1 /* $OpenBSD: uipc_socket2.c,v 1.125 2022/07/01 09:56:17 mvs Exp $ */ 2 /* $NetBSD: uipc_socket2.c,v 1.11 1996/02/04 02:17:55 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/protosw.h> 40 #include <sys/domain.h> 41 #include <sys/socket.h> 42 #include <sys/socketvar.h> 43 #include <sys/signalvar.h> 44 #include <sys/event.h> 45 #include <sys/pool.h> 46 47 /* 48 * Primitive routines for operating on sockets and socket buffers 49 */ 50 51 u_long sb_max = SB_MAX; /* patchable */ 52 53 extern struct pool mclpools[]; 54 extern struct pool mbpool; 55 56 /* 57 * Procedures to manipulate state flags of socket 58 * and do appropriate wakeups. Normal sequence from the 59 * active (originating) side is that soisconnecting() is 60 * called during processing of connect() call, 61 * resulting in an eventual call to soisconnected() if/when the 62 * connection is established. When the connection is torn down 63 * soisdisconnecting() is called during processing of disconnect() call, 64 * and soisdisconnected() is called when the connection to the peer 65 * is totally severed. The semantics of these routines are such that 66 * connectionless protocols can call soisconnected() and soisdisconnected() 67 * only, bypassing the in-progress calls when setting up a ``connection'' 68 * takes no time. 69 * 70 * From the passive side, a socket is created with 71 * two queues of sockets: so_q0 for connections in progress 72 * and so_q for connections already made and awaiting user acceptance. 73 * As a protocol is preparing incoming connections, it creates a socket 74 * structure queued on so_q0 by calling sonewconn(). When the connection 75 * is established, soisconnected() is called, and transfers the 76 * socket structure to so_q, making it available to accept(). 77 * 78 * If a socket is closed with sockets on either 79 * so_q0 or so_q, these sockets are dropped. 80 * 81 * If higher level protocols are implemented in 82 * the kernel, the wakeups done here will sometimes 83 * cause software-interrupt process scheduling. 84 */ 85 86 void 87 soisconnecting(struct socket *so) 88 { 89 soassertlocked(so); 90 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 91 so->so_state |= SS_ISCONNECTING; 92 } 93 94 void 95 soisconnected(struct socket *so) 96 { 97 struct socket *head = so->so_head; 98 99 soassertlocked(so); 100 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING); 101 so->so_state |= SS_ISCONNECTED; 102 103 if (head != NULL && so->so_onq == &head->so_q0) { 104 int persocket = solock_persocket(so); 105 106 if (persocket) { 107 soref(so); 108 soref(head); 109 110 sounlock(so); 111 solock(head); 112 solock(so); 113 114 if (so->so_onq != &head->so_q0) { 115 sounlock(head); 116 sorele(head); 117 sorele(so); 118 119 return; 120 } 121 122 sorele(head); 123 sorele(so); 124 } 125 126 soqremque(so, 0); 127 soqinsque(head, so, 1); 128 sorwakeup(head); 129 wakeup_one(&head->so_timeo); 130 131 if (persocket) 132 sounlock(head); 133 } else { 134 wakeup(&so->so_timeo); 135 sorwakeup(so); 136 sowwakeup(so); 137 } 138 } 139 140 void 141 soisdisconnecting(struct socket *so) 142 { 143 soassertlocked(so); 144 so->so_state &= ~SS_ISCONNECTING; 145 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 146 wakeup(&so->so_timeo); 147 sowwakeup(so); 148 sorwakeup(so); 149 } 150 151 void 152 soisdisconnected(struct socket *so) 153 { 154 soassertlocked(so); 155 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 156 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 157 wakeup(&so->so_timeo); 158 sowwakeup(so); 159 sorwakeup(so); 160 } 161 162 /* 163 * When an attempt at a new connection is noted on a socket 164 * which accepts connections, sonewconn is called. If the 165 * connection is possible (subject to space constraints, etc.) 166 * then we allocate a new structure, properly linked into the 167 * data structure of the original socket, and return this. 168 * Connstatus may be 0 or SS_ISCONNECTED. 169 */ 170 struct socket * 171 sonewconn(struct socket *head, int connstatus) 172 { 173 struct socket *so; 174 int persocket = solock_persocket(head); 175 int error; 176 177 /* 178 * XXXSMP as long as `so' and `head' share the same lock, we 179 * can call soreserve() and pr_attach() below w/o explicitly 180 * locking `so'. 181 */ 182 soassertlocked(head); 183 184 if (m_pool_used() > 95) 185 return (NULL); 186 if (head->so_qlen + head->so_q0len > head->so_qlimit * 3) 187 return (NULL); 188 so = soalloc(PR_NOWAIT | PR_ZERO); 189 if (so == NULL) 190 return (NULL); 191 so->so_type = head->so_type; 192 so->so_options = head->so_options &~ SO_ACCEPTCONN; 193 so->so_linger = head->so_linger; 194 so->so_state = head->so_state | SS_NOFDREF; 195 so->so_proto = head->so_proto; 196 so->so_timeo = head->so_timeo; 197 so->so_euid = head->so_euid; 198 so->so_ruid = head->so_ruid; 199 so->so_egid = head->so_egid; 200 so->so_rgid = head->so_rgid; 201 so->so_cpid = head->so_cpid; 202 203 /* 204 * Lock order will be `head' -> `so' while these sockets are linked. 205 */ 206 if (persocket) 207 solock(so); 208 209 /* 210 * Inherit watermarks but those may get clamped in low mem situations. 211 */ 212 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { 213 if (persocket) 214 sounlock(so); 215 pool_put(&socket_pool, so); 216 return (NULL); 217 } 218 so->so_snd.sb_wat = head->so_snd.sb_wat; 219 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 220 so->so_snd.sb_timeo_nsecs = head->so_snd.sb_timeo_nsecs; 221 so->so_rcv.sb_wat = head->so_rcv.sb_wat; 222 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 223 so->so_rcv.sb_timeo_nsecs = head->so_rcv.sb_timeo_nsecs; 224 225 klist_init(&so->so_rcv.sb_sel.si_note, &socket_klistops, so); 226 klist_init(&so->so_snd.sb_sel.si_note, &socket_klistops, so); 227 sigio_init(&so->so_sigio); 228 sigio_copy(&so->so_sigio, &head->so_sigio); 229 230 soqinsque(head, so, 0); 231 232 /* 233 * We need to unlock `head' because PCB layer could release 234 * solock() to enforce desired lock order. 235 */ 236 if (persocket) { 237 head->so_newconn++; 238 sounlock(head); 239 } 240 241 error = (*so->so_proto->pr_attach)(so, 0); 242 243 if (persocket) { 244 sounlock(so); 245 solock(head); 246 solock(so); 247 248 if ((head->so_newconn--) == 0) { 249 if ((head->so_state & SS_NEWCONN_WAIT) != 0) { 250 head->so_state &= ~SS_NEWCONN_WAIT; 251 wakeup(&head->so_newconn); 252 } 253 } 254 } 255 256 if (error) { 257 soqremque(so, 0); 258 if (persocket) 259 sounlock(so); 260 sigio_free(&so->so_sigio); 261 klist_free(&so->so_rcv.sb_sel.si_note); 262 klist_free(&so->so_snd.sb_sel.si_note); 263 pool_put(&socket_pool, so); 264 return (NULL); 265 } 266 267 if (connstatus) { 268 so->so_state |= connstatus; 269 soqremque(so, 0); 270 soqinsque(head, so, 1); 271 sorwakeup(head); 272 wakeup(&head->so_timeo); 273 } 274 275 if (persocket) 276 sounlock(so); 277 278 return (so); 279 } 280 281 void 282 soqinsque(struct socket *head, struct socket *so, int q) 283 { 284 soassertlocked(head); 285 soassertlocked(so); 286 287 KASSERT(so->so_onq == NULL); 288 289 so->so_head = head; 290 if (q == 0) { 291 head->so_q0len++; 292 so->so_onq = &head->so_q0; 293 } else { 294 head->so_qlen++; 295 so->so_onq = &head->so_q; 296 } 297 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 298 } 299 300 int 301 soqremque(struct socket *so, int q) 302 { 303 struct socket *head = so->so_head; 304 305 soassertlocked(so); 306 soassertlocked(head); 307 308 if (q == 0) { 309 if (so->so_onq != &head->so_q0) 310 return (0); 311 head->so_q0len--; 312 } else { 313 if (so->so_onq != &head->so_q) 314 return (0); 315 head->so_qlen--; 316 } 317 TAILQ_REMOVE(so->so_onq, so, so_qe); 318 so->so_onq = NULL; 319 so->so_head = NULL; 320 return (1); 321 } 322 323 /* 324 * Socantsendmore indicates that no more data will be sent on the 325 * socket; it would normally be applied to a socket when the user 326 * informs the system that no more data is to be sent, by the protocol 327 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 328 * will be received, and will normally be applied to the socket by a 329 * protocol when it detects that the peer will send no more data. 330 * Data queued for reading in the socket may yet be read. 331 */ 332 333 void 334 socantsendmore(struct socket *so) 335 { 336 soassertlocked(so); 337 so->so_state |= SS_CANTSENDMORE; 338 sowwakeup(so); 339 } 340 341 void 342 socantrcvmore(struct socket *so) 343 { 344 soassertlocked(so); 345 so->so_state |= SS_CANTRCVMORE; 346 sorwakeup(so); 347 } 348 349 void 350 solock(struct socket *so) 351 { 352 switch (so->so_proto->pr_domain->dom_family) { 353 case PF_INET: 354 case PF_INET6: 355 NET_LOCK(); 356 break; 357 default: 358 rw_enter_write(&so->so_lock); 359 break; 360 } 361 } 362 363 int 364 solock_persocket(struct socket *so) 365 { 366 switch (so->so_proto->pr_domain->dom_family) { 367 case PF_INET: 368 case PF_INET6: 369 return 0; 370 default: 371 return 1; 372 } 373 } 374 375 void 376 solock_pair(struct socket *so1, struct socket *so2) 377 { 378 KASSERT(so1 != so2); 379 KASSERT(so1->so_type == so2->so_type); 380 KASSERT(solock_persocket(so1)); 381 382 if (so1 < so2) { 383 solock(so1); 384 solock(so2); 385 } else { 386 solock(so2); 387 solock(so1); 388 } 389 } 390 391 void 392 sounlock(struct socket *so) 393 { 394 switch (so->so_proto->pr_domain->dom_family) { 395 case PF_INET: 396 case PF_INET6: 397 NET_UNLOCK(); 398 break; 399 default: 400 rw_exit_write(&so->so_lock); 401 break; 402 } 403 } 404 405 void 406 soassertlocked(struct socket *so) 407 { 408 switch (so->so_proto->pr_domain->dom_family) { 409 case PF_INET: 410 case PF_INET6: 411 NET_ASSERT_LOCKED(); 412 break; 413 default: 414 rw_assert_wrlock(&so->so_lock); 415 break; 416 } 417 } 418 419 int 420 sosleep_nsec(struct socket *so, void *ident, int prio, const char *wmesg, 421 uint64_t nsecs) 422 { 423 int ret; 424 425 switch (so->so_proto->pr_domain->dom_family) { 426 case PF_INET: 427 case PF_INET6: 428 ret = rwsleep_nsec(ident, &netlock, prio, wmesg, nsecs); 429 break; 430 default: 431 ret = rwsleep_nsec(ident, &so->so_lock, prio, wmesg, nsecs); 432 break; 433 } 434 435 return ret; 436 } 437 438 /* 439 * Wait for data to arrive at/drain from a socket buffer. 440 */ 441 int 442 sbwait(struct socket *so, struct sockbuf *sb) 443 { 444 int prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 445 446 soassertlocked(so); 447 448 sb->sb_flags |= SB_WAIT; 449 return sosleep_nsec(so, &sb->sb_cc, prio, "netio", sb->sb_timeo_nsecs); 450 } 451 452 int 453 sblock(struct socket *so, struct sockbuf *sb, int wait) 454 { 455 int error, prio = (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH; 456 457 soassertlocked(so); 458 459 if ((sb->sb_flags & SB_LOCK) == 0) { 460 sb->sb_flags |= SB_LOCK; 461 return (0); 462 } 463 if (wait & M_NOWAIT) 464 return (EWOULDBLOCK); 465 466 while (sb->sb_flags & SB_LOCK) { 467 sb->sb_flags |= SB_WANT; 468 error = sosleep_nsec(so, &sb->sb_flags, prio, "netlck", INFSLP); 469 if (error) 470 return (error); 471 } 472 sb->sb_flags |= SB_LOCK; 473 return (0); 474 } 475 476 void 477 sbunlock(struct socket *so, struct sockbuf *sb) 478 { 479 soassertlocked(so); 480 481 sb->sb_flags &= ~SB_LOCK; 482 if (sb->sb_flags & SB_WANT) { 483 sb->sb_flags &= ~SB_WANT; 484 wakeup(&sb->sb_flags); 485 } 486 } 487 488 /* 489 * Wakeup processes waiting on a socket buffer. 490 * Do asynchronous notification via SIGIO 491 * if the socket buffer has the SB_ASYNC flag set. 492 */ 493 void 494 sowakeup(struct socket *so, struct sockbuf *sb) 495 { 496 soassertlocked(so); 497 498 if (sb->sb_flags & SB_WAIT) { 499 sb->sb_flags &= ~SB_WAIT; 500 wakeup(&sb->sb_cc); 501 } 502 if (sb->sb_flags & SB_ASYNC) 503 pgsigio(&so->so_sigio, SIGIO, 0); 504 selwakeup(&sb->sb_sel); 505 } 506 507 /* 508 * Socket buffer (struct sockbuf) utility routines. 509 * 510 * Each socket contains two socket buffers: one for sending data and 511 * one for receiving data. Each buffer contains a queue of mbufs, 512 * information about the number of mbufs and amount of data in the 513 * queue, and other fields allowing select() statements and notification 514 * on data availability to be implemented. 515 * 516 * Data stored in a socket buffer is maintained as a list of records. 517 * Each record is a list of mbufs chained together with the m_next 518 * field. Records are chained together with the m_nextpkt field. The upper 519 * level routine soreceive() expects the following conventions to be 520 * observed when placing information in the receive buffer: 521 * 522 * 1. If the protocol requires each message be preceded by the sender's 523 * name, then a record containing that name must be present before 524 * any associated data (mbuf's must be of type MT_SONAME). 525 * 2. If the protocol supports the exchange of ``access rights'' (really 526 * just additional data associated with the message), and there are 527 * ``rights'' to be received, then a record containing this data 528 * should be present (mbuf's must be of type MT_CONTROL). 529 * 3. If a name or rights record exists, then it must be followed by 530 * a data record, perhaps of zero length. 531 * 532 * Before using a new socket structure it is first necessary to reserve 533 * buffer space to the socket, by calling sbreserve(). This should commit 534 * some of the available buffer space in the system buffer pool for the 535 * socket (currently, it does nothing but enforce limits). The space 536 * should be released by calling sbrelease() when the socket is destroyed. 537 */ 538 539 int 540 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 541 { 542 soassertlocked(so); 543 544 if (sbreserve(so, &so->so_snd, sndcc)) 545 goto bad; 546 if (sbreserve(so, &so->so_rcv, rcvcc)) 547 goto bad2; 548 so->so_snd.sb_wat = sndcc; 549 so->so_rcv.sb_wat = rcvcc; 550 if (so->so_rcv.sb_lowat == 0) 551 so->so_rcv.sb_lowat = 1; 552 if (so->so_snd.sb_lowat == 0) 553 so->so_snd.sb_lowat = MCLBYTES; 554 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 555 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 556 return (0); 557 bad2: 558 sbrelease(so, &so->so_snd); 559 bad: 560 return (ENOBUFS); 561 } 562 563 /* 564 * Allot mbufs to a sockbuf. 565 * Attempt to scale mbmax so that mbcnt doesn't become limiting 566 * if buffering efficiency is near the normal case. 567 */ 568 int 569 sbreserve(struct socket *so, struct sockbuf *sb, u_long cc) 570 { 571 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 572 soassertlocked(so); 573 574 if (cc == 0 || cc > sb_max) 575 return (1); 576 sb->sb_hiwat = cc; 577 sb->sb_mbmax = max(3 * MAXMCLBYTES, cc * 8); 578 if (sb->sb_lowat > sb->sb_hiwat) 579 sb->sb_lowat = sb->sb_hiwat; 580 return (0); 581 } 582 583 /* 584 * In low memory situation, do not accept any greater than normal request. 585 */ 586 int 587 sbcheckreserve(u_long cnt, u_long defcnt) 588 { 589 if (cnt > defcnt && sbchecklowmem()) 590 return (ENOBUFS); 591 return (0); 592 } 593 594 int 595 sbchecklowmem(void) 596 { 597 static int sblowmem; 598 unsigned int used = m_pool_used(); 599 600 if (used < 60) 601 sblowmem = 0; 602 else if (used > 80) 603 sblowmem = 1; 604 605 return (sblowmem); 606 } 607 608 /* 609 * Free mbufs held by a socket, and reserved mbuf space. 610 */ 611 void 612 sbrelease(struct socket *so, struct sockbuf *sb) 613 { 614 615 sbflush(so, sb); 616 sb->sb_hiwat = sb->sb_mbmax = 0; 617 } 618 619 /* 620 * Routines to add and remove 621 * data from an mbuf queue. 622 * 623 * The routines sbappend() or sbappendrecord() are normally called to 624 * append new mbufs to a socket buffer, after checking that adequate 625 * space is available, comparing the function sbspace() with the amount 626 * of data to be added. sbappendrecord() differs from sbappend() in 627 * that data supplied is treated as the beginning of a new record. 628 * To place a sender's address, optional access rights, and data in a 629 * socket receive buffer, sbappendaddr() should be used. To place 630 * access rights and data in a socket receive buffer, sbappendrights() 631 * should be used. In either case, the new data begins a new record. 632 * Note that unlike sbappend() and sbappendrecord(), these routines check 633 * for the caller that there will be enough space to store the data. 634 * Each fails if there is not enough space, or if it cannot find mbufs 635 * to store additional information in. 636 * 637 * Reliable protocols may use the socket send buffer to hold data 638 * awaiting acknowledgement. Data is normally copied from a socket 639 * send buffer in a protocol with m_copym for output to a peer, 640 * and then removing the data from the socket buffer with sbdrop() 641 * or sbdroprecord() when the data is acknowledged by the peer. 642 */ 643 644 #ifdef SOCKBUF_DEBUG 645 void 646 sblastrecordchk(struct sockbuf *sb, const char *where) 647 { 648 struct mbuf *m = sb->sb_mb; 649 650 while (m && m->m_nextpkt) 651 m = m->m_nextpkt; 652 653 if (m != sb->sb_lastrecord) { 654 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 655 sb->sb_mb, sb->sb_lastrecord, m); 656 printf("packet chain:\n"); 657 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 658 printf("\t%p\n", m); 659 panic("sblastrecordchk from %s", where); 660 } 661 } 662 663 void 664 sblastmbufchk(struct sockbuf *sb, const char *where) 665 { 666 struct mbuf *m = sb->sb_mb; 667 struct mbuf *n; 668 669 while (m && m->m_nextpkt) 670 m = m->m_nextpkt; 671 672 while (m && m->m_next) 673 m = m->m_next; 674 675 if (m != sb->sb_mbtail) { 676 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 677 sb->sb_mb, sb->sb_mbtail, m); 678 printf("packet tree:\n"); 679 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 680 printf("\t"); 681 for (n = m; n != NULL; n = n->m_next) 682 printf("%p ", n); 683 printf("\n"); 684 } 685 panic("sblastmbufchk from %s", where); 686 } 687 } 688 #endif /* SOCKBUF_DEBUG */ 689 690 #define SBLINKRECORD(sb, m0) \ 691 do { \ 692 if ((sb)->sb_lastrecord != NULL) \ 693 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 694 else \ 695 (sb)->sb_mb = (m0); \ 696 (sb)->sb_lastrecord = (m0); \ 697 } while (/*CONSTCOND*/0) 698 699 /* 700 * Append mbuf chain m to the last record in the 701 * socket buffer sb. The additional space associated 702 * the mbuf chain is recorded in sb. Empty mbufs are 703 * discarded and mbufs are compacted where possible. 704 */ 705 void 706 sbappend(struct socket *so, struct sockbuf *sb, struct mbuf *m) 707 { 708 struct mbuf *n; 709 710 if (m == NULL) 711 return; 712 713 soassertlocked(so); 714 SBLASTRECORDCHK(sb, "sbappend 1"); 715 716 if ((n = sb->sb_lastrecord) != NULL) { 717 /* 718 * XXX Would like to simply use sb_mbtail here, but 719 * XXX I need to verify that I won't miss an EOR that 720 * XXX way. 721 */ 722 do { 723 if (n->m_flags & M_EOR) { 724 sbappendrecord(so, sb, m); /* XXXXXX!!!! */ 725 return; 726 } 727 } while (n->m_next && (n = n->m_next)); 728 } else { 729 /* 730 * If this is the first record in the socket buffer, it's 731 * also the last record. 732 */ 733 sb->sb_lastrecord = m; 734 } 735 sbcompress(so, sb, m, n); 736 SBLASTRECORDCHK(sb, "sbappend 2"); 737 } 738 739 /* 740 * This version of sbappend() should only be used when the caller 741 * absolutely knows that there will never be more than one record 742 * in the socket buffer, that is, a stream protocol (such as TCP). 743 */ 744 void 745 sbappendstream(struct socket *so, struct sockbuf *sb, struct mbuf *m) 746 { 747 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 748 soassertlocked(so); 749 KDASSERT(m->m_nextpkt == NULL); 750 KASSERT(sb->sb_mb == sb->sb_lastrecord); 751 752 SBLASTMBUFCHK(sb, __func__); 753 754 sbcompress(so, sb, m, sb->sb_mbtail); 755 756 sb->sb_lastrecord = sb->sb_mb; 757 SBLASTRECORDCHK(sb, __func__); 758 } 759 760 #ifdef SOCKBUF_DEBUG 761 void 762 sbcheck(struct socket *so, struct sockbuf *sb) 763 { 764 struct mbuf *m, *n; 765 u_long len = 0, mbcnt = 0; 766 767 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 768 for (n = m; n; n = n->m_next) { 769 len += n->m_len; 770 mbcnt += MSIZE; 771 if (n->m_flags & M_EXT) 772 mbcnt += n->m_ext.ext_size; 773 if (m != n && n->m_nextpkt) 774 panic("sbcheck nextpkt"); 775 } 776 } 777 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 778 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 779 mbcnt, sb->sb_mbcnt); 780 panic("sbcheck"); 781 } 782 } 783 #endif 784 785 /* 786 * As above, except the mbuf chain 787 * begins a new record. 788 */ 789 void 790 sbappendrecord(struct socket *so, struct sockbuf *sb, struct mbuf *m0) 791 { 792 struct mbuf *m; 793 794 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 795 soassertlocked(so); 796 797 if (m0 == NULL) 798 return; 799 800 /* 801 * Put the first mbuf on the queue. 802 * Note this permits zero length records. 803 */ 804 sballoc(so, sb, m0); 805 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 806 SBLINKRECORD(sb, m0); 807 m = m0->m_next; 808 m0->m_next = NULL; 809 if (m && (m0->m_flags & M_EOR)) { 810 m0->m_flags &= ~M_EOR; 811 m->m_flags |= M_EOR; 812 } 813 sbcompress(so, sb, m, m0); 814 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 815 } 816 817 /* 818 * Append address and data, and optionally, control (ancillary) data 819 * to the receive queue of a socket. If present, 820 * m0 must include a packet header with total length. 821 * Returns 0 if no space in sockbuf or insufficient mbufs. 822 */ 823 int 824 sbappendaddr(struct socket *so, struct sockbuf *sb, const struct sockaddr *asa, 825 struct mbuf *m0, struct mbuf *control) 826 { 827 struct mbuf *m, *n, *nlast; 828 int space = asa->sa_len; 829 830 soassertlocked(so); 831 832 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 833 panic("sbappendaddr"); 834 if (m0) 835 space += m0->m_pkthdr.len; 836 for (n = control; n; n = n->m_next) { 837 space += n->m_len; 838 if (n->m_next == NULL) /* keep pointer to last control buf */ 839 break; 840 } 841 if (space > sbspace(so, sb)) 842 return (0); 843 if (asa->sa_len > MLEN) 844 return (0); 845 MGET(m, M_DONTWAIT, MT_SONAME); 846 if (m == NULL) 847 return (0); 848 m->m_len = asa->sa_len; 849 memcpy(mtod(m, caddr_t), asa, asa->sa_len); 850 if (n) 851 n->m_next = m0; /* concatenate data to control */ 852 else 853 control = m0; 854 m->m_next = control; 855 856 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 857 858 for (n = m; n->m_next != NULL; n = n->m_next) 859 sballoc(so, sb, n); 860 sballoc(so, sb, n); 861 nlast = n; 862 SBLINKRECORD(sb, m); 863 864 sb->sb_mbtail = nlast; 865 SBLASTMBUFCHK(sb, "sbappendaddr"); 866 867 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 868 869 return (1); 870 } 871 872 int 873 sbappendcontrol(struct socket *so, struct sockbuf *sb, struct mbuf *m0, 874 struct mbuf *control) 875 { 876 struct mbuf *m, *mlast, *n; 877 int space = 0; 878 879 if (control == NULL) 880 panic("sbappendcontrol"); 881 for (m = control; ; m = m->m_next) { 882 space += m->m_len; 883 if (m->m_next == NULL) 884 break; 885 } 886 n = m; /* save pointer to last control buffer */ 887 for (m = m0; m; m = m->m_next) 888 space += m->m_len; 889 if (space > sbspace(so, sb)) 890 return (0); 891 n->m_next = m0; /* concatenate data to control */ 892 893 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 894 895 for (m = control; m->m_next != NULL; m = m->m_next) 896 sballoc(so, sb, m); 897 sballoc(so, sb, m); 898 mlast = m; 899 SBLINKRECORD(sb, control); 900 901 sb->sb_mbtail = mlast; 902 SBLASTMBUFCHK(sb, "sbappendcontrol"); 903 904 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 905 906 return (1); 907 } 908 909 /* 910 * Compress mbuf chain m into the socket 911 * buffer sb following mbuf n. If n 912 * is null, the buffer is presumed empty. 913 */ 914 void 915 sbcompress(struct socket *so, struct sockbuf *sb, struct mbuf *m, 916 struct mbuf *n) 917 { 918 int eor = 0; 919 struct mbuf *o; 920 921 while (m) { 922 eor |= m->m_flags & M_EOR; 923 if (m->m_len == 0 && 924 (eor == 0 || 925 (((o = m->m_next) || (o = n)) && 926 o->m_type == m->m_type))) { 927 if (sb->sb_lastrecord == m) 928 sb->sb_lastrecord = m->m_next; 929 m = m_free(m); 930 continue; 931 } 932 if (n && (n->m_flags & M_EOR) == 0 && 933 /* m_trailingspace() checks buffer writeability */ 934 m->m_len <= ((n->m_flags & M_EXT)? n->m_ext.ext_size : 935 MCLBYTES) / 4 && /* XXX Don't copy too much */ 936 m->m_len <= m_trailingspace(n) && 937 n->m_type == m->m_type) { 938 memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t), 939 m->m_len); 940 n->m_len += m->m_len; 941 sb->sb_cc += m->m_len; 942 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 943 sb->sb_datacc += m->m_len; 944 m = m_free(m); 945 continue; 946 } 947 if (n) 948 n->m_next = m; 949 else 950 sb->sb_mb = m; 951 sb->sb_mbtail = m; 952 sballoc(so, sb, m); 953 n = m; 954 m->m_flags &= ~M_EOR; 955 m = m->m_next; 956 n->m_next = NULL; 957 } 958 if (eor) { 959 if (n) 960 n->m_flags |= eor; 961 else 962 printf("semi-panic: sbcompress"); 963 } 964 SBLASTMBUFCHK(sb, __func__); 965 } 966 967 /* 968 * Free all mbufs in a sockbuf. 969 * Check that all resources are reclaimed. 970 */ 971 void 972 sbflush(struct socket *so, struct sockbuf *sb) 973 { 974 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 975 KASSERT((sb->sb_flags & SB_LOCK) == 0); 976 977 while (sb->sb_mbcnt) 978 sbdrop(so, sb, (int)sb->sb_cc); 979 980 KASSERT(sb->sb_cc == 0); 981 KASSERT(sb->sb_datacc == 0); 982 KASSERT(sb->sb_mb == NULL); 983 KASSERT(sb->sb_mbtail == NULL); 984 KASSERT(sb->sb_lastrecord == NULL); 985 } 986 987 /* 988 * Drop data from (the front of) a sockbuf. 989 */ 990 void 991 sbdrop(struct socket *so, struct sockbuf *sb, int len) 992 { 993 struct mbuf *m, *mn; 994 struct mbuf *next; 995 996 KASSERT(sb == &so->so_rcv || sb == &so->so_snd); 997 soassertlocked(so); 998 999 next = (m = sb->sb_mb) ? m->m_nextpkt : NULL; 1000 while (len > 0) { 1001 if (m == NULL) { 1002 if (next == NULL) 1003 panic("sbdrop"); 1004 m = next; 1005 next = m->m_nextpkt; 1006 continue; 1007 } 1008 if (m->m_len > len) { 1009 m->m_len -= len; 1010 m->m_data += len; 1011 sb->sb_cc -= len; 1012 if (m->m_type != MT_CONTROL && m->m_type != MT_SONAME) 1013 sb->sb_datacc -= len; 1014 break; 1015 } 1016 len -= m->m_len; 1017 sbfree(so, sb, m); 1018 mn = m_free(m); 1019 m = mn; 1020 } 1021 while (m && m->m_len == 0) { 1022 sbfree(so, sb, m); 1023 mn = m_free(m); 1024 m = mn; 1025 } 1026 if (m) { 1027 sb->sb_mb = m; 1028 m->m_nextpkt = next; 1029 } else 1030 sb->sb_mb = next; 1031 /* 1032 * First part is an inline SB_EMPTY_FIXUP(). Second part 1033 * makes sure sb_lastrecord is up-to-date if we dropped 1034 * part of the last record. 1035 */ 1036 m = sb->sb_mb; 1037 if (m == NULL) { 1038 sb->sb_mbtail = NULL; 1039 sb->sb_lastrecord = NULL; 1040 } else if (m->m_nextpkt == NULL) 1041 sb->sb_lastrecord = m; 1042 } 1043 1044 /* 1045 * Drop a record off the front of a sockbuf 1046 * and move the next record to the front. 1047 */ 1048 void 1049 sbdroprecord(struct socket *so, struct sockbuf *sb) 1050 { 1051 struct mbuf *m, *mn; 1052 1053 m = sb->sb_mb; 1054 if (m) { 1055 sb->sb_mb = m->m_nextpkt; 1056 do { 1057 sbfree(so, sb, m); 1058 mn = m_free(m); 1059 } while ((m = mn) != NULL); 1060 } 1061 SB_EMPTY_FIXUP(sb); 1062 } 1063 1064 /* 1065 * Create a "control" mbuf containing the specified data 1066 * with the specified type for presentation on a socket buffer. 1067 */ 1068 struct mbuf * 1069 sbcreatecontrol(const void *p, size_t size, int type, int level) 1070 { 1071 struct cmsghdr *cp; 1072 struct mbuf *m; 1073 1074 if (CMSG_SPACE(size) > MCLBYTES) { 1075 printf("sbcreatecontrol: message too large %zu\n", size); 1076 return (NULL); 1077 } 1078 1079 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 1080 return (NULL); 1081 if (CMSG_SPACE(size) > MLEN) { 1082 MCLGET(m, M_DONTWAIT); 1083 if ((m->m_flags & M_EXT) == 0) { 1084 m_free(m); 1085 return NULL; 1086 } 1087 } 1088 cp = mtod(m, struct cmsghdr *); 1089 memset(cp, 0, CMSG_SPACE(size)); 1090 memcpy(CMSG_DATA(cp), p, size); 1091 m->m_len = CMSG_SPACE(size); 1092 cp->cmsg_len = CMSG_LEN(size); 1093 cp->cmsg_level = level; 1094 cp->cmsg_type = type; 1095 return (m); 1096 } 1097