m, m0); 607 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 608 } 609 610 /* 611 * As above except that OOB data 612 * is inserted at the beginning of the sockbuf, 613 * but after any other OOB data. 614 */ 615 void 616 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 617 { 618 struct mbuf *m, **mp; 619 620 if (m0 == NULL) 621 return; 622 623 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 624 625 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 626 again: 627 switch (m->m_type) { 628 629 case MT_OOBDATA: 630 continue; /* WANT next train */ 631 632 case MT_CONTROL: 633 if ((m = m->m_next) != NULL) 634 goto again; /* inspect THIS train further */ 635 } 636 break; 637 } 638 /* 639 * Put the first mbuf on the queue. 640 * Note this permits zero length records. 641 */ 642 sballoc(sb, m0); 643 m0->m_nextpkt = *mp; 644 if (*mp == NULL) { 645 /* m0 is actually the new tail */ 646 sb->sb_lastrecord = m0; 647 } 648 *mp = m0; 649 m = m0->m_next; 650 m0->m_next = NULL; 651 if (m && (m0->m_flags & M_EOR)) { 652 m0->m_flags &= ~M_EOR; 653 m->m_flags |= M_EOR; 654 } 655 sbcompress(sb, m, m0); 656 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 657 } 658 659 /* 660 * Append address and data, and optionally, control (ancillary) data 661 * to the receive queue of a socket. If present, 662 * m0 must include a packet header with total length. 663 * Returns 0 if no space in sockbuf or insufficient mbufs. 664 */ 665 int 666 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, 667 struct mbuf *control) 668 { 669 struct mbuf *m, *n, *nlast; 670 int space = asa->sa_len; 671 672 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 673 panic("sbappendaddr"); 674 if (m0) 675 space += m0->m_pkthdr.len; 676 for (n = control; n; n = n->m_next) { 677 space += n->m_len; 678 if (n->m_next == NULL) /* keep pointer to last control buf */ 679 break; 680 } 681 if (space > sbspace(sb)) 682 return (0); 683 if (asa->sa_len > MLEN) 684 return (0); 685 MGET(m, M_DONTWAIT, MT_SONAME); 686 if (m == NULL) 687 return (0); 688 m->m_len = asa->sa_len; 689 bcopy(asa, mtod(m, caddr_t), asa->sa_len); 690 if (n) 691 n->m_next = m0; /* concatenate data to control */ 692 else 693 control = m0; 694 m->m_next = control; 695 696 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 697 698 for (n = m; n->m_next != NULL; n = n->m_next) 699 sballoc(sb, n); 700 sballoc(sb, n); 701 nlast = n; 702 SBLINKRECORD(sb, m); 703 704 sb->sb_mbtail = nlast; 705 SBLASTMBUFCHK(sb, "sbappendaddr"); 706 707 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 708 709 return (1); 710 } 711 712 int 713 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 714 { 715 struct mbuf *m, *mlast, *n; 716 int space = 0; 717 718 if (control == NULL) 719 panic("sbappendcontrol"); 720 for (m = control; ; m = m->m_next) { 721 space += m->m_len; 722 if (m->m_next == NULL) 723 break; 724 } 725 n = m; /* save pointer to last control buffer */ 726 for (m = m0; m; m = m->m_next) 727 space += m->m_len; 728 if (space > sbspace(sb)) 729 return (0); 730 n->m_next = m0; /* concatenate data to control */ 731 732 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 733 734 for (m = control; m->m_next != NULL; m = m->m_next) 735 sballoc(sb, m); 736 sballoc(sb, m); 737 mlast = m; 738 SBLINKRECORD(sb, control); 739 740 sb->sb_mbtail = mlast; 741 SBLASTMBUFCHK(sb, "sbappendcontrol"); 742 743 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 744 745 return (1); 746 } 747 748 /* 749 * Compress mbuf chain m into the socket 750 * buffer sb following mbuf n. If n 751 * is null, the buffer is presumed empty. 752 */ 753 void 754 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 755 { 756 int eor = 0; 757 struct mbuf *o; 758 759 while (m) { 760 eor |= m->m_flags & M_EOR; 761 if (m->m_len == 0 && 762 (eor == 0 || 763 (((o = m->m_next) || (o = n)) && 764 o->m_type == m->m_type))) { 765 if (sb->sb_lastrecord == m) 766 sb->sb_lastrecord = m->m_next; 767 m = m_free(m); 768 continue; 769 } 770 if (n && (n->m_flags & M_EOR) == 0 && 771 /* M_TRAILINGSPACE() checks buffer writeability */ 772 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 773 m->m_len <= M_TRAILINGSPACE(n) && 774 n->m_type == m->m_type) { 775 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, 776 (unsigned)m->m_len); 777 n->m_len += m->m_len; 778 sb->sb_cc += m->m_len; 779 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 780 sb->sb_datacc += m->m_len; 781 m = m_free(m); 782 continue; 783 } 784 if (n) 785 n->m_next = m; 786 else 787 sb->sb_mb = m; 788 sb->sb_mbtail = m; 789 sballoc(sb, m); 790 n = m; 791 m->m_flags &= ~M_EOR; 792 m = m->m_next; 793 n->m_next = NULL; 794 } 795 if (eor) { 796 if (n) 797 n->m_flags |= eor; 798 else 799 printf("semi-panic: sbcompress"); 800 } 801 SBLASTMBUFCHK(sb, __func__); 802 } 803 804 /* 805 * Free all mbufs in a sockbuf. 806 * Check that all resources are reclaimed. 807 */ 808 void 809 sbflush(struct sockbuf *sb) 810 { 811 812 KASSERT((sb->sb_flags & SB_LOCK) == 0); 813 814 while (sb->sb_mbcnt) 815 sbdrop(sb, (int)sb->sb_cc); 816 817 KASSERT(sb->sb_cc == 0); 818 KASSERT(sb->sb_datacc == 0); 819 KASSERT(sb->sb_mb == NULL); 820 KASSERT(sb->sb_mbtail == NULL); 821 KASSERT(sb->sb_lastrecord == NULL); 822 } 823 824 /* 825 * Drop data from (the front of) a sockbuf. 826 */ 827 void 828 sbdrop(struct sockbuf *sb, int len) 829 { 830 struct mbuf *m, *mn; 831 struct mbuf *next; 832 833 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 834 while (len > 0) { 835 if (m == NULL) { 836 if (next == NULL) 837 panic("sbdrop"); 838 m = next; 839 next = m->m_nextpkt; 840 continue; 841 } 842 if (m->m_len > len) { 843 m->m_len -= len; 844 m->m_data += len; 845 sb->sb_cc -= len; 846 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 847 sb->sb_datacc -= len; 848 break; 849 } 850 len -= m->m_len; 851 sbfree(sb, m); 852 MFREE(m, mn); 853 m = mn; 854 } 855 while (m && m->m_len == 0) { 856 sbfree(sb, m); 857 MFREE(m, mn); 858 m = mn; 859 } 860 if (m) { 861 sb->sb_mb = m; 862 m->m_nextpkt = next; 863 } else 864 sb->sb_mb = next; 865 /* 866 * First part is an inline SB_EMPTY_FIXUP(). Second part 867 * makes sure sb_lastrecord is up-to-date if we dropped 868 * part of the last record. 869 */ 870 m = sb->sb_mb; 871 if (m == NULL) { 872 sb->sb_mbtail = NULL; 873 sb->sb_lastrecord = NULL; 874 } else if (m->m_nextpkt == NULL) 875 sb->sb_lastrecord = m; 876 } 877 878 /* 879 * Drop a record off the front of a sockbuf 880 * and move the next record to the front. 881 */ 882 void 883 sbdroprecord(struct sockbuf *sb) 884 { 885 struct mbuf *m, *mn; 886 887 m = sb->sb_mb; 888 if (m) { 889 sb->sb_mb = m->m_nextpkt; 890 do { 891 sbfree(sb, m); 892 MFREE(m, mn); 893 } while ((m = mn) != NULL); 894 } 895 SB_EMPTY_FIXUP(sb); 896 } 897 898 /* 899 * Create a "control" mbuf containing the specified data 900 * with the specified type for presentation on a socket buffer. 901 */ 902 struct mbuf * 903 sbcreatecontrol(caddr_t p, int size, int type, int level) 904 { 905 struct cmsghdr *cp; 906 struct mbuf *m; 907 908 if (CMSG_SPACE(size) > MCLBYTES) { 909 printf("sbcreatecontrol: message too large %d\n", size); 910 return NULL; 911 } 912 913 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 914 return ((struct mbuf *) NULL); 915 if (CMSG_SPACE(size) > MLEN) { 916 MCLGET(m, M_DONTWAIT); 917 if ((m->m_flags & M_EXT) == 0) { 918 m_free(m); 919 return NULL; 920 } 921 } 922 cp = mtod(m, struct cmsghdr *); 923 bcopy(p, CMSG_DATA(cp), size); 924 m->m_len = CMSG_SPACE(size); 925 cp->cmsg_len = CMSG_LEN(size); 926 cp->cmsg_level = level; 927 cp->cmsg_type = type; 928 return (m); 929 } 930