1 /* $OpenBSD: uipc_socket.c,v 1.152 2016/06/13 21:24:43 bluhm Exp $ */ 2 /* $NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/file.h> 39 #include <sys/filedesc.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/domain.h> 43 #include <sys/kernel.h> 44 #include <sys/event.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/unpcb.h> 48 #include <sys/socketvar.h> 49 #include <sys/signalvar.h> 50 #include <net/if.h> 51 #include <sys/pool.h> 52 53 #ifdef DDB 54 #include <machine/db_machdep.h> 55 #endif 56 57 void sbsync(struct sockbuf *, struct mbuf *); 58 59 int sosplice(struct socket *, int, off_t, struct timeval *); 60 void sounsplice(struct socket *, struct socket *, int); 61 void soidle(void *); 62 int somove(struct socket *, int); 63 64 void filt_sordetach(struct knote *kn); 65 int filt_soread(struct knote *kn, long hint); 66 void filt_sowdetach(struct knote *kn); 67 int filt_sowrite(struct knote *kn, long hint); 68 int filt_solisten(struct knote *kn, long hint); 69 70 struct filterops solisten_filtops = 71 { 1, NULL, filt_sordetach, filt_solisten }; 72 struct filterops soread_filtops = 73 { 1, NULL, filt_sordetach, filt_soread }; 74 struct filterops sowrite_filtops = 75 { 1, NULL, filt_sowdetach, filt_sowrite }; 76 77 78 #ifndef SOMINCONN 79 #define SOMINCONN 80 80 #endif /* SOMINCONN */ 81 82 int somaxconn = SOMAXCONN; 83 int sominconn = SOMINCONN; 84 85 struct pool socket_pool; 86 #ifdef SOCKET_SPLICE 87 struct pool sosplice_pool; 88 #endif 89 90 void 91 soinit(void) 92 { 93 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL); 94 pool_setipl(&socket_pool, IPL_SOFTNET); 95 #ifdef SOCKET_SPLICE 96 pool_init(&sosplice_pool, sizeof(struct sosplice), 0, 0, 0, "sosppl", 97 NULL); 98 pool_setipl(&sosplice_pool, IPL_SOFTNET); 99 #endif 100 } 101 102 /* 103 * Socket operation routines. 104 * These routines are called by the routines in 105 * sys_socket.c or from a system process, and 106 * implement the semantics of socket operations by 107 * switching out to the protocol specific routines. 108 */ 109 int 110 socreate(int dom, struct socket **aso, int type, int proto) 111 { 112 struct proc *p = curproc; /* XXX */ 113 struct protosw *prp; 114 struct socket *so; 115 int error, s; 116 117 if (proto) 118 prp = pffindproto(dom, proto, type); 119 else 120 prp = pffindtype(dom, type); 121 if (prp == NULL || prp->pr_usrreq == 0) 122 return (EPROTONOSUPPORT); 123 if (prp->pr_type != type) 124 return (EPROTOTYPE); 125 s = splsoftnet(); 126 so = pool_get(&socket_pool, PR_WAITOK | PR_ZERO); 127 TAILQ_INIT(&so->so_q0); 128 TAILQ_INIT(&so->so_q); 129 so->so_type = type; 130 if (suser(p, 0) == 0) 131 so->so_state = SS_PRIV; 132 so->so_ruid = p->p_ucred->cr_ruid; 133 so->so_euid = p->p_ucred->cr_uid; 134 so->so_rgid = p->p_ucred->cr_rgid; 135 so->so_egid = p->p_ucred->cr_gid; 136 so->so_cpid = p->p_p->ps_pid; 137 so->so_proto = prp; 138 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 139 (struct mbuf *)(long)proto, NULL, p); 140 if (error) { 141 so->so_state |= SS_NOFDREF; 142 sofree(so); 143 splx(s); 144 return (error); 145 } 146 splx(s); 147 *aso = so; 148 return (0); 149 } 150 151 int 152 sobind(struct socket *so, struct mbuf *nam, struct proc *p) 153 { 154 int s = splsoftnet(); 155 int error; 156 157 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, p); 158 splx(s); 159 return (error); 160 } 161 162 int 163 solisten(struct socket *so, int backlog) 164 { 165 int s, error; 166 167 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING)) 168 return (EOPNOTSUPP); 169 #ifdef SOCKET_SPLICE 170 if (isspliced(so) || issplicedback(so)) 171 return (EOPNOTSUPP); 172 #endif /* SOCKET_SPLICE */ 173 s = splsoftnet(); 174 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, NULL, NULL, 175 curproc); 176 if (error) { 177 splx(s); 178 return (error); 179 } 180 if (TAILQ_FIRST(&so->so_q) == NULL) 181 so->so_options |= SO_ACCEPTCONN; 182 if (backlog < 0 || backlog > somaxconn) 183 backlog = somaxconn; 184 if (backlog < sominconn) 185 backlog = sominconn; 186 so->so_qlimit = backlog; 187 splx(s); 188 return (0); 189 } 190 191 /* 192 * Must be called at splsoftnet() 193 */ 194 195 void 196 sofree(struct socket *so) 197 { 198 splsoftassert(IPL_SOFTNET); 199 200 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 201 return; 202 if (so->so_head) { 203 /* 204 * We must not decommission a socket that's on the accept(2) 205 * queue. If we do, then accept(2) may hang after select(2) 206 * indicated that the listening socket was ready. 207 */ 208 if (!soqremque(so, 0)) 209 return; 210 } 211 #ifdef SOCKET_SPLICE 212 if (so->so_sp) { 213 if (issplicedback(so)) 214 sounsplice(so->so_sp->ssp_soback, so, 215 so->so_sp->ssp_soback != so); 216 if (isspliced(so)) 217 sounsplice(so, so->so_sp->ssp_socket, 0); 218 pool_put(&sosplice_pool, so->so_sp); 219 so->so_sp = NULL; 220 } 221 #endif /* SOCKET_SPLICE */ 222 sbrelease(&so->so_snd); 223 sorflush(so); 224 pool_put(&socket_pool, so); 225 } 226 227 /* 228 * Close a socket on last file table reference removal. 229 * Initiate disconnect if connected. 230 * Free socket when disconnect complete. 231 */ 232 int 233 soclose(struct socket *so) 234 { 235 struct socket *so2; 236 int s = splsoftnet(); /* conservative */ 237 int error = 0; 238 239 if (so->so_options & SO_ACCEPTCONN) { 240 while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) { 241 (void) soqremque(so2, 0); 242 (void) soabort(so2); 243 } 244 while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) { 245 (void) soqremque(so2, 1); 246 (void) soabort(so2); 247 } 248 } 249 if (so->so_pcb == 0) 250 goto discard; 251 if (so->so_state & SS_ISCONNECTED) { 252 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 253 error = sodisconnect(so); 254 if (error) 255 goto drop; 256 } 257 if (so->so_options & SO_LINGER) { 258 if ((so->so_state & SS_ISDISCONNECTING) && 259 (so->so_state & SS_NBIO)) 260 goto drop; 261 while (so->so_state & SS_ISCONNECTED) { 262 error = tsleep(&so->so_timeo, 263 PSOCK | PCATCH, "netcls", 264 so->so_linger * hz); 265 if (error) 266 break; 267 } 268 } 269 } 270 drop: 271 if (so->so_pcb) { 272 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, NULL, 273 NULL, NULL, curproc); 274 if (error == 0) 275 error = error2; 276 } 277 discard: 278 if (so->so_state & SS_NOFDREF) 279 panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type); 280 so->so_state |= SS_NOFDREF; 281 sofree(so); 282 splx(s); 283 return (error); 284 } 285 286 /* 287 * Must be called at splsoftnet. 288 */ 289 int 290 soabort(struct socket *so) 291 { 292 splsoftassert(IPL_SOFTNET); 293 294 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, NULL, NULL, 295 curproc); 296 } 297 298 int 299 soaccept(struct socket *so, struct mbuf *nam) 300 { 301 int s = splsoftnet(); 302 int error = 0; 303 304 if ((so->so_state & SS_NOFDREF) == 0) 305 panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type); 306 so->so_state &= ~SS_NOFDREF; 307 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 308 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 309 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, NULL, 310 nam, NULL, curproc); 311 else 312 error = ECONNABORTED; 313 splx(s); 314 return (error); 315 } 316 317 int 318 soconnect(struct socket *so, struct mbuf *nam) 319 { 320 int s; 321 int error; 322 323 if (so->so_options & SO_ACCEPTCONN) 324 return (EOPNOTSUPP); 325 s = splsoftnet(); 326 /* 327 * If protocol is connection-based, can only connect once. 328 * Otherwise, if connected, try to disconnect first. 329 * This allows user to disconnect by connecting to, e.g., 330 * a null address. 331 */ 332 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 333 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 334 (error = sodisconnect(so)))) 335 error = EISCONN; 336 else 337 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 338 NULL, nam, NULL, curproc); 339 splx(s); 340 return (error); 341 } 342 343 int 344 soconnect2(struct socket *so1, struct socket *so2) 345 { 346 int s = splsoftnet(); 347 int error; 348 349 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, NULL, 350 (struct mbuf *)so2, NULL, curproc); 351 splx(s); 352 return (error); 353 } 354 355 int 356 sodisconnect(struct socket *so) 357 { 358 int s = splsoftnet(); 359 int error; 360 361 if ((so->so_state & SS_ISCONNECTED) == 0) { 362 error = ENOTCONN; 363 goto bad; 364 } 365 if (so->so_state & SS_ISDISCONNECTING) { 366 error = EALREADY; 367 goto bad; 368 } 369 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, NULL, NULL, 370 NULL, curproc); 371 bad: 372 splx(s); 373 return (error); 374 } 375 376 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 377 /* 378 * Send on a socket. 379 * If send must go all at once and message is larger than 380 * send buffering, then hard error. 381 * Lock against other senders. 382 * If must go all at once and not enough room now, then 383 * inform user that this would block and do nothing. 384 * Otherwise, if nonblocking, send as much as possible. 385 * The data to be sent is described by "uio" if nonzero, 386 * otherwise by the mbuf chain "top" (which must be null 387 * if uio is not). Data provided in mbuf chain must be small 388 * enough to send all at once. 389 * 390 * Returns nonzero on error, timeout or signal; callers 391 * must check for short counts if EINTR/ERESTART are returned. 392 * Data and control buffers are freed on return. 393 */ 394 int 395 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 396 struct mbuf *control, int flags) 397 { 398 struct mbuf **mp; 399 struct mbuf *m; 400 long space, clen = 0; 401 u_long len, mlen; 402 size_t resid; 403 int error, s; 404 int atomic = sosendallatonce(so) || top; 405 406 if (uio) 407 resid = uio->uio_resid; 408 else 409 resid = top->m_pkthdr.len; 410 /* MSG_EOR on a SOCK_STREAM socket is invalid. */ 411 if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) { 412 error = EINVAL; 413 goto out; 414 } 415 if (uio && uio->uio_procp) 416 uio->uio_procp->p_ru.ru_msgsnd++; 417 if (control) { 418 /* 419 * In theory clen should be unsigned (since control->m_len is). 420 * However, space must be signed, as it might be less than 0 421 * if we over-committed, and we must use a signed comparison 422 * of space and clen. 423 */ 424 clen = control->m_len; 425 /* reserve extra space for AF_LOCAL's internalize */ 426 if (so->so_proto->pr_domain->dom_family == AF_LOCAL && 427 clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) && 428 mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 429 clen = CMSG_SPACE( 430 (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) * 431 (sizeof(struct file *) / sizeof(int))); 432 } 433 434 #define snderr(errno) { error = errno; splx(s); goto release; } 435 436 restart: 437 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 438 goto out; 439 so->so_state |= SS_ISSENDING; 440 do { 441 s = splsoftnet(); 442 if (so->so_state & SS_CANTSENDMORE) 443 snderr(EPIPE); 444 if (so->so_error) { 445 error = so->so_error; 446 so->so_error = 0; 447 splx(s); 448 goto release; 449 } 450 if ((so->so_state & SS_ISCONNECTED) == 0) { 451 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 452 if (!(resid == 0 && clen != 0)) 453 snderr(ENOTCONN); 454 } else if (addr == 0) 455 snderr(EDESTADDRREQ); 456 } 457 space = sbspace(&so->so_snd); 458 if (flags & MSG_OOB) 459 space += 1024; 460 if ((atomic && resid > so->so_snd.sb_hiwat) || 461 (so->so_proto->pr_domain->dom_family != AF_LOCAL && 462 clen > so->so_snd.sb_hiwat)) 463 snderr(EMSGSIZE); 464 if (space < clen || 465 (space - clen < resid && 466 (atomic || space < so->so_snd.sb_lowat))) { 467 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) 468 snderr(EWOULDBLOCK); 469 sbunlock(&so->so_snd); 470 error = sbwait(&so->so_snd); 471 so->so_state &= ~SS_ISSENDING; 472 splx(s); 473 if (error) 474 goto out; 475 goto restart; 476 } 477 splx(s); 478 mp = ⊤ 479 space -= clen; 480 do { 481 if (uio == NULL) { 482 /* 483 * Data is prepackaged in "top". 484 */ 485 resid = 0; 486 if (flags & MSG_EOR) 487 top->m_flags |= M_EOR; 488 } else do { 489 if (top == 0) { 490 MGETHDR(m, M_WAIT, MT_DATA); 491 mlen = MHLEN; 492 m->m_pkthdr.len = 0; 493 m->m_pkthdr.ph_ifidx = 0; 494 } else { 495 MGET(m, M_WAIT, MT_DATA); 496 mlen = MLEN; 497 } 498 if (resid >= MINCLSIZE && space >= MCLBYTES) { 499 MCLGET(m, M_NOWAIT); 500 if ((m->m_flags & M_EXT) == 0) 501 goto nopages; 502 if (atomic && top == 0) { 503 len = ulmin(MCLBYTES - max_hdr, 504 resid); 505 m->m_data += max_hdr; 506 } else 507 len = ulmin(MCLBYTES, resid); 508 space -= len; 509 } else { 510 nopages: 511 len = ulmin(ulmin(mlen, resid), space); 512 space -= len; 513 /* 514 * For datagram protocols, leave room 515 * for protocol headers in first mbuf. 516 */ 517 if (atomic && top == 0 && len < mlen) 518 MH_ALIGN(m, len); 519 } 520 error = uiomove(mtod(m, caddr_t), len, uio); 521 resid = uio->uio_resid; 522 m->m_len = len; 523 *mp = m; 524 top->m_pkthdr.len += len; 525 if (error) 526 goto release; 527 mp = &m->m_next; 528 if (resid == 0) { 529 if (flags & MSG_EOR) 530 top->m_flags |= M_EOR; 531 break; 532 } 533 } while (space > 0 && atomic); 534 s = splsoftnet(); /* XXX */ 535 if (resid == 0) 536 so->so_state &= ~SS_ISSENDING; 537 error = (*so->so_proto->pr_usrreq)(so, 538 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 539 top, addr, control, curproc); 540 splx(s); 541 clen = 0; 542 control = 0; 543 top = 0; 544 mp = ⊤ 545 if (error) 546 goto release; 547 } while (resid && space > 0); 548 } while (resid); 549 550 release: 551 so->so_state &= ~SS_ISSENDING; 552 sbunlock(&so->so_snd); 553 out: 554 if (top) 555 m_freem(top); 556 if (control) 557 m_freem(control); 558 return (error); 559 } 560 561 /* 562 * Following replacement or removal of the first mbuf on the first 563 * mbuf chain of a socket buffer, push necessary state changes back 564 * into the socket buffer so that other consumers see the values 565 * consistently. 'nextrecord' is the callers locally stored value of 566 * the original value of sb->sb_mb->m_nextpkt which must be restored 567 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 568 */ 569 void 570 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 571 { 572 573 /* 574 * First, update for the new value of nextrecord. If necessary, 575 * make it the first record. 576 */ 577 if (sb->sb_mb != NULL) 578 sb->sb_mb->m_nextpkt = nextrecord; 579 else 580 sb->sb_mb = nextrecord; 581 582 /* 583 * Now update any dependent socket buffer fields to reflect 584 * the new state. This is an inline of SB_EMPTY_FIXUP, with 585 * the addition of a second clause that takes care of the 586 * case where sb_mb has been updated, but remains the last 587 * record. 588 */ 589 if (sb->sb_mb == NULL) { 590 sb->sb_mbtail = NULL; 591 sb->sb_lastrecord = NULL; 592 } else if (sb->sb_mb->m_nextpkt == NULL) 593 sb->sb_lastrecord = sb->sb_mb; 594 } 595 596 /* 597 * Implement receive operations on a socket. 598 * We depend on the way that records are added to the sockbuf 599 * by sbappend*. In particular, each record (mbufs linked through m_next) 600 * must begin with an address if the protocol so specifies, 601 * followed by an optional mbuf or mbufs containing ancillary data, 602 * and then zero or more mbufs of data. 603 * In order to avoid blocking network interrupts for the entire time here, 604 * we splx() while doing the actual copy to user space. 605 * Although the sockbuf is locked, new data may still be appended, 606 * and thus we must maintain consistency of the sockbuf during that time. 607 * 608 * The caller may receive the data as a single mbuf chain by supplying 609 * an mbuf **mp0 for use in returning the chain. The uio is then used 610 * only for the count in uio_resid. 611 */ 612 int 613 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 614 struct mbuf **mp0, struct mbuf **controlp, int *flagsp, 615 socklen_t controllen) 616 { 617 struct mbuf *m, **mp; 618 struct mbuf *cm; 619 u_long len, offset, moff; 620 int flags, error, s, type, uio_error = 0; 621 struct protosw *pr = so->so_proto; 622 struct mbuf *nextrecord; 623 size_t resid, orig_resid = uio->uio_resid; 624 625 mp = mp0; 626 if (paddr) 627 *paddr = 0; 628 if (controlp) 629 *controlp = 0; 630 if (flagsp) 631 flags = *flagsp &~ MSG_EOR; 632 else 633 flags = 0; 634 if (so->so_state & SS_NBIO) 635 flags |= MSG_DONTWAIT; 636 if (flags & MSG_OOB) { 637 m = m_get(M_WAIT, MT_DATA); 638 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 639 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, curproc); 640 if (error) 641 goto bad; 642 do { 643 error = uiomove(mtod(m, caddr_t), 644 ulmin(uio->uio_resid, m->m_len), uio); 645 m = m_free(m); 646 } while (uio->uio_resid && error == 0 && m); 647 bad: 648 if (m) 649 m_freem(m); 650 return (error); 651 } 652 if (mp) 653 *mp = NULL; 654 655 restart: 656 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) 657 return (error); 658 s = splsoftnet(); 659 660 m = so->so_rcv.sb_mb; 661 #ifdef SOCKET_SPLICE 662 if (isspliced(so)) 663 m = NULL; 664 #endif /* SOCKET_SPLICE */ 665 /* 666 * If we have less data than requested, block awaiting more 667 * (subject to any timeout) if: 668 * 1. the current count is less than the low water mark, 669 * 2. MSG_WAITALL is set, and it is possible to do the entire 670 * receive operation at once if we block (resid <= hiwat), or 671 * 3. MSG_DONTWAIT is not set. 672 * If MSG_WAITALL is set but resid is larger than the receive buffer, 673 * we have to do the receive in sections, and thus risk returning 674 * a short count if a timeout or signal occurs after we start. 675 */ 676 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 677 so->so_rcv.sb_cc < uio->uio_resid) && 678 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 679 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 680 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 681 #ifdef DIAGNOSTIC 682 if (m == NULL && so->so_rcv.sb_cc) 683 #ifdef SOCKET_SPLICE 684 if (!isspliced(so)) 685 #endif /* SOCKET_SPLICE */ 686 panic("receive 1: so %p, so_type %d, sb_cc %lu", 687 so, so->so_type, so->so_rcv.sb_cc); 688 #endif 689 if (so->so_error) { 690 if (m) 691 goto dontblock; 692 error = so->so_error; 693 if ((flags & MSG_PEEK) == 0) 694 so->so_error = 0; 695 goto release; 696 } 697 if (so->so_state & SS_CANTRCVMORE) { 698 if (m) 699 goto dontblock; 700 else if (so->so_rcv.sb_cc == 0) 701 goto release; 702 } 703 for (; m; m = m->m_next) 704 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 705 m = so->so_rcv.sb_mb; 706 goto dontblock; 707 } 708 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 709 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 710 error = ENOTCONN; 711 goto release; 712 } 713 if (uio->uio_resid == 0 && controlp == NULL) 714 goto release; 715 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 716 error = EWOULDBLOCK; 717 goto release; 718 } 719 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 720 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 721 sbunlock(&so->so_rcv); 722 error = sbwait(&so->so_rcv); 723 splx(s); 724 if (error) 725 return (error); 726 goto restart; 727 } 728 dontblock: 729 /* 730 * On entry here, m points to the first record of the socket buffer. 731 * From this point onward, we maintain 'nextrecord' as a cache of the 732 * pointer to the next record in the socket buffer. We must keep the 733 * various socket buffer pointers and local stack versions of the 734 * pointers in sync, pushing out modifications before operations that 735 * may sleep, and re-reading them afterwards. 736 * 737 * Otherwise, we will race with the network stack appending new data 738 * or records onto the socket buffer by using inconsistent/stale 739 * versions of the field, possibly resulting in socket buffer 740 * corruption. 741 */ 742 if (uio->uio_procp) 743 uio->uio_procp->p_ru.ru_msgrcv++; 744 KASSERT(m == so->so_rcv.sb_mb); 745 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 746 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 747 nextrecord = m->m_nextpkt; 748 if (pr->pr_flags & PR_ADDR) { 749 #ifdef DIAGNOSTIC 750 if (m->m_type != MT_SONAME) 751 panic("receive 1a: so %p, so_type %d, m %p, m_type %d", 752 so, so->so_type, m, m->m_type); 753 #endif 754 orig_resid = 0; 755 if (flags & MSG_PEEK) { 756 if (paddr) 757 *paddr = m_copym(m, 0, m->m_len, M_NOWAIT); 758 m = m->m_next; 759 } else { 760 sbfree(&so->so_rcv, m); 761 if (paddr) { 762 *paddr = m; 763 so->so_rcv.sb_mb = m->m_next; 764 m->m_next = 0; 765 m = so->so_rcv.sb_mb; 766 } else { 767 so->so_rcv.sb_mb = m_free(m); 768 m = so->so_rcv.sb_mb; 769 } 770 sbsync(&so->so_rcv, nextrecord); 771 } 772 } 773 while (m && m->m_type == MT_CONTROL && error == 0) { 774 if (flags & MSG_PEEK) { 775 if (controlp) 776 *controlp = m_copym(m, 0, m->m_len, M_NOWAIT); 777 m = m->m_next; 778 } else { 779 sbfree(&so->so_rcv, m); 780 so->so_rcv.sb_mb = m->m_next; 781 m->m_nextpkt = m->m_next = NULL; 782 cm = m; 783 m = so->so_rcv.sb_mb; 784 sbsync(&so->so_rcv, nextrecord); 785 if (controlp) { 786 if (pr->pr_domain->dom_externalize && 787 mtod(cm, struct cmsghdr *)->cmsg_type == 788 SCM_RIGHTS) 789 error = (*pr->pr_domain->dom_externalize)(cm, 790 controllen, flags); 791 *controlp = cm; 792 } else { 793 /* 794 * Dispose of any SCM_RIGHTS message that went 795 * through the read path rather than recv. 796 */ 797 if (pr->pr_domain->dom_dispose && 798 mtod(cm, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 799 pr->pr_domain->dom_dispose(cm); 800 m_free(cm); 801 } 802 } 803 if (m != NULL) 804 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 805 else 806 nextrecord = so->so_rcv.sb_mb; 807 if (controlp) { 808 orig_resid = 0; 809 controlp = &(*controlp)->m_next; 810 } 811 } 812 813 /* If m is non-NULL, we have some data to read. */ 814 if (m) { 815 type = m->m_type; 816 if (type == MT_OOBDATA) 817 flags |= MSG_OOB; 818 if (m->m_flags & M_BCAST) 819 flags |= MSG_BCAST; 820 if (m->m_flags & M_MCAST) 821 flags |= MSG_MCAST; 822 } 823 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 824 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 825 826 moff = 0; 827 offset = 0; 828 while (m && uio->uio_resid > 0 && error == 0) { 829 if (m->m_type == MT_OOBDATA) { 830 if (type != MT_OOBDATA) 831 break; 832 } else if (type == MT_OOBDATA) 833 break; 834 #ifdef DIAGNOSTIC 835 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 836 panic("receive 3: so %p, so_type %d, m %p, m_type %d", 837 so, so->so_type, m, m->m_type); 838 #endif 839 so->so_state &= ~SS_RCVATMARK; 840 len = uio->uio_resid; 841 if (so->so_oobmark && len > so->so_oobmark - offset) 842 len = so->so_oobmark - offset; 843 if (len > m->m_len - moff) 844 len = m->m_len - moff; 845 /* 846 * If mp is set, just pass back the mbufs. 847 * Otherwise copy them out via the uio, then free. 848 * Sockbuf must be consistent here (points to current mbuf, 849 * it points to next record) when we drop priority; 850 * we must note any additions to the sockbuf when we 851 * block interrupts again. 852 */ 853 if (mp == NULL && uio_error == 0) { 854 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 855 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 856 resid = uio->uio_resid; 857 splx(s); 858 uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio); 859 s = splsoftnet(); 860 if (uio_error) 861 uio->uio_resid = resid - len; 862 } else 863 uio->uio_resid -= len; 864 if (len == m->m_len - moff) { 865 if (m->m_flags & M_EOR) 866 flags |= MSG_EOR; 867 if (flags & MSG_PEEK) { 868 m = m->m_next; 869 moff = 0; 870 } else { 871 nextrecord = m->m_nextpkt; 872 sbfree(&so->so_rcv, m); 873 if (mp) { 874 *mp = m; 875 mp = &m->m_next; 876 so->so_rcv.sb_mb = m = m->m_next; 877 *mp = NULL; 878 } else { 879 so->so_rcv.sb_mb = m_free(m); 880 m = so->so_rcv.sb_mb; 881 } 882 /* 883 * If m != NULL, we also know that 884 * so->so_rcv.sb_mb != NULL. 885 */ 886 KASSERT(so->so_rcv.sb_mb == m); 887 if (m) { 888 m->m_nextpkt = nextrecord; 889 if (nextrecord == NULL) 890 so->so_rcv.sb_lastrecord = m; 891 } else { 892 so->so_rcv.sb_mb = nextrecord; 893 SB_EMPTY_FIXUP(&so->so_rcv); 894 } 895 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 896 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 897 } 898 } else { 899 if (flags & MSG_PEEK) 900 moff += len; 901 else { 902 if (mp) 903 *mp = m_copym(m, 0, len, M_WAIT); 904 m->m_data += len; 905 m->m_len -= len; 906 so->so_rcv.sb_cc -= len; 907 so->so_rcv.sb_datacc -= len; 908 } 909 } 910 if (so->so_oobmark) { 911 if ((flags & MSG_PEEK) == 0) { 912 so->so_oobmark -= len; 913 if (so->so_oobmark == 0) { 914 so->so_state |= SS_RCVATMARK; 915 break; 916 } 917 } else { 918 offset += len; 919 if (offset == so->so_oobmark) 920 break; 921 } 922 } 923 if (flags & MSG_EOR) 924 break; 925 /* 926 * If the MSG_WAITALL flag is set (for non-atomic socket), 927 * we must not quit until "uio->uio_resid == 0" or an error 928 * termination. If a signal/timeout occurs, return 929 * with a short count but without error. 930 * Keep sockbuf locked against other readers. 931 */ 932 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 933 !sosendallatonce(so) && !nextrecord) { 934 if (so->so_error || so->so_state & SS_CANTRCVMORE) 935 break; 936 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 937 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 938 error = sbwait(&so->so_rcv); 939 if (error) { 940 sbunlock(&so->so_rcv); 941 splx(s); 942 return (0); 943 } 944 if ((m = so->so_rcv.sb_mb) != NULL) 945 nextrecord = m->m_nextpkt; 946 } 947 } 948 949 if (m && pr->pr_flags & PR_ATOMIC) { 950 flags |= MSG_TRUNC; 951 if ((flags & MSG_PEEK) == 0) 952 (void) sbdroprecord(&so->so_rcv); 953 } 954 if ((flags & MSG_PEEK) == 0) { 955 if (m == NULL) { 956 /* 957 * First part is an inline SB_EMPTY_FIXUP(). Second 958 * part makes sure sb_lastrecord is up-to-date if 959 * there is still data in the socket buffer. 960 */ 961 so->so_rcv.sb_mb = nextrecord; 962 if (so->so_rcv.sb_mb == NULL) { 963 so->so_rcv.sb_mbtail = NULL; 964 so->so_rcv.sb_lastrecord = NULL; 965 } else if (nextrecord->m_nextpkt == NULL) 966 so->so_rcv.sb_lastrecord = nextrecord; 967 } 968 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 969 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 970 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 971 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 972 (struct mbuf *)(long)flags, NULL, curproc); 973 } 974 if (orig_resid == uio->uio_resid && orig_resid && 975 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 976 sbunlock(&so->so_rcv); 977 splx(s); 978 goto restart; 979 } 980 981 if (uio_error) 982 error = uio_error; 983 984 if (flagsp) 985 *flagsp |= flags; 986 release: 987 sbunlock(&so->so_rcv); 988 splx(s); 989 return (error); 990 } 991 992 int 993 soshutdown(struct socket *so, int how) 994 { 995 struct protosw *pr = so->so_proto; 996 997 switch (how) { 998 case SHUT_RD: 999 case SHUT_RDWR: 1000 sorflush(so); 1001 if (how == SHUT_RD) 1002 return (0); 1003 /* FALLTHROUGH */ 1004 case SHUT_WR: 1005 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, NULL, NULL, 1006 curproc); 1007 default: 1008 return (EINVAL); 1009 } 1010 } 1011 1012 void 1013 sorflush(struct socket *so) 1014 { 1015 struct sockbuf *sb = &so->so_rcv; 1016 struct protosw *pr = so->so_proto; 1017 int s; 1018 struct sockbuf asb; 1019 1020 sb->sb_flags |= SB_NOINTR; 1021 (void) sblock(sb, M_WAITOK); 1022 s = splnet(); 1023 socantrcvmore(so); 1024 sbunlock(sb); 1025 asb = *sb; 1026 memset(sb, 0, sizeof (*sb)); 1027 /* XXX - the memset stomps all over so_rcv */ 1028 if (asb.sb_flags & SB_KNOTE) { 1029 sb->sb_sel.si_note = asb.sb_sel.si_note; 1030 sb->sb_flags = SB_KNOTE; 1031 } 1032 splx(s); 1033 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1034 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1035 sbrelease(&asb); 1036 } 1037 1038 #ifdef SOCKET_SPLICE 1039 1040 #define so_splicelen so_sp->ssp_len 1041 #define so_splicemax so_sp->ssp_max 1042 #define so_idletv so_sp->ssp_idletv 1043 #define so_idleto so_sp->ssp_idleto 1044 1045 int 1046 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv) 1047 { 1048 struct file *fp; 1049 struct socket *sosp; 1050 int s, error = 0; 1051 1052 if ((so->so_proto->pr_flags & PR_SPLICE) == 0) 1053 return (EPROTONOSUPPORT); 1054 if (so->so_options & SO_ACCEPTCONN) 1055 return (EOPNOTSUPP); 1056 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1057 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1058 return (ENOTCONN); 1059 if (so->so_sp == NULL) 1060 so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO); 1061 1062 /* If no fd is given, unsplice by removing existing link. */ 1063 if (fd < 0) { 1064 /* Lock receive buffer. */ 1065 if ((error = sblock(&so->so_rcv, 1066 (so->so_state & SS_NBIO) ? M_NOWAIT : M_WAITOK)) != 0) 1067 return (error); 1068 s = splsoftnet(); 1069 if (so->so_sp->ssp_socket) 1070 sounsplice(so, so->so_sp->ssp_socket, 1); 1071 splx(s); 1072 sbunlock(&so->so_rcv); 1073 return (0); 1074 } 1075 1076 if (max && max < 0) 1077 return (EINVAL); 1078 1079 if (tv && (tv->tv_sec < 0 || tv->tv_usec < 0)) 1080 return (EINVAL); 1081 1082 /* Find sosp, the drain socket where data will be spliced into. */ 1083 if ((error = getsock(curproc, fd, &fp)) != 0) 1084 return (error); 1085 sosp = fp->f_data; 1086 if (sosp->so_sp == NULL) 1087 sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO); 1088 1089 /* Lock both receive and send buffer. */ 1090 if ((error = sblock(&so->so_rcv, 1091 (so->so_state & SS_NBIO) ? M_NOWAIT : M_WAITOK)) != 0) { 1092 FRELE(fp, curproc); 1093 return (error); 1094 } 1095 if ((error = sblock(&sosp->so_snd, M_WAITOK)) != 0) { 1096 sbunlock(&so->so_rcv); 1097 FRELE(fp, curproc); 1098 return (error); 1099 } 1100 s = splsoftnet(); 1101 1102 if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) { 1103 error = EBUSY; 1104 goto release; 1105 } 1106 if (sosp->so_proto->pr_usrreq != so->so_proto->pr_usrreq) { 1107 error = EPROTONOSUPPORT; 1108 goto release; 1109 } 1110 if (sosp->so_options & SO_ACCEPTCONN) { 1111 error = EOPNOTSUPP; 1112 goto release; 1113 } 1114 if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) { 1115 error = ENOTCONN; 1116 goto release; 1117 } 1118 1119 /* Splice so and sosp together. */ 1120 so->so_sp->ssp_socket = sosp; 1121 sosp->so_sp->ssp_soback = so; 1122 so->so_splicelen = 0; 1123 so->so_splicemax = max; 1124 if (tv) 1125 so->so_idletv = *tv; 1126 else 1127 timerclear(&so->so_idletv); 1128 timeout_set(&so->so_idleto, soidle, so); 1129 1130 /* 1131 * To prevent softnet interrupt from calling somove() while 1132 * we sleep, the socket buffers are not marked as spliced yet. 1133 */ 1134 if (somove(so, M_WAIT)) { 1135 so->so_rcv.sb_flagsintr |= SB_SPLICE; 1136 sosp->so_snd.sb_flagsintr |= SB_SPLICE; 1137 } 1138 1139 release: 1140 splx(s); 1141 sbunlock(&sosp->so_snd); 1142 sbunlock(&so->so_rcv); 1143 FRELE(fp, curproc); 1144 return (error); 1145 } 1146 1147 void 1148 sounsplice(struct socket *so, struct socket *sosp, int wakeup) 1149 { 1150 splsoftassert(IPL_SOFTNET); 1151 1152 timeout_del(&so->so_idleto); 1153 sosp->so_snd.sb_flagsintr &= ~SB_SPLICE; 1154 so->so_rcv.sb_flagsintr &= ~SB_SPLICE; 1155 so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL; 1156 if (wakeup && soreadable(so)) 1157 sorwakeup(so); 1158 } 1159 1160 void 1161 soidle(void *arg) 1162 { 1163 struct socket *so = arg; 1164 int s; 1165 1166 s = splsoftnet(); 1167 if (so->so_rcv.sb_flagsintr & SB_SPLICE) { 1168 so->so_error = ETIMEDOUT; 1169 sounsplice(so, so->so_sp->ssp_socket, 1); 1170 } 1171 splx(s); 1172 } 1173 1174 /* 1175 * Move data from receive buffer of spliced source socket to send 1176 * buffer of drain socket. Try to move as much as possible in one 1177 * big chunk. It is a TCP only implementation. 1178 * Return value 0 means splicing has been finished, 1 continue. 1179 */ 1180 int 1181 somove(struct socket *so, int wait) 1182 { 1183 struct socket *sosp = so->so_sp->ssp_socket; 1184 struct mbuf *m, **mp, *nextrecord; 1185 u_long len, off, oobmark; 1186 long space; 1187 int error = 0, maxreached = 0; 1188 short state; 1189 1190 splsoftassert(IPL_SOFTNET); 1191 1192 nextpkt: 1193 if (so->so_error) { 1194 error = so->so_error; 1195 goto release; 1196 } 1197 if (sosp->so_state & SS_CANTSENDMORE) { 1198 error = EPIPE; 1199 goto release; 1200 } 1201 if (sosp->so_error && sosp->so_error != ETIMEDOUT && 1202 sosp->so_error != EFBIG && sosp->so_error != ELOOP) { 1203 error = sosp->so_error; 1204 goto release; 1205 } 1206 if ((sosp->so_state & SS_ISCONNECTED) == 0) 1207 goto release; 1208 1209 /* Calculate how many bytes can be copied now. */ 1210 len = so->so_rcv.sb_datacc; 1211 if (so->so_splicemax) { 1212 KASSERT(so->so_splicelen < so->so_splicemax); 1213 if (so->so_splicemax <= so->so_splicelen + len) { 1214 len = so->so_splicemax - so->so_splicelen; 1215 maxreached = 1; 1216 } 1217 } 1218 space = sbspace(&sosp->so_snd); 1219 if (so->so_oobmark && so->so_oobmark < len && 1220 so->so_oobmark < space + 1024) 1221 space += 1024; 1222 if (space <= 0) { 1223 maxreached = 0; 1224 goto release; 1225 } 1226 if (space < len) { 1227 maxreached = 0; 1228 if (space < sosp->so_snd.sb_lowat) 1229 goto release; 1230 len = space; 1231 } 1232 sosp->so_state |= SS_ISSENDING; 1233 1234 SBLASTRECORDCHK(&so->so_rcv, "somove 1"); 1235 SBLASTMBUFCHK(&so->so_rcv, "somove 1"); 1236 m = so->so_rcv.sb_mb; 1237 if (m == NULL) 1238 goto release; 1239 nextrecord = m->m_nextpkt; 1240 1241 /* Drop address and control information not used with splicing. */ 1242 if (so->so_proto->pr_flags & PR_ADDR) { 1243 #ifdef DIAGNOSTIC 1244 if (m->m_type != MT_SONAME) 1245 panic("somove soname: so %p, so_type %d, m %p, " 1246 "m_type %d", so, so->so_type, m, m->m_type); 1247 #endif 1248 m = m->m_next; 1249 } 1250 while (m && m->m_type == MT_CONTROL) 1251 m = m->m_next; 1252 if (m == NULL) { 1253 sbdroprecord(&so->so_rcv); 1254 if (so->so_proto->pr_flags & PR_WANTRCVD && so->so_pcb) 1255 (so->so_proto->pr_usrreq)(so, PRU_RCVD, NULL, 1256 NULL, NULL, NULL); 1257 goto nextpkt; 1258 } 1259 1260 /* 1261 * By splicing sockets connected to localhost, userland might create a 1262 * loop. Dissolve splicing with error if loop is detected by counter. 1263 */ 1264 if ((m->m_flags & M_PKTHDR) && m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) { 1265 error = ELOOP; 1266 goto release; 1267 } 1268 1269 if (so->so_proto->pr_flags & PR_ATOMIC) { 1270 if ((m->m_flags & M_PKTHDR) == 0) 1271 panic("somove !PKTHDR: so %p, so_type %d, m %p, " 1272 "m_type %d", so, so->so_type, m, m->m_type); 1273 if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) { 1274 error = EMSGSIZE; 1275 goto release; 1276 } 1277 if (len < m->m_pkthdr.len) 1278 goto release; 1279 if (m->m_pkthdr.len < len) { 1280 maxreached = 0; 1281 len = m->m_pkthdr.len; 1282 } 1283 /* 1284 * Throw away the name mbuf after it has been assured 1285 * that the whole first record can be processed. 1286 */ 1287 m = so->so_rcv.sb_mb; 1288 sbfree(&so->so_rcv, m); 1289 so->so_rcv.sb_mb = m_free(m); 1290 sbsync(&so->so_rcv, nextrecord); 1291 } 1292 /* 1293 * Throw away the control mbufs after it has been assured 1294 * that the whole first record can be processed. 1295 */ 1296 m = so->so_rcv.sb_mb; 1297 while (m && m->m_type == MT_CONTROL) { 1298 sbfree(&so->so_rcv, m); 1299 so->so_rcv.sb_mb = m_free(m); 1300 m = so->so_rcv.sb_mb; 1301 sbsync(&so->so_rcv, nextrecord); 1302 } 1303 1304 SBLASTRECORDCHK(&so->so_rcv, "somove 2"); 1305 SBLASTMBUFCHK(&so->so_rcv, "somove 2"); 1306 1307 /* Take at most len mbufs out of receive buffer. */ 1308 for (off = 0, mp = &m; off <= len && *mp; 1309 off += (*mp)->m_len, mp = &(*mp)->m_next) { 1310 u_long size = len - off; 1311 1312 #ifdef DIAGNOSTIC 1313 if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER) 1314 panic("somove type: so %p, so_type %d, m %p, " 1315 "m_type %d", so, so->so_type, *mp, (*mp)->m_type); 1316 #endif 1317 if ((*mp)->m_len > size) { 1318 if (!maxreached || (*mp = m_copym( 1319 so->so_rcv.sb_mb, 0, size, wait)) == NULL) { 1320 len -= size; 1321 break; 1322 } 1323 so->so_rcv.sb_mb->m_data += size; 1324 so->so_rcv.sb_mb->m_len -= size; 1325 so->so_rcv.sb_cc -= size; 1326 so->so_rcv.sb_datacc -= size; 1327 } else { 1328 *mp = so->so_rcv.sb_mb; 1329 sbfree(&so->so_rcv, *mp); 1330 so->so_rcv.sb_mb = (*mp)->m_next; 1331 sbsync(&so->so_rcv, nextrecord); 1332 } 1333 } 1334 *mp = NULL; 1335 1336 SBLASTRECORDCHK(&so->so_rcv, "somove 3"); 1337 SBLASTMBUFCHK(&so->so_rcv, "somove 3"); 1338 SBCHECK(&so->so_rcv); 1339 if (m == NULL) 1340 goto release; 1341 m->m_nextpkt = NULL; 1342 if (m->m_flags & M_PKTHDR) { 1343 m_resethdr(m); 1344 m->m_pkthdr.len = len; 1345 } 1346 1347 /* Send window update to source peer as receive buffer has changed. */ 1348 if (so->so_proto->pr_flags & PR_WANTRCVD && so->so_pcb) 1349 (so->so_proto->pr_usrreq)(so, PRU_RCVD, NULL, 1350 NULL, NULL, NULL); 1351 1352 /* Receive buffer did shrink by len bytes, adjust oob. */ 1353 state = so->so_state; 1354 so->so_state &= ~SS_RCVATMARK; 1355 oobmark = so->so_oobmark; 1356 so->so_oobmark = oobmark > len ? oobmark - len : 0; 1357 if (oobmark) { 1358 if (oobmark == len) 1359 so->so_state |= SS_RCVATMARK; 1360 if (oobmark >= len) 1361 oobmark = 0; 1362 } 1363 1364 /* 1365 * Handle oob data. If any malloc fails, ignore error. 1366 * TCP urgent data is not very reliable anyway. 1367 */ 1368 while (((state & SS_RCVATMARK) || oobmark) && 1369 (so->so_options & SO_OOBINLINE)) { 1370 struct mbuf *o = NULL; 1371 1372 if (state & SS_RCVATMARK) { 1373 o = m_get(wait, MT_DATA); 1374 state &= ~SS_RCVATMARK; 1375 } else if (oobmark) { 1376 o = m_split(m, oobmark, wait); 1377 if (o) { 1378 error = (*sosp->so_proto->pr_usrreq)(sosp, 1379 PRU_SEND, m, NULL, NULL, NULL); 1380 if (error) { 1381 if (sosp->so_state & SS_CANTSENDMORE) 1382 error = EPIPE; 1383 m_freem(o); 1384 goto release; 1385 } 1386 len -= oobmark; 1387 so->so_splicelen += oobmark; 1388 m = o; 1389 o = m_get(wait, MT_DATA); 1390 } 1391 oobmark = 0; 1392 } 1393 if (o) { 1394 o->m_len = 1; 1395 *mtod(o, caddr_t) = *mtod(m, caddr_t); 1396 error = (*sosp->so_proto->pr_usrreq)(sosp, PRU_SENDOOB, 1397 o, NULL, NULL, NULL); 1398 if (error) { 1399 if (sosp->so_state & SS_CANTSENDMORE) 1400 error = EPIPE; 1401 m_freem(m); 1402 goto release; 1403 } 1404 len -= 1; 1405 so->so_splicelen += 1; 1406 if (oobmark) { 1407 oobmark -= 1; 1408 if (oobmark == 0) 1409 state |= SS_RCVATMARK; 1410 } 1411 m_adj(m, 1); 1412 } 1413 } 1414 1415 /* Append all remaining data to drain socket. */ 1416 if (so->so_rcv.sb_cc == 0 || maxreached) 1417 sosp->so_state &= ~SS_ISSENDING; 1418 error = (*sosp->so_proto->pr_usrreq)(sosp, PRU_SEND, m, NULL, NULL, 1419 NULL); 1420 if (error) { 1421 if (sosp->so_state & SS_CANTSENDMORE) 1422 error = EPIPE; 1423 goto release; 1424 } 1425 so->so_splicelen += len; 1426 1427 /* Move several packets if possible. */ 1428 if (!maxreached && nextrecord) 1429 goto nextpkt; 1430 1431 release: 1432 sosp->so_state &= ~SS_ISSENDING; 1433 if (!error && maxreached && so->so_splicemax == so->so_splicelen) 1434 error = EFBIG; 1435 if (error) 1436 so->so_error = error; 1437 if (((so->so_state & SS_CANTRCVMORE) && so->so_rcv.sb_cc == 0) || 1438 (sosp->so_state & SS_CANTSENDMORE) || maxreached || error) { 1439 sounsplice(so, sosp, 1); 1440 return (0); 1441 } 1442 if (timerisset(&so->so_idletv)) 1443 timeout_add_tv(&so->so_idleto, &so->so_idletv); 1444 return (1); 1445 } 1446 1447 #undef so_splicelen 1448 #undef so_splicemax 1449 #undef so_idletv 1450 #undef so_idleto 1451 1452 #endif /* SOCKET_SPLICE */ 1453 1454 void 1455 sorwakeup(struct socket *so) 1456 { 1457 #ifdef SOCKET_SPLICE 1458 if (so->so_rcv.sb_flagsintr & SB_SPLICE) 1459 (void) somove(so, M_DONTWAIT); 1460 if (isspliced(so)) 1461 return; 1462 #endif 1463 sowakeup(so, &so->so_rcv); 1464 if (so->so_upcall) 1465 (*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT); 1466 } 1467 1468 void 1469 sowwakeup(struct socket *so) 1470 { 1471 #ifdef SOCKET_SPLICE 1472 if (so->so_snd.sb_flagsintr & SB_SPLICE) 1473 (void) somove(so->so_sp->ssp_soback, M_DONTWAIT); 1474 #endif 1475 sowakeup(so, &so->so_snd); 1476 } 1477 1478 int 1479 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0) 1480 { 1481 int error = 0; 1482 struct mbuf *m = m0; 1483 1484 if (level != SOL_SOCKET) { 1485 if (so->so_proto && so->so_proto->pr_ctloutput) 1486 return ((*so->so_proto->pr_ctloutput) 1487 (PRCO_SETOPT, so, level, optname, &m0)); 1488 error = ENOPROTOOPT; 1489 } else { 1490 switch (optname) { 1491 case SO_BINDANY: 1492 if ((error = suser(curproc, 0)) != 0) /* XXX */ 1493 goto bad; 1494 break; 1495 } 1496 1497 switch (optname) { 1498 1499 case SO_LINGER: 1500 if (m == NULL || m->m_len != sizeof (struct linger) || 1501 mtod(m, struct linger *)->l_linger < 0 || 1502 mtod(m, struct linger *)->l_linger > SHRT_MAX) { 1503 error = EINVAL; 1504 goto bad; 1505 } 1506 so->so_linger = mtod(m, struct linger *)->l_linger; 1507 /* FALLTHROUGH */ 1508 1509 case SO_BINDANY: 1510 case SO_DEBUG: 1511 case SO_KEEPALIVE: 1512 case SO_USELOOPBACK: 1513 case SO_BROADCAST: 1514 case SO_REUSEADDR: 1515 case SO_REUSEPORT: 1516 case SO_OOBINLINE: 1517 case SO_TIMESTAMP: 1518 if (m == NULL || m->m_len < sizeof (int)) { 1519 error = EINVAL; 1520 goto bad; 1521 } 1522 if (*mtod(m, int *)) 1523 so->so_options |= optname; 1524 else 1525 so->so_options &= ~optname; 1526 break; 1527 1528 case SO_DONTROUTE: 1529 if (m == NULL || m->m_len < sizeof (int)) { 1530 error = EINVAL; 1531 goto bad; 1532 } 1533 if (*mtod(m, int *)) 1534 error = EOPNOTSUPP; 1535 break; 1536 1537 case SO_SNDBUF: 1538 case SO_RCVBUF: 1539 case SO_SNDLOWAT: 1540 case SO_RCVLOWAT: 1541 { 1542 u_long cnt; 1543 1544 if (m == NULL || m->m_len < sizeof (int)) { 1545 error = EINVAL; 1546 goto bad; 1547 } 1548 cnt = *mtod(m, int *); 1549 if ((long)cnt <= 0) 1550 cnt = 1; 1551 switch (optname) { 1552 1553 case SO_SNDBUF: 1554 if (so->so_state & SS_CANTSENDMORE) { 1555 error = EINVAL; 1556 goto bad; 1557 } 1558 if (sbcheckreserve(cnt, so->so_snd.sb_wat) || 1559 sbreserve(&so->so_snd, cnt)) { 1560 error = ENOBUFS; 1561 goto bad; 1562 } 1563 so->so_snd.sb_wat = cnt; 1564 break; 1565 1566 case SO_RCVBUF: 1567 if (so->so_state & SS_CANTRCVMORE) { 1568 error = EINVAL; 1569 goto bad; 1570 } 1571 if (sbcheckreserve(cnt, so->so_rcv.sb_wat) || 1572 sbreserve(&so->so_rcv, cnt)) { 1573 error = ENOBUFS; 1574 goto bad; 1575 } 1576 so->so_rcv.sb_wat = cnt; 1577 break; 1578 1579 case SO_SNDLOWAT: 1580 so->so_snd.sb_lowat = 1581 (cnt > so->so_snd.sb_hiwat) ? 1582 so->so_snd.sb_hiwat : cnt; 1583 break; 1584 case SO_RCVLOWAT: 1585 so->so_rcv.sb_lowat = 1586 (cnt > so->so_rcv.sb_hiwat) ? 1587 so->so_rcv.sb_hiwat : cnt; 1588 break; 1589 } 1590 break; 1591 } 1592 1593 case SO_SNDTIMEO: 1594 case SO_RCVTIMEO: 1595 { 1596 struct timeval tv; 1597 int val; 1598 1599 if (m == NULL || m->m_len < sizeof (tv)) { 1600 error = EINVAL; 1601 goto bad; 1602 } 1603 memcpy(&tv, mtod(m, struct timeval *), sizeof tv); 1604 val = tvtohz(&tv); 1605 if (val > USHRT_MAX) { 1606 error = EDOM; 1607 goto bad; 1608 } 1609 1610 switch (optname) { 1611 1612 case SO_SNDTIMEO: 1613 so->so_snd.sb_timeo = val; 1614 break; 1615 case SO_RCVTIMEO: 1616 so->so_rcv.sb_timeo = val; 1617 break; 1618 } 1619 break; 1620 } 1621 1622 case SO_RTABLE: 1623 if (so->so_proto && so->so_proto->pr_domain && 1624 so->so_proto->pr_domain->dom_protosw && 1625 so->so_proto->pr_ctloutput) { 1626 struct domain *dom = so->so_proto->pr_domain; 1627 1628 level = dom->dom_protosw->pr_protocol; 1629 return ((*so->so_proto->pr_ctloutput) 1630 (PRCO_SETOPT, so, level, optname, &m0)); 1631 } 1632 error = ENOPROTOOPT; 1633 break; 1634 1635 #ifdef SOCKET_SPLICE 1636 case SO_SPLICE: 1637 if (m == NULL) { 1638 error = sosplice(so, -1, 0, NULL); 1639 } else if (m->m_len < sizeof(int)) { 1640 error = EINVAL; 1641 goto bad; 1642 } else if (m->m_len < sizeof(struct splice)) { 1643 error = sosplice(so, *mtod(m, int *), 0, NULL); 1644 } else { 1645 error = sosplice(so, 1646 mtod(m, struct splice *)->sp_fd, 1647 mtod(m, struct splice *)->sp_max, 1648 &mtod(m, struct splice *)->sp_idle); 1649 } 1650 break; 1651 #endif /* SOCKET_SPLICE */ 1652 1653 default: 1654 error = ENOPROTOOPT; 1655 break; 1656 } 1657 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1658 (void) ((*so->so_proto->pr_ctloutput) 1659 (PRCO_SETOPT, so, level, optname, &m0)); 1660 m = NULL; /* freed by protocol */ 1661 } 1662 } 1663 bad: 1664 if (m) 1665 (void) m_free(m); 1666 return (error); 1667 } 1668 1669 int 1670 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp) 1671 { 1672 struct mbuf *m; 1673 1674 if (level != SOL_SOCKET) { 1675 if (so->so_proto && so->so_proto->pr_ctloutput) { 1676 return ((*so->so_proto->pr_ctloutput) 1677 (PRCO_GETOPT, so, level, optname, mp)); 1678 } else 1679 return (ENOPROTOOPT); 1680 } else { 1681 m = m_get(M_WAIT, MT_SOOPTS); 1682 m->m_len = sizeof (int); 1683 1684 switch (optname) { 1685 1686 case SO_LINGER: 1687 m->m_len = sizeof (struct linger); 1688 mtod(m, struct linger *)->l_onoff = 1689 so->so_options & SO_LINGER; 1690 mtod(m, struct linger *)->l_linger = so->so_linger; 1691 break; 1692 1693 case SO_BINDANY: 1694 case SO_USELOOPBACK: 1695 case SO_DEBUG: 1696 case SO_KEEPALIVE: 1697 case SO_REUSEADDR: 1698 case SO_REUSEPORT: 1699 case SO_BROADCAST: 1700 case SO_OOBINLINE: 1701 case SO_TIMESTAMP: 1702 *mtod(m, int *) = so->so_options & optname; 1703 break; 1704 1705 case SO_DONTROUTE: 1706 *mtod(m, int *) = 0; 1707 break; 1708 1709 case SO_TYPE: 1710 *mtod(m, int *) = so->so_type; 1711 break; 1712 1713 case SO_ERROR: 1714 *mtod(m, int *) = so->so_error; 1715 so->so_error = 0; 1716 break; 1717 1718 case SO_SNDBUF: 1719 *mtod(m, int *) = so->so_snd.sb_hiwat; 1720 break; 1721 1722 case SO_RCVBUF: 1723 *mtod(m, int *) = so->so_rcv.sb_hiwat; 1724 break; 1725 1726 case SO_SNDLOWAT: 1727 *mtod(m, int *) = so->so_snd.sb_lowat; 1728 break; 1729 1730 case SO_RCVLOWAT: 1731 *mtod(m, int *) = so->so_rcv.sb_lowat; 1732 break; 1733 1734 case SO_SNDTIMEO: 1735 case SO_RCVTIMEO: 1736 { 1737 struct timeval tv; 1738 int val = (optname == SO_SNDTIMEO ? 1739 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1740 1741 m->m_len = sizeof(struct timeval); 1742 memset(&tv, 0, sizeof(tv)); 1743 tv.tv_sec = val / hz; 1744 tv.tv_usec = (val % hz) * tick; 1745 memcpy(mtod(m, struct timeval *), &tv, sizeof tv); 1746 break; 1747 } 1748 1749 case SO_RTABLE: 1750 (void)m_free(m); 1751 if (so->so_proto && so->so_proto->pr_domain && 1752 so->so_proto->pr_domain->dom_protosw && 1753 so->so_proto->pr_ctloutput) { 1754 struct domain *dom = so->so_proto->pr_domain; 1755 1756 level = dom->dom_protosw->pr_protocol; 1757 return ((*so->so_proto->pr_ctloutput) 1758 (PRCO_GETOPT, so, level, optname, mp)); 1759 } 1760 return (ENOPROTOOPT); 1761 break; 1762 1763 #ifdef SOCKET_SPLICE 1764 case SO_SPLICE: 1765 { 1766 off_t len; 1767 int s = splsoftnet(); 1768 1769 m->m_len = sizeof(off_t); 1770 len = so->so_sp ? so->so_sp->ssp_len : 0; 1771 memcpy(mtod(m, off_t *), &len, sizeof(off_t)); 1772 splx(s); 1773 break; 1774 } 1775 #endif /* SOCKET_SPLICE */ 1776 1777 case SO_PEERCRED: 1778 if (so->so_proto->pr_protocol == AF_UNIX) { 1779 struct unpcb *unp = sotounpcb(so); 1780 1781 if (unp->unp_flags & UNP_FEIDS) { 1782 m->m_len = sizeof(unp->unp_connid); 1783 memcpy(mtod(m, caddr_t), 1784 &(unp->unp_connid), m->m_len); 1785 break; 1786 } 1787 (void)m_free(m); 1788 return (ENOTCONN); 1789 } 1790 (void)m_free(m); 1791 return (EOPNOTSUPP); 1792 break; 1793 1794 default: 1795 (void)m_free(m); 1796 return (ENOPROTOOPT); 1797 } 1798 *mp = m; 1799 return (0); 1800 } 1801 } 1802 1803 void 1804 sohasoutofband(struct socket *so) 1805 { 1806 csignal(so->so_pgid, SIGURG, so->so_siguid, so->so_sigeuid); 1807 selwakeup(&so->so_rcv.sb_sel); 1808 } 1809 1810 int 1811 soo_kqfilter(struct file *fp, struct knote *kn) 1812 { 1813 struct socket *so = kn->kn_fp->f_data; 1814 struct sockbuf *sb; 1815 int s; 1816 1817 switch (kn->kn_filter) { 1818 case EVFILT_READ: 1819 if (so->so_options & SO_ACCEPTCONN) 1820 kn->kn_fop = &solisten_filtops; 1821 else 1822 kn->kn_fop = &soread_filtops; 1823 sb = &so->so_rcv; 1824 break; 1825 case EVFILT_WRITE: 1826 kn->kn_fop = &sowrite_filtops; 1827 sb = &so->so_snd; 1828 break; 1829 default: 1830 return (EINVAL); 1831 } 1832 1833 s = splnet(); 1834 SLIST_INSERT_HEAD(&sb->sb_sel.si_note, kn, kn_selnext); 1835 sb->sb_flags |= SB_KNOTE; 1836 splx(s); 1837 return (0); 1838 } 1839 1840 void 1841 filt_sordetach(struct knote *kn) 1842 { 1843 struct socket *so = kn->kn_fp->f_data; 1844 int s = splnet(); 1845 1846 SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext); 1847 if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note)) 1848 so->so_rcv.sb_flags &= ~SB_KNOTE; 1849 splx(s); 1850 } 1851 1852 int 1853 filt_soread(struct knote *kn, long hint) 1854 { 1855 struct socket *so = kn->kn_fp->f_data; 1856 1857 kn->kn_data = so->so_rcv.sb_cc; 1858 #ifdef SOCKET_SPLICE 1859 if (isspliced(so)) 1860 return (0); 1861 #endif /* SOCKET_SPLICE */ 1862 if (so->so_state & SS_CANTRCVMORE) { 1863 kn->kn_flags |= EV_EOF; 1864 kn->kn_fflags = so->so_error; 1865 return (1); 1866 } 1867 if (so->so_error) /* temporary udp error */ 1868 return (1); 1869 if (kn->kn_sfflags & NOTE_LOWAT) 1870 return (kn->kn_data >= kn->kn_sdata); 1871 return (kn->kn_data >= so->so_rcv.sb_lowat); 1872 } 1873 1874 void 1875 filt_sowdetach(struct knote *kn) 1876 { 1877 struct socket *so = kn->kn_fp->f_data; 1878 int s = splnet(); 1879 1880 SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext); 1881 if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note)) 1882 so->so_snd.sb_flags &= ~SB_KNOTE; 1883 splx(s); 1884 } 1885 1886 int 1887 filt_sowrite(struct knote *kn, long hint) 1888 { 1889 struct socket *so = kn->kn_fp->f_data; 1890 1891 kn->kn_data = sbspace(&so->so_snd); 1892 if (so->so_state & SS_CANTSENDMORE) { 1893 kn->kn_flags |= EV_EOF; 1894 kn->kn_fflags = so->so_error; 1895 return (1); 1896 } 1897 if (so->so_error) /* temporary udp error */ 1898 return (1); 1899 if (((so->so_state & SS_ISCONNECTED) == 0) && 1900 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1901 return (0); 1902 if (kn->kn_sfflags & NOTE_LOWAT) 1903 return (kn->kn_data >= kn->kn_sdata); 1904 return (kn->kn_data >= so->so_snd.sb_lowat); 1905 } 1906 1907 int 1908 filt_solisten(struct knote *kn, long hint) 1909 { 1910 struct socket *so = kn->kn_fp->f_data; 1911 1912 kn->kn_data = so->so_qlen; 1913 return (so->so_qlen != 0); 1914 } 1915 1916 #ifdef DDB 1917 void 1918 sobuf_print(struct sockbuf *, 1919 int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))); 1920 1921 void 1922 sobuf_print(struct sockbuf *sb, 1923 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1924 { 1925 (*pr)("\tsb_cc: %lu\n", sb->sb_cc); 1926 (*pr)("\tsb_datacc: %lu\n", sb->sb_datacc); 1927 (*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat); 1928 (*pr)("\tsb_wat: %lu\n", sb->sb_wat); 1929 (*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt); 1930 (*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax); 1931 (*pr)("\tsb_lowat: %ld\n", sb->sb_lowat); 1932 (*pr)("\tsb_mb: %p\n", sb->sb_mb); 1933 (*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail); 1934 (*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord); 1935 (*pr)("\tsb_sel: ...\n"); 1936 (*pr)("\tsb_flagsintr: %d\n", sb->sb_flagsintr); 1937 (*pr)("\tsb_flags: %i\n", sb->sb_flags); 1938 (*pr)("\tsb_timeo: %i\n", sb->sb_timeo); 1939 } 1940 1941 void 1942 so_print(void *v, 1943 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1944 { 1945 struct socket *so = v; 1946 1947 (*pr)("socket %p\n", so); 1948 (*pr)("so_type: %i\n", so->so_type); 1949 (*pr)("so_options: 0x%04x\n", so->so_options); /* %b */ 1950 (*pr)("so_linger: %i\n", so->so_linger); 1951 (*pr)("so_state: %i\n", so->so_state); 1952 (*pr)("so_pcb: %p\n", so->so_pcb); 1953 (*pr)("so_proto: %p\n", so->so_proto); 1954 1955 (*pr)("so_head: %p\n", so->so_head); 1956 (*pr)("so_onq: %p\n", so->so_onq); 1957 (*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0)); 1958 (*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q)); 1959 (*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe)); 1960 (*pr)("so_q0len: %i\n", so->so_q0len); 1961 (*pr)("so_qlen: %i\n", so->so_qlen); 1962 (*pr)("so_qlimit: %i\n", so->so_qlimit); 1963 (*pr)("so_timeo: %i\n", so->so_timeo); 1964 (*pr)("so_pgid: %i\n", so->so_pgid); 1965 (*pr)("so_siguid: %i\n", so->so_siguid); 1966 (*pr)("so_sigeuid: %i\n", so->so_sigeuid); 1967 (*pr)("so_obmark: %lu\n", so->so_oobmark); 1968 1969 (*pr)("so_sp: %p\n", so->so_sp); 1970 if (so->so_sp != NULL) { 1971 (*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket); 1972 (*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback); 1973 (*pr)("\tssp_len: %lld\n", 1974 (unsigned long long)so->so_sp->ssp_len); 1975 (*pr)("\tssp_max: %lld\n", 1976 (unsigned long long)so->so_sp->ssp_max); 1977 (*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec, 1978 so->so_sp->ssp_idletv.tv_usec); 1979 (*pr)("\tssp_idleto: %spending (@%i)\n", 1980 timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ", 1981 so->so_sp->ssp_idleto.to_time); 1982 } 1983 1984 (*pr)("so_rcv:\n"); 1985 sobuf_print(&so->so_rcv, pr); 1986 (*pr)("so_snd:\n"); 1987 sobuf_print(&so->so_snd, pr); 1988 1989 (*pr)("so_upcall: %p so_upcallarg: %p\n", 1990 so->so_upcall, so->so_upcallarg); 1991 1992 (*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid); 1993 (*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid); 1994 (*pr)("so_cpid: %d\n", so->so_cpid); 1995 } 1996 #endif 1997 1998