xref: /openbsd-src/sys/kern/uipc_socket.c (revision f2a19305cfc49ea4d1a5feb55cd6c283c6f1e031)
1 /*	$OpenBSD: uipc_socket.c,v 1.333 2024/05/03 17:43:09 mvs Exp $	*/
2 /*	$NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)uipc_socket.c	8.3 (Berkeley) 4/15/94
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/event.h>
44 #include <sys/protosw.h>
45 #include <sys/socket.h>
46 #include <sys/unpcb.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 #include <sys/pool.h>
50 #include <sys/atomic.h>
51 #include <sys/rwlock.h>
52 #include <sys/time.h>
53 #include <sys/refcnt.h>
54 
55 #ifdef DDB
56 #include <machine/db_machdep.h>
57 #endif
58 
59 void	sbsync(struct sockbuf *, struct mbuf *);
60 
61 int	sosplice(struct socket *, int, off_t, struct timeval *);
62 void	sounsplice(struct socket *, struct socket *, int);
63 void	soidle(void *);
64 void	sotask(void *);
65 void	soreaper(void *);
66 void	soput(void *);
67 int	somove(struct socket *, int);
68 void	sorflush(struct socket *);
69 void	sorflush_locked(struct socket *);
70 
71 void	filt_sordetach(struct knote *kn);
72 int	filt_soread(struct knote *kn, long hint);
73 void	filt_sowdetach(struct knote *kn);
74 int	filt_sowrite(struct knote *kn, long hint);
75 int	filt_soexcept(struct knote *kn, long hint);
76 
77 int	filt_sowmodify(struct kevent *kev, struct knote *kn);
78 int	filt_sowprocess(struct knote *kn, struct kevent *kev);
79 
80 int	filt_sormodify(struct kevent *kev, struct knote *kn);
81 int	filt_sorprocess(struct knote *kn, struct kevent *kev);
82 
83 const struct filterops soread_filtops = {
84 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
85 	.f_attach	= NULL,
86 	.f_detach	= filt_sordetach,
87 	.f_event	= filt_soread,
88 	.f_modify	= filt_sormodify,
89 	.f_process	= filt_sorprocess,
90 };
91 
92 const struct filterops sowrite_filtops = {
93 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
94 	.f_attach	= NULL,
95 	.f_detach	= filt_sowdetach,
96 	.f_event	= filt_sowrite,
97 	.f_modify	= filt_sowmodify,
98 	.f_process	= filt_sowprocess,
99 };
100 
101 const struct filterops soexcept_filtops = {
102 	.f_flags	= FILTEROP_ISFD | FILTEROP_MPSAFE,
103 	.f_attach	= NULL,
104 	.f_detach	= filt_sordetach,
105 	.f_event	= filt_soexcept,
106 	.f_modify	= filt_sormodify,
107 	.f_process	= filt_sorprocess,
108 };
109 
110 #ifndef SOMINCONN
111 #define SOMINCONN 80
112 #endif /* SOMINCONN */
113 
114 int	somaxconn = SOMAXCONN;
115 int	sominconn = SOMINCONN;
116 
117 struct pool socket_pool;
118 #ifdef SOCKET_SPLICE
119 struct pool sosplice_pool;
120 struct taskq *sosplice_taskq;
121 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk");
122 #endif
123 
124 void
125 soinit(void)
126 {
127 	pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0,
128 	    "sockpl", NULL);
129 #ifdef SOCKET_SPLICE
130 	pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0,
131 	    "sosppl", NULL);
132 #endif
133 }
134 
135 struct socket *
136 soalloc(const struct protosw *prp, int wait)
137 {
138 	const struct domain *dp = prp->pr_domain;
139 	struct socket *so;
140 
141 	so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
142 	    PR_ZERO);
143 	if (so == NULL)
144 		return (NULL);
145 	rw_init_flags(&so->so_lock, dp->dom_name, RWL_DUPOK);
146 	refcnt_init(&so->so_refcnt);
147 	rw_init(&so->so_rcv.sb_lock, "sbufrcv");
148 	rw_init(&so->so_snd.sb_lock, "sbufsnd");
149 	mtx_init_flags(&so->so_rcv.sb_mtx, IPL_MPFLOOR, "sbrcv", 0);
150 	mtx_init_flags(&so->so_snd.sb_mtx, IPL_MPFLOOR, "sbsnd", 0);
151 	klist_init_mutex(&so->so_rcv.sb_klist, &so->so_rcv.sb_mtx);
152 	klist_init_mutex(&so->so_snd.sb_klist, &so->so_snd.sb_mtx);
153 	sigio_init(&so->so_sigio);
154 	TAILQ_INIT(&so->so_q0);
155 	TAILQ_INIT(&so->so_q);
156 
157 	switch (dp->dom_family) {
158 	case AF_INET:
159 	case AF_INET6:
160 		switch (prp->pr_type) {
161 		case SOCK_RAW:
162 			so->so_snd.sb_flags |= SB_MTXLOCK;
163 			/* FALLTHROUGH */
164 		case SOCK_DGRAM:
165 			so->so_rcv.sb_flags |= SB_MTXLOCK;
166 			break;
167 		}
168 		break;
169 	case AF_UNIX:
170 		so->so_snd.sb_flags |= SB_MTXLOCK;
171 		so->so_rcv.sb_flags |= SB_MTXLOCK;
172 		break;
173 	}
174 
175 	return (so);
176 }
177 
178 /*
179  * Socket operation routines.
180  * These routines are called by the routines in
181  * sys_socket.c or from a system process, and
182  * implement the semantics of socket operations by
183  * switching out to the protocol specific routines.
184  */
185 int
186 socreate(int dom, struct socket **aso, int type, int proto)
187 {
188 	struct proc *p = curproc;		/* XXX */
189 	const struct protosw *prp;
190 	struct socket *so;
191 	int error;
192 
193 	if (proto)
194 		prp = pffindproto(dom, proto, type);
195 	else
196 		prp = pffindtype(dom, type);
197 	if (prp == NULL || prp->pr_usrreqs == NULL)
198 		return (EPROTONOSUPPORT);
199 	if (prp->pr_type != type)
200 		return (EPROTOTYPE);
201 	so = soalloc(prp, M_WAIT);
202 	so->so_type = type;
203 	if (suser(p) == 0)
204 		so->so_state = SS_PRIV;
205 	so->so_ruid = p->p_ucred->cr_ruid;
206 	so->so_euid = p->p_ucred->cr_uid;
207 	so->so_rgid = p->p_ucred->cr_rgid;
208 	so->so_egid = p->p_ucred->cr_gid;
209 	so->so_cpid = p->p_p->ps_pid;
210 	so->so_proto = prp;
211 	so->so_snd.sb_timeo_nsecs = INFSLP;
212 	so->so_rcv.sb_timeo_nsecs = INFSLP;
213 
214 	solock(so);
215 	error = pru_attach(so, proto, M_WAIT);
216 	if (error) {
217 		so->so_state |= SS_NOFDREF;
218 		/* sofree() calls sounlock(). */
219 		sofree(so, 0);
220 		return (error);
221 	}
222 	sounlock(so);
223 	*aso = so;
224 	return (0);
225 }
226 
227 int
228 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
229 {
230 	soassertlocked(so);
231 	return pru_bind(so, nam, p);
232 }
233 
234 int
235 solisten(struct socket *so, int backlog)
236 {
237 	int somaxconn_local = READ_ONCE(somaxconn);
238 	int sominconn_local = READ_ONCE(sominconn);
239 	int error;
240 
241 	switch (so->so_type) {
242 	case SOCK_STREAM:
243 	case SOCK_SEQPACKET:
244 		break;
245 	default:
246 		return (EOPNOTSUPP);
247 	}
248 
249 	soassertlocked(so);
250 
251 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING))
252 		return (EINVAL);
253 #ifdef SOCKET_SPLICE
254 	if (isspliced(so) || issplicedback(so))
255 		return (EOPNOTSUPP);
256 #endif /* SOCKET_SPLICE */
257 	error = pru_listen(so);
258 	if (error)
259 		return (error);
260 	if (TAILQ_FIRST(&so->so_q) == NULL)
261 		so->so_options |= SO_ACCEPTCONN;
262 	if (backlog < 0 || backlog > somaxconn_local)
263 		backlog = somaxconn_local;
264 	if (backlog < sominconn_local)
265 		backlog = sominconn_local;
266 	so->so_qlimit = backlog;
267 	return (0);
268 }
269 
270 #define SOSP_FREEING_READ	1
271 #define SOSP_FREEING_WRITE	2
272 void
273 sofree(struct socket *so, int keep_lock)
274 {
275 	int persocket = solock_persocket(so);
276 
277 	soassertlocked(so);
278 
279 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
280 		if (!keep_lock)
281 			sounlock(so);
282 		return;
283 	}
284 	if (so->so_head) {
285 		struct socket *head = so->so_head;
286 
287 		/*
288 		 * We must not decommission a socket that's on the accept(2)
289 		 * queue.  If we do, then accept(2) may hang after select(2)
290 		 * indicated that the listening socket was ready.
291 		 */
292 		if (so->so_onq == &head->so_q) {
293 			if (!keep_lock)
294 				sounlock(so);
295 			return;
296 		}
297 
298 		if (persocket) {
299 			/*
300 			 * Concurrent close of `head' could
301 			 * abort `so' due to re-lock.
302 			 */
303 			soref(so);
304 			soref(head);
305 			sounlock(so);
306 			solock(head);
307 			solock(so);
308 
309 			if (so->so_onq != &head->so_q0) {
310 				sounlock(head);
311 				sounlock(so);
312 				sorele(head);
313 				sorele(so);
314 				return;
315 			}
316 
317 			sorele(head);
318 			sorele(so);
319 		}
320 
321 		soqremque(so, 0);
322 
323 		if (persocket)
324 			sounlock(head);
325 	}
326 
327 	if (persocket) {
328 		sounlock(so);
329 		refcnt_finalize(&so->so_refcnt, "sofinal");
330 		solock(so);
331 	}
332 
333 	sigio_free(&so->so_sigio);
334 	klist_free(&so->so_rcv.sb_klist);
335 	klist_free(&so->so_snd.sb_klist);
336 #ifdef SOCKET_SPLICE
337 	if (issplicedback(so)) {
338 		int freeing = SOSP_FREEING_WRITE;
339 
340 		if (so->so_sp->ssp_soback == so)
341 			freeing |= SOSP_FREEING_READ;
342 		sounsplice(so->so_sp->ssp_soback, so, freeing);
343 	}
344 	if (isspliced(so)) {
345 		int freeing = SOSP_FREEING_READ;
346 
347 		if (so == so->so_sp->ssp_socket)
348 			freeing |= SOSP_FREEING_WRITE;
349 		sounsplice(so, so->so_sp->ssp_socket, freeing);
350 	}
351 #endif /* SOCKET_SPLICE */
352 
353 	mtx_enter(&so->so_snd.sb_mtx);
354 	sbrelease(so, &so->so_snd);
355 	mtx_leave(&so->so_snd.sb_mtx);
356 
357 	/*
358 	 * Unlocked dispose and cleanup is safe. Socket is unlinked
359 	 * from everywhere. Even concurrent sotask() thread will not
360 	 * call somove().
361 	 */
362 	if (so->so_proto->pr_flags & PR_RIGHTS &&
363 	    so->so_proto->pr_domain->dom_dispose)
364 		(*so->so_proto->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
365 	m_purge(so->so_rcv.sb_mb);
366 
367 	if (!keep_lock)
368 		sounlock(so);
369 
370 #ifdef SOCKET_SPLICE
371 	if (so->so_sp) {
372 		/* Reuse splice idle, sounsplice() has been called before. */
373 		timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so);
374 		timeout_add(&so->so_sp->ssp_idleto, 0);
375 	} else
376 #endif /* SOCKET_SPLICE */
377 	{
378 		pool_put(&socket_pool, so);
379 	}
380 }
381 
382 static inline uint64_t
383 solinger_nsec(struct socket *so)
384 {
385 	if (so->so_linger == 0)
386 		return INFSLP;
387 
388 	return SEC_TO_NSEC(so->so_linger);
389 }
390 
391 /*
392  * Close a socket on last file table reference removal.
393  * Initiate disconnect if connected.
394  * Free socket when disconnect complete.
395  */
396 int
397 soclose(struct socket *so, int flags)
398 {
399 	struct socket *so2;
400 	int error = 0;
401 
402 	solock(so);
403 	/* Revoke async IO early. There is a final revocation in sofree(). */
404 	sigio_free(&so->so_sigio);
405 	if (so->so_state & SS_ISCONNECTED) {
406 		if (so->so_pcb == NULL)
407 			goto discard;
408 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
409 			error = sodisconnect(so);
410 			if (error)
411 				goto drop;
412 		}
413 		if (so->so_options & SO_LINGER) {
414 			if ((so->so_state & SS_ISDISCONNECTING) &&
415 			    (flags & MSG_DONTWAIT))
416 				goto drop;
417 			while (so->so_state & SS_ISCONNECTED) {
418 				error = sosleep_nsec(so, &so->so_timeo,
419 				    PSOCK | PCATCH, "netcls",
420 				    solinger_nsec(so));
421 				if (error)
422 					break;
423 			}
424 		}
425 	}
426 drop:
427 	if (so->so_pcb) {
428 		int error2;
429 		error2 = pru_detach(so);
430 		if (error == 0)
431 			error = error2;
432 	}
433 	if (so->so_options & SO_ACCEPTCONN) {
434 		int persocket = solock_persocket(so);
435 
436 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) {
437 			if (persocket)
438 				solock(so2);
439 			(void) soqremque(so2, 0);
440 			if (persocket)
441 				sounlock(so);
442 			soabort(so2);
443 			if (persocket)
444 				solock(so);
445 		}
446 		while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) {
447 			if (persocket)
448 				solock(so2);
449 			(void) soqremque(so2, 1);
450 			if (persocket)
451 				sounlock(so);
452 			soabort(so2);
453 			if (persocket)
454 				solock(so);
455 		}
456 	}
457 discard:
458 	if (so->so_state & SS_NOFDREF)
459 		panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type);
460 	so->so_state |= SS_NOFDREF;
461 	/* sofree() calls sounlock(). */
462 	sofree(so, 0);
463 	return (error);
464 }
465 
466 void
467 soabort(struct socket *so)
468 {
469 	soassertlocked(so);
470 	pru_abort(so);
471 }
472 
473 int
474 soaccept(struct socket *so, struct mbuf *nam)
475 {
476 	int error = 0;
477 
478 	soassertlocked(so);
479 
480 	if ((so->so_state & SS_NOFDREF) == 0)
481 		panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type);
482 	so->so_state &= ~SS_NOFDREF;
483 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
484 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
485 		error = pru_accept(so, nam);
486 	else
487 		error = ECONNABORTED;
488 	return (error);
489 }
490 
491 int
492 soconnect(struct socket *so, struct mbuf *nam)
493 {
494 	int error;
495 
496 	soassertlocked(so);
497 
498 	if (so->so_options & SO_ACCEPTCONN)
499 		return (EOPNOTSUPP);
500 	/*
501 	 * If protocol is connection-based, can only connect once.
502 	 * Otherwise, if connected, try to disconnect first.
503 	 * This allows user to disconnect by connecting to, e.g.,
504 	 * a null address.
505 	 */
506 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
507 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
508 	    (error = sodisconnect(so))))
509 		error = EISCONN;
510 	else
511 		error = pru_connect(so, nam);
512 	return (error);
513 }
514 
515 int
516 soconnect2(struct socket *so1, struct socket *so2)
517 {
518 	int persocket, error;
519 
520 	if ((persocket = solock_persocket(so1)))
521 		solock_pair(so1, so2);
522 	else
523 		solock(so1);
524 
525 	error = pru_connect2(so1, so2);
526 
527 	if (persocket)
528 		sounlock(so2);
529 	sounlock(so1);
530 	return (error);
531 }
532 
533 int
534 sodisconnect(struct socket *so)
535 {
536 	int error;
537 
538 	soassertlocked(so);
539 
540 	if ((so->so_state & SS_ISCONNECTED) == 0)
541 		return (ENOTCONN);
542 	if (so->so_state & SS_ISDISCONNECTING)
543 		return (EALREADY);
544 	error = pru_disconnect(so);
545 	return (error);
546 }
547 
548 int m_getuio(struct mbuf **, int, long, struct uio *);
549 
550 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
551 /*
552  * Send on a socket.
553  * If send must go all at once and message is larger than
554  * send buffering, then hard error.
555  * Lock against other senders.
556  * If must go all at once and not enough room now, then
557  * inform user that this would block and do nothing.
558  * Otherwise, if nonblocking, send as much as possible.
559  * The data to be sent is described by "uio" if nonzero,
560  * otherwise by the mbuf chain "top" (which must be null
561  * if uio is not).  Data provided in mbuf chain must be small
562  * enough to send all at once.
563  *
564  * Returns nonzero on error, timeout or signal; callers
565  * must check for short counts if EINTR/ERESTART are returned.
566  * Data and control buffers are freed on return.
567  */
568 int
569 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
570     struct mbuf *control, int flags)
571 {
572 	long space, clen = 0;
573 	size_t resid;
574 	int error;
575 	int atomic = sosendallatonce(so) || top;
576 	int dosolock = ((so->so_snd.sb_flags & SB_MTXLOCK) == 0);
577 
578 	if (uio)
579 		resid = uio->uio_resid;
580 	else
581 		resid = top->m_pkthdr.len;
582 	/* MSG_EOR on a SOCK_STREAM socket is invalid. */
583 	if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) {
584 		m_freem(top);
585 		m_freem(control);
586 		return (EINVAL);
587 	}
588 	if (uio && uio->uio_procp)
589 		uio->uio_procp->p_ru.ru_msgsnd++;
590 	if (control) {
591 		/*
592 		 * In theory clen should be unsigned (since control->m_len is).
593 		 * However, space must be signed, as it might be less than 0
594 		 * if we over-committed, and we must use a signed comparison
595 		 * of space and clen.
596 		 */
597 		clen = control->m_len;
598 		/* reserve extra space for AF_UNIX's internalize */
599 		if (so->so_proto->pr_domain->dom_family == AF_UNIX &&
600 		    clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) &&
601 		    mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
602 			clen = CMSG_SPACE(
603 			    (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) *
604 			    (sizeof(struct fdpass) / sizeof(int)));
605 	}
606 
607 #define	snderr(errno)	{ error = errno; goto release; }
608 
609 	if (dosolock)
610 		solock_shared(so);
611 restart:
612 	if ((error = sblock(so, &so->so_snd, SBLOCKWAIT(flags))) != 0)
613 		goto out;
614 	sb_mtx_lock(&so->so_snd);
615 	so->so_snd.sb_state |= SS_ISSENDING;
616 	do {
617 		if (so->so_snd.sb_state & SS_CANTSENDMORE)
618 			snderr(EPIPE);
619 		if ((error = READ_ONCE(so->so_error))) {
620 			so->so_error = 0;
621 			snderr(error);
622 		}
623 		if ((so->so_state & SS_ISCONNECTED) == 0) {
624 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
625 				if (!(resid == 0 && clen != 0))
626 					snderr(ENOTCONN);
627 			} else if (addr == NULL)
628 				snderr(EDESTADDRREQ);
629 		}
630 		space = sbspace(so, &so->so_snd);
631 		if (flags & MSG_OOB)
632 			space += 1024;
633 		if (so->so_proto->pr_domain->dom_family == AF_UNIX) {
634 			if (atomic && resid > so->so_snd.sb_hiwat)
635 				snderr(EMSGSIZE);
636 		} else {
637 			if (clen > so->so_snd.sb_hiwat ||
638 			    (atomic && resid > so->so_snd.sb_hiwat - clen))
639 				snderr(EMSGSIZE);
640 		}
641 		if (space < clen ||
642 		    (space - clen < resid &&
643 		    (atomic || space < so->so_snd.sb_lowat))) {
644 			if (flags & MSG_DONTWAIT)
645 				snderr(EWOULDBLOCK);
646 			sbunlock(so, &so->so_snd);
647 
648 			if (so->so_snd.sb_flags & SB_MTXLOCK)
649 				error = sbwait_locked(so, &so->so_snd);
650 			else
651 				error = sbwait(so, &so->so_snd);
652 
653 			so->so_snd.sb_state &= ~SS_ISSENDING;
654 			sb_mtx_unlock(&so->so_snd);
655 			if (error)
656 				goto out;
657 			goto restart;
658 		}
659 		space -= clen;
660 		do {
661 			if (uio == NULL) {
662 				/*
663 				 * Data is prepackaged in "top".
664 				 */
665 				resid = 0;
666 				if (flags & MSG_EOR)
667 					top->m_flags |= M_EOR;
668 			} else {
669 				sb_mtx_unlock(&so->so_snd);
670 				if (dosolock)
671 					sounlock_shared(so);
672 				error = m_getuio(&top, atomic, space, uio);
673 				if (dosolock)
674 					solock_shared(so);
675 				sb_mtx_lock(&so->so_snd);
676 				if (error)
677 					goto release;
678 				space -= top->m_pkthdr.len;
679 				resid = uio->uio_resid;
680 				if (flags & MSG_EOR)
681 					top->m_flags |= M_EOR;
682 			}
683 			if (resid == 0)
684 				so->so_snd.sb_state &= ~SS_ISSENDING;
685 			if (top && so->so_options & SO_ZEROIZE)
686 				top->m_flags |= M_ZEROIZE;
687 			sb_mtx_unlock(&so->so_snd);
688 			if (!dosolock)
689 				solock_shared(so);
690 			if (flags & MSG_OOB)
691 				error = pru_sendoob(so, top, addr, control);
692 			else
693 				error = pru_send(so, top, addr, control);
694 			if (!dosolock)
695 				sounlock_shared(so);
696 			sb_mtx_lock(&so->so_snd);
697 			clen = 0;
698 			control = NULL;
699 			top = NULL;
700 			if (error)
701 				goto release;
702 		} while (resid && space > 0);
703 	} while (resid);
704 
705 release:
706 	so->so_snd.sb_state &= ~SS_ISSENDING;
707 	sb_mtx_unlock(&so->so_snd);
708 	sbunlock(so, &so->so_snd);
709 out:
710 	if (dosolock)
711 		sounlock_shared(so);
712 	m_freem(top);
713 	m_freem(control);
714 	return (error);
715 }
716 
717 int
718 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio)
719 {
720 	struct mbuf *m, *top = NULL;
721 	struct mbuf **nextp = &top;
722 	u_long len, mlen;
723 	size_t resid = uio->uio_resid;
724 	int error;
725 
726 	do {
727 		if (top == NULL) {
728 			MGETHDR(m, M_WAIT, MT_DATA);
729 			mlen = MHLEN;
730 			m->m_pkthdr.len = 0;
731 			m->m_pkthdr.ph_ifidx = 0;
732 		} else {
733 			MGET(m, M_WAIT, MT_DATA);
734 			mlen = MLEN;
735 		}
736 		/* chain mbuf together */
737 		*nextp = m;
738 		nextp = &m->m_next;
739 
740 		resid = ulmin(resid, space);
741 		if (resid >= MINCLSIZE) {
742 			MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES));
743 			if ((m->m_flags & M_EXT) == 0)
744 				MCLGETL(m, M_NOWAIT, MCLBYTES);
745 			if ((m->m_flags & M_EXT) == 0)
746 				goto nopages;
747 			mlen = m->m_ext.ext_size;
748 			len = ulmin(mlen, resid);
749 			/*
750 			 * For datagram protocols, leave room
751 			 * for protocol headers in first mbuf.
752 			 */
753 			if (atomic && m == top && len < mlen - max_hdr)
754 				m->m_data += max_hdr;
755 		} else {
756 nopages:
757 			len = ulmin(mlen, resid);
758 			/*
759 			 * For datagram protocols, leave room
760 			 * for protocol headers in first mbuf.
761 			 */
762 			if (atomic && m == top && len < mlen - max_hdr)
763 				m_align(m, len);
764 		}
765 
766 		error = uiomove(mtod(m, caddr_t), len, uio);
767 		if (error) {
768 			m_freem(top);
769 			return (error);
770 		}
771 
772 		/* adjust counters */
773 		resid = uio->uio_resid;
774 		space -= len;
775 		m->m_len = len;
776 		top->m_pkthdr.len += len;
777 
778 		/* Is there more space and more data? */
779 	} while (space > 0 && resid > 0);
780 
781 	*mp = top;
782 	return 0;
783 }
784 
785 /*
786  * Following replacement or removal of the first mbuf on the first
787  * mbuf chain of a socket buffer, push necessary state changes back
788  * into the socket buffer so that other consumers see the values
789  * consistently.  'nextrecord' is the callers locally stored value of
790  * the original value of sb->sb_mb->m_nextpkt which must be restored
791  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
792  */
793 void
794 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
795 {
796 
797 	/*
798 	 * First, update for the new value of nextrecord.  If necessary,
799 	 * make it the first record.
800 	 */
801 	if (sb->sb_mb != NULL)
802 		sb->sb_mb->m_nextpkt = nextrecord;
803 	else
804 		sb->sb_mb = nextrecord;
805 
806 	/*
807 	 * Now update any dependent socket buffer fields to reflect
808 	 * the new state.  This is an inline of SB_EMPTY_FIXUP, with
809 	 * the addition of a second clause that takes care of the
810 	 * case where sb_mb has been updated, but remains the last
811 	 * record.
812 	 */
813 	if (sb->sb_mb == NULL) {
814 		sb->sb_mbtail = NULL;
815 		sb->sb_lastrecord = NULL;
816 	} else if (sb->sb_mb->m_nextpkt == NULL)
817 		sb->sb_lastrecord = sb->sb_mb;
818 }
819 
820 /*
821  * Implement receive operations on a socket.
822  * We depend on the way that records are added to the sockbuf
823  * by sbappend*.  In particular, each record (mbufs linked through m_next)
824  * must begin with an address if the protocol so specifies,
825  * followed by an optional mbuf or mbufs containing ancillary data,
826  * and then zero or more mbufs of data.
827  * In order to avoid blocking network for the entire time here, we release
828  * the solock() while doing the actual copy to user space.
829  * Although the sockbuf is locked, new data may still be appended,
830  * and thus we must maintain consistency of the sockbuf during that time.
831  *
832  * The caller may receive the data as a single mbuf chain by supplying
833  * an mbuf **mp0 for use in returning the chain.  The uio is then used
834  * only for the count in uio_resid.
835  */
836 int
837 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
838     struct mbuf **mp0, struct mbuf **controlp, int *flagsp,
839     socklen_t controllen)
840 {
841 	struct mbuf *m, **mp;
842 	struct mbuf *cm;
843 	u_long len, offset, moff;
844 	int flags, error, error2, type, uio_error = 0;
845 	const struct protosw *pr = so->so_proto;
846 	struct mbuf *nextrecord;
847 	size_t resid, orig_resid = uio->uio_resid;
848 	int dosolock = ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0);
849 
850 	mp = mp0;
851 	if (paddr)
852 		*paddr = NULL;
853 	if (controlp)
854 		*controlp = NULL;
855 	if (flagsp)
856 		flags = *flagsp &~ MSG_EOR;
857 	else
858 		flags = 0;
859 	if (flags & MSG_OOB) {
860 		m = m_get(M_WAIT, MT_DATA);
861 		solock(so);
862 		error = pru_rcvoob(so, m, flags & MSG_PEEK);
863 		sounlock(so);
864 		if (error)
865 			goto bad;
866 		do {
867 			error = uiomove(mtod(m, caddr_t),
868 			    ulmin(uio->uio_resid, m->m_len), uio);
869 			m = m_free(m);
870 		} while (uio->uio_resid && error == 0 && m);
871 bad:
872 		m_freem(m);
873 		return (error);
874 	}
875 	if (mp)
876 		*mp = NULL;
877 
878 	if (dosolock)
879 		solock_shared(so);
880 restart:
881 	if ((error = sblock(so, &so->so_rcv, SBLOCKWAIT(flags))) != 0)
882 		goto out;
883 	sb_mtx_lock(&so->so_rcv);
884 
885 	m = so->so_rcv.sb_mb;
886 #ifdef SOCKET_SPLICE
887 	if (isspliced(so))
888 		m = NULL;
889 #endif /* SOCKET_SPLICE */
890 	/*
891 	 * If we have less data than requested, block awaiting more
892 	 * (subject to any timeout) if:
893 	 *   1. the current count is less than the low water mark,
894 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
895 	 *	receive operation at once if we block (resid <= hiwat), or
896 	 *   3. MSG_DONTWAIT is not set.
897 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
898 	 * we have to do the receive in sections, and thus risk returning
899 	 * a short count if a timeout or signal occurs after we start.
900 	 */
901 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
902 	    so->so_rcv.sb_cc < uio->uio_resid) &&
903 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
904 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
905 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
906 #ifdef DIAGNOSTIC
907 		if (m == NULL && so->so_rcv.sb_cc)
908 #ifdef SOCKET_SPLICE
909 		    if (!isspliced(so))
910 #endif /* SOCKET_SPLICE */
911 			panic("receive 1: so %p, so_type %d, sb_cc %lu",
912 			    so, so->so_type, so->so_rcv.sb_cc);
913 #endif
914 		if ((error2 = READ_ONCE(so->so_error))) {
915 			if (m)
916 				goto dontblock;
917 			error = error2;
918 			if ((flags & MSG_PEEK) == 0)
919 				so->so_error = 0;
920 			goto release;
921 		}
922 		if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
923 			if (m)
924 				goto dontblock;
925 			else if (so->so_rcv.sb_cc == 0)
926 				goto release;
927 		}
928 		for (; m; m = m->m_next)
929 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
930 				m = so->so_rcv.sb_mb;
931 				goto dontblock;
932 			}
933 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
934 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
935 			error = ENOTCONN;
936 			goto release;
937 		}
938 		if (uio->uio_resid == 0 && controlp == NULL)
939 			goto release;
940 		if (flags & MSG_DONTWAIT) {
941 			error = EWOULDBLOCK;
942 			goto release;
943 		}
944 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
945 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
946 
947 		if (so->so_rcv.sb_flags & SB_MTXLOCK) {
948 			sbunlock_locked(so, &so->so_rcv);
949 			if (dosolock)
950 				sounlock_shared(so);
951 			error = sbwait_locked(so, &so->so_rcv);
952 			sb_mtx_unlock(&so->so_rcv);
953 			if (error)
954 				return (error);
955 			if (dosolock)
956 				solock_shared(so);
957 		} else {
958 			sb_mtx_unlock(&so->so_rcv);
959 			sbunlock(so, &so->so_rcv);
960 			error = sbwait(so, &so->so_rcv);
961 			if (error) {
962 				sounlock_shared(so);
963 				return (error);
964 			}
965 		}
966 		goto restart;
967 	}
968 dontblock:
969 	/*
970 	 * On entry here, m points to the first record of the socket buffer.
971 	 * From this point onward, we maintain 'nextrecord' as a cache of the
972 	 * pointer to the next record in the socket buffer.  We must keep the
973 	 * various socket buffer pointers and local stack versions of the
974 	 * pointers in sync, pushing out modifications before operations that
975 	 * may sleep, and re-reading them afterwards.
976 	 *
977 	 * Otherwise, we will race with the network stack appending new data
978 	 * or records onto the socket buffer by using inconsistent/stale
979 	 * versions of the field, possibly resulting in socket buffer
980 	 * corruption.
981 	 */
982 	if (uio->uio_procp)
983 		uio->uio_procp->p_ru.ru_msgrcv++;
984 	KASSERT(m == so->so_rcv.sb_mb);
985 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
986 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
987 	nextrecord = m->m_nextpkt;
988 	if (pr->pr_flags & PR_ADDR) {
989 #ifdef DIAGNOSTIC
990 		if (m->m_type != MT_SONAME)
991 			panic("receive 1a: so %p, so_type %d, m %p, m_type %d",
992 			    so, so->so_type, m, m->m_type);
993 #endif
994 		orig_resid = 0;
995 		if (flags & MSG_PEEK) {
996 			if (paddr)
997 				*paddr = m_copym(m, 0, m->m_len, M_NOWAIT);
998 			m = m->m_next;
999 		} else {
1000 			sbfree(so, &so->so_rcv, m);
1001 			if (paddr) {
1002 				*paddr = m;
1003 				so->so_rcv.sb_mb = m->m_next;
1004 				m->m_next = NULL;
1005 				m = so->so_rcv.sb_mb;
1006 			} else {
1007 				so->so_rcv.sb_mb = m_free(m);
1008 				m = so->so_rcv.sb_mb;
1009 			}
1010 			sbsync(&so->so_rcv, nextrecord);
1011 		}
1012 	}
1013 	while (m && m->m_type == MT_CONTROL && error == 0) {
1014 		int skip = 0;
1015 		if (flags & MSG_PEEK) {
1016 			if (mtod(m, struct cmsghdr *)->cmsg_type ==
1017 			    SCM_RIGHTS) {
1018 				/* don't leak internalized SCM_RIGHTS msgs */
1019 				skip = 1;
1020 			} else if (controlp)
1021 				*controlp = m_copym(m, 0, m->m_len, M_NOWAIT);
1022 			m = m->m_next;
1023 		} else {
1024 			sbfree(so, &so->so_rcv, m);
1025 			so->so_rcv.sb_mb = m->m_next;
1026 			m->m_nextpkt = m->m_next = NULL;
1027 			cm = m;
1028 			m = so->so_rcv.sb_mb;
1029 			sbsync(&so->so_rcv, nextrecord);
1030 			if (controlp) {
1031 				if (pr->pr_domain->dom_externalize) {
1032 					sb_mtx_unlock(&so->so_rcv);
1033 					if (dosolock)
1034 						sounlock_shared(so);
1035 					error =
1036 					    (*pr->pr_domain->dom_externalize)
1037 					    (cm, controllen, flags);
1038 					if (dosolock)
1039 						solock_shared(so);
1040 					sb_mtx_lock(&so->so_rcv);
1041 				}
1042 				*controlp = cm;
1043 			} else {
1044 				/*
1045 				 * Dispose of any SCM_RIGHTS message that went
1046 				 * through the read path rather than recv.
1047 				 */
1048 				if (pr->pr_domain->dom_dispose) {
1049 					sb_mtx_unlock(&so->so_rcv);
1050 					pr->pr_domain->dom_dispose(cm);
1051 					sb_mtx_lock(&so->so_rcv);
1052 				}
1053 				m_free(cm);
1054 			}
1055 		}
1056 		if (m != NULL)
1057 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1058 		else
1059 			nextrecord = so->so_rcv.sb_mb;
1060 		if (controlp && !skip)
1061 			controlp = &(*controlp)->m_next;
1062 		orig_resid = 0;
1063 	}
1064 
1065 	/* If m is non-NULL, we have some data to read. */
1066 	if (m) {
1067 		type = m->m_type;
1068 		if (type == MT_OOBDATA)
1069 			flags |= MSG_OOB;
1070 		if (m->m_flags & M_BCAST)
1071 			flags |= MSG_BCAST;
1072 		if (m->m_flags & M_MCAST)
1073 			flags |= MSG_MCAST;
1074 	}
1075 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1076 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1077 
1078 	moff = 0;
1079 	offset = 0;
1080 	while (m && uio->uio_resid > 0 && error == 0) {
1081 		if (m->m_type == MT_OOBDATA) {
1082 			if (type != MT_OOBDATA)
1083 				break;
1084 		} else if (type == MT_OOBDATA) {
1085 			break;
1086 		} else if (m->m_type == MT_CONTROL) {
1087 			/*
1088 			 * If there is more than one control message in the
1089 			 * stream, we do a short read.  Next can be received
1090 			 * or disposed by another system call.
1091 			 */
1092 			break;
1093 #ifdef DIAGNOSTIC
1094 		} else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) {
1095 			panic("receive 3: so %p, so_type %d, m %p, m_type %d",
1096 			    so, so->so_type, m, m->m_type);
1097 #endif
1098 		}
1099 		so->so_rcv.sb_state &= ~SS_RCVATMARK;
1100 		len = uio->uio_resid;
1101 		if (so->so_oobmark && len > so->so_oobmark - offset)
1102 			len = so->so_oobmark - offset;
1103 		if (len > m->m_len - moff)
1104 			len = m->m_len - moff;
1105 		/*
1106 		 * If mp is set, just pass back the mbufs.
1107 		 * Otherwise copy them out via the uio, then free.
1108 		 * Sockbuf must be consistent here (points to current mbuf,
1109 		 * it points to next record) when we drop priority;
1110 		 * we must note any additions to the sockbuf when we
1111 		 * block interrupts again.
1112 		 */
1113 		if (mp == NULL && uio_error == 0) {
1114 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1115 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1116 			resid = uio->uio_resid;
1117 			sb_mtx_unlock(&so->so_rcv);
1118 			if (dosolock)
1119 				sounlock_shared(so);
1120 			uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio);
1121 			if (dosolock)
1122 				solock_shared(so);
1123 			sb_mtx_lock(&so->so_rcv);
1124 			if (uio_error)
1125 				uio->uio_resid = resid - len;
1126 		} else
1127 			uio->uio_resid -= len;
1128 		if (len == m->m_len - moff) {
1129 			if (m->m_flags & M_EOR)
1130 				flags |= MSG_EOR;
1131 			if (flags & MSG_PEEK) {
1132 				m = m->m_next;
1133 				moff = 0;
1134 				orig_resid = 0;
1135 			} else {
1136 				nextrecord = m->m_nextpkt;
1137 				sbfree(so, &so->so_rcv, m);
1138 				if (mp) {
1139 					*mp = m;
1140 					mp = &m->m_next;
1141 					so->so_rcv.sb_mb = m = m->m_next;
1142 					*mp = NULL;
1143 				} else {
1144 					so->so_rcv.sb_mb = m_free(m);
1145 					m = so->so_rcv.sb_mb;
1146 				}
1147 				/*
1148 				 * If m != NULL, we also know that
1149 				 * so->so_rcv.sb_mb != NULL.
1150 				 */
1151 				KASSERT(so->so_rcv.sb_mb == m);
1152 				if (m) {
1153 					m->m_nextpkt = nextrecord;
1154 					if (nextrecord == NULL)
1155 						so->so_rcv.sb_lastrecord = m;
1156 				} else {
1157 					so->so_rcv.sb_mb = nextrecord;
1158 					SB_EMPTY_FIXUP(&so->so_rcv);
1159 				}
1160 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1161 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1162 			}
1163 		} else {
1164 			if (flags & MSG_PEEK) {
1165 				moff += len;
1166 				orig_resid = 0;
1167 			} else {
1168 				if (mp)
1169 					*mp = m_copym(m, 0, len, M_WAIT);
1170 				m->m_data += len;
1171 				m->m_len -= len;
1172 				so->so_rcv.sb_cc -= len;
1173 				so->so_rcv.sb_datacc -= len;
1174 			}
1175 		}
1176 		if (so->so_oobmark) {
1177 			if ((flags & MSG_PEEK) == 0) {
1178 				so->so_oobmark -= len;
1179 				if (so->so_oobmark == 0) {
1180 					so->so_rcv.sb_state |= SS_RCVATMARK;
1181 					break;
1182 				}
1183 			} else {
1184 				offset += len;
1185 				if (offset == so->so_oobmark)
1186 					break;
1187 			}
1188 		}
1189 		if (flags & MSG_EOR)
1190 			break;
1191 		/*
1192 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1193 		 * we must not quit until "uio->uio_resid == 0" or an error
1194 		 * termination.  If a signal/timeout occurs, return
1195 		 * with a short count but without error.
1196 		 * Keep sockbuf locked against other readers.
1197 		 */
1198 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1199 		    !sosendallatonce(so) && !nextrecord) {
1200 			if (so->so_rcv.sb_state & SS_CANTRCVMORE ||
1201 			    so->so_error)
1202 				break;
1203 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1204 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1205 			if (dosolock) {
1206 				sb_mtx_unlock(&so->so_rcv);
1207 				error = sbwait(so, &so->so_rcv);
1208 				if (error) {
1209 					sbunlock(so, &so->so_rcv);
1210 					sounlock_shared(so);
1211 					return (0);
1212 				}
1213 				sb_mtx_lock(&so->so_rcv);
1214 			} else {
1215 				if (sbwait_locked(so, &so->so_rcv)) {
1216 					sb_mtx_unlock(&so->so_rcv);
1217 					sbunlock(so, &so->so_rcv);
1218 					return (0);
1219 				}
1220 			}
1221 			if ((m = so->so_rcv.sb_mb) != NULL)
1222 				nextrecord = m->m_nextpkt;
1223 		}
1224 	}
1225 
1226 	if (m && pr->pr_flags & PR_ATOMIC) {
1227 		flags |= MSG_TRUNC;
1228 		if ((flags & MSG_PEEK) == 0)
1229 			(void) sbdroprecord(so, &so->so_rcv);
1230 	}
1231 	if ((flags & MSG_PEEK) == 0) {
1232 		if (m == NULL) {
1233 			/*
1234 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1235 			 * part makes sure sb_lastrecord is up-to-date if
1236 			 * there is still data in the socket buffer.
1237 			 */
1238 			so->so_rcv.sb_mb = nextrecord;
1239 			if (so->so_rcv.sb_mb == NULL) {
1240 				so->so_rcv.sb_mbtail = NULL;
1241 				so->so_rcv.sb_lastrecord = NULL;
1242 			} else if (nextrecord->m_nextpkt == NULL)
1243 				so->so_rcv.sb_lastrecord = nextrecord;
1244 		}
1245 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1246 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1247 		if (pr->pr_flags & PR_WANTRCVD) {
1248 			sb_mtx_unlock(&so->so_rcv);
1249 			if (!dosolock)
1250 				solock_shared(so);
1251 			pru_rcvd(so);
1252 			if (!dosolock)
1253 				sounlock_shared(so);
1254 			sb_mtx_lock(&so->so_rcv);
1255 		}
1256 	}
1257 	if (orig_resid == uio->uio_resid && orig_resid &&
1258 	    (flags & MSG_EOR) == 0 &&
1259 	    (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) {
1260 		sb_mtx_unlock(&so->so_rcv);
1261 		sbunlock(so, &so->so_rcv);
1262 		goto restart;
1263 	}
1264 
1265 	if (uio_error)
1266 		error = uio_error;
1267 
1268 	if (flagsp)
1269 		*flagsp |= flags;
1270 release:
1271 	sb_mtx_unlock(&so->so_rcv);
1272 	sbunlock(so, &so->so_rcv);
1273 out:
1274 	if (dosolock)
1275 		sounlock_shared(so);
1276 	return (error);
1277 }
1278 
1279 int
1280 soshutdown(struct socket *so, int how)
1281 {
1282 	int error = 0;
1283 
1284 	switch (how) {
1285 	case SHUT_RD:
1286 		sorflush(so);
1287 		break;
1288 	case SHUT_RDWR:
1289 		sorflush(so);
1290 		/* FALLTHROUGH */
1291 	case SHUT_WR:
1292 		solock(so);
1293 		error = pru_shutdown(so);
1294 		sounlock(so);
1295 		break;
1296 	default:
1297 		error = EINVAL;
1298 		break;
1299 	}
1300 
1301 	return (error);
1302 }
1303 
1304 void
1305 sorflush_locked(struct socket *so)
1306 {
1307 	struct sockbuf *sb = &so->so_rcv;
1308 	struct mbuf *m;
1309 	const struct protosw *pr = so->so_proto;
1310 	int error;
1311 
1312 	if ((sb->sb_flags & SB_MTXLOCK) == 0)
1313 		soassertlocked(so);
1314 
1315 	error = sblock(so, sb, SBL_WAIT | SBL_NOINTR);
1316 	/* with SBL_WAIT and SLB_NOINTR sblock() must not fail */
1317 	KASSERT(error == 0);
1318 
1319 	if (sb->sb_flags & SB_MTXLOCK)
1320 		solock(so);
1321 	socantrcvmore(so);
1322 	if (sb->sb_flags & SB_MTXLOCK)
1323 		sounlock(so);
1324 
1325 	mtx_enter(&sb->sb_mtx);
1326 	m = sb->sb_mb;
1327 	memset(&sb->sb_startzero, 0,
1328 	     (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero);
1329 	sb->sb_timeo_nsecs = INFSLP;
1330 	mtx_leave(&sb->sb_mtx);
1331 	sbunlock(so, sb);
1332 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1333 		(*pr->pr_domain->dom_dispose)(m);
1334 	m_purge(m);
1335 }
1336 
1337 void
1338 sorflush(struct socket *so)
1339 {
1340 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1341 		solock_shared(so);
1342 	sorflush_locked(so);
1343 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1344 		sounlock_shared(so);
1345 }
1346 
1347 #ifdef SOCKET_SPLICE
1348 
1349 #define so_splicelen	so_sp->ssp_len
1350 #define so_splicemax	so_sp->ssp_max
1351 #define so_idletv	so_sp->ssp_idletv
1352 #define so_idleto	so_sp->ssp_idleto
1353 #define so_splicetask	so_sp->ssp_task
1354 
1355 int
1356 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv)
1357 {
1358 	struct file	*fp = NULL;
1359 	struct socket	*sosp;
1360 	struct taskq	*tq;
1361 	int		 error = 0;
1362 
1363 	if ((so->so_proto->pr_flags & PR_SPLICE) == 0)
1364 		return (EPROTONOSUPPORT);
1365 	if (max && max < 0)
1366 		return (EINVAL);
1367 	if (tv && (tv->tv_sec < 0 || !timerisvalid(tv)))
1368 		return (EINVAL);
1369 
1370 	if (sosplice_taskq == NULL) {
1371 		rw_enter_write(&sosplice_lock);
1372 		if (sosplice_taskq == NULL) {
1373 			tq = taskq_create("sosplice", 1, IPL_SOFTNET,
1374 			    TASKQ_MPSAFE);
1375 			if (tq == NULL) {
1376 				rw_exit_write(&sosplice_lock);
1377 				return (ENOMEM);
1378 			}
1379 			/* Ensure the taskq is fully visible to other CPUs. */
1380 			membar_producer();
1381 			sosplice_taskq = tq;
1382 		}
1383 		rw_exit_write(&sosplice_lock);
1384 	} else {
1385 		/* Ensure the taskq is fully visible on this CPU. */
1386 		membar_consumer();
1387 	}
1388 
1389 	if (so->so_rcv.sb_flags & SB_MTXLOCK) {
1390 		if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0)
1391 			return (error);
1392 		solock(so);
1393 	} else {
1394 		solock(so);
1395 		if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0) {
1396 			sounlock(so);
1397 			return (error);
1398 		}
1399 	}
1400 
1401 	if (so->so_options & SO_ACCEPTCONN) {
1402 		error = EOPNOTSUPP;
1403 		goto out;
1404 	}
1405 	if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1406 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1407 		error = ENOTCONN;
1408 		goto out;
1409 	}
1410 	if (so->so_sp == NULL)
1411 		so->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1412 
1413 	/* If no fd is given, unsplice by removing existing link. */
1414 	if (fd < 0) {
1415 		if (so->so_sp->ssp_socket)
1416 			sounsplice(so, so->so_sp->ssp_socket, 0);
1417 		goto out;
1418 	}
1419 
1420 	/* Find sosp, the drain socket where data will be spliced into. */
1421 	if ((error = getsock(curproc, fd, &fp)) != 0)
1422 		goto out;
1423 	sosp = fp->f_data;
1424 	if (sosp->so_proto->pr_usrreqs->pru_send !=
1425 	    so->so_proto->pr_usrreqs->pru_send) {
1426 		error = EPROTONOSUPPORT;
1427 		goto out;
1428 	}
1429 	if (sosp->so_sp == NULL)
1430 		sosp->so_sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO);
1431 
1432 	if ((error = sblock(sosp, &sosp->so_snd, SBL_WAIT)) != 0) {
1433 		goto out;
1434 	}
1435 
1436 	if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) {
1437 		error = EBUSY;
1438 		goto release;
1439 	}
1440 	if (sosp->so_options & SO_ACCEPTCONN) {
1441 		error = EOPNOTSUPP;
1442 		goto release;
1443 	}
1444 	if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) {
1445 		error = ENOTCONN;
1446 		goto release;
1447 	}
1448 
1449 	/* Splice so and sosp together. */
1450 	mtx_enter(&so->so_rcv.sb_mtx);
1451 	so->so_sp->ssp_socket = sosp;
1452 	sosp->so_sp->ssp_soback = so;
1453 	mtx_leave(&so->so_rcv.sb_mtx);
1454 	so->so_splicelen = 0;
1455 	so->so_splicemax = max;
1456 	if (tv)
1457 		so->so_idletv = *tv;
1458 	else
1459 		timerclear(&so->so_idletv);
1460 	timeout_set_proc(&so->so_idleto, soidle, so);
1461 	task_set(&so->so_splicetask, sotask, so);
1462 
1463 	/*
1464 	 * To prevent softnet interrupt from calling somove() while
1465 	 * we sleep, the socket buffers are not marked as spliced yet.
1466 	 */
1467 	if (somove(so, M_WAIT)) {
1468 		mtx_enter(&so->so_rcv.sb_mtx);
1469 		so->so_rcv.sb_flags |= SB_SPLICE;
1470 		mtx_leave(&so->so_rcv.sb_mtx);
1471 		sosp->so_snd.sb_flags |= SB_SPLICE;
1472 	}
1473 
1474  release:
1475 	sbunlock(sosp, &sosp->so_snd);
1476  out:
1477 	if (so->so_rcv.sb_flags & SB_MTXLOCK) {
1478 		sounlock(so);
1479 		sbunlock(so, &so->so_rcv);
1480 	} else {
1481 		sbunlock(so, &so->so_rcv);
1482 		sounlock(so);
1483 	}
1484 
1485 	if (fp)
1486 		FRELE(fp, curproc);
1487 
1488 	return (error);
1489 }
1490 
1491 void
1492 sounsplice(struct socket *so, struct socket *sosp, int freeing)
1493 {
1494 	soassertlocked(so);
1495 
1496 	task_del(sosplice_taskq, &so->so_splicetask);
1497 	timeout_del(&so->so_idleto);
1498 	sosp->so_snd.sb_flags &= ~SB_SPLICE;
1499 
1500 	mtx_enter(&so->so_rcv.sb_mtx);
1501 	so->so_rcv.sb_flags &= ~SB_SPLICE;
1502 	so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL;
1503 	mtx_leave(&so->so_rcv.sb_mtx);
1504 
1505 	/* Do not wakeup a socket that is about to be freed. */
1506 	if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so))
1507 		sorwakeup(so);
1508 	if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp))
1509 		sowwakeup(sosp);
1510 }
1511 
1512 void
1513 soidle(void *arg)
1514 {
1515 	struct socket *so = arg;
1516 
1517 	solock(so);
1518 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1519 		so->so_error = ETIMEDOUT;
1520 		sounsplice(so, so->so_sp->ssp_socket, 0);
1521 	}
1522 	sounlock(so);
1523 }
1524 
1525 void
1526 sotask(void *arg)
1527 {
1528 	struct socket *so = arg;
1529 
1530 	solock(so);
1531 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1532 		/*
1533 		 * We may not sleep here as sofree() and unsplice() may be
1534 		 * called from softnet interrupt context.  This would remove
1535 		 * the socket during somove().
1536 		 */
1537 		somove(so, M_DONTWAIT);
1538 	}
1539 	sounlock(so);
1540 
1541 	/* Avoid user land starvation. */
1542 	yield();
1543 }
1544 
1545 /*
1546  * The socket splicing task or idle timeout may sleep while grabbing the net
1547  * lock.  As sofree() can be called anytime, sotask() or soidle() could access
1548  * the socket memory of a freed socket after wakeup.  So delay the pool_put()
1549  * after all pending socket splicing tasks or timeouts have finished.  Do this
1550  * by scheduling it on the same threads.
1551  */
1552 void
1553 soreaper(void *arg)
1554 {
1555 	struct socket *so = arg;
1556 
1557 	/* Reuse splice task, sounsplice() has been called before. */
1558 	task_set(&so->so_sp->ssp_task, soput, so);
1559 	task_add(sosplice_taskq, &so->so_sp->ssp_task);
1560 }
1561 
1562 void
1563 soput(void *arg)
1564 {
1565 	struct socket *so = arg;
1566 
1567 	pool_put(&sosplice_pool, so->so_sp);
1568 	pool_put(&socket_pool, so);
1569 }
1570 
1571 /*
1572  * Move data from receive buffer of spliced source socket to send
1573  * buffer of drain socket.  Try to move as much as possible in one
1574  * big chunk.  It is a TCP only implementation.
1575  * Return value 0 means splicing has been finished, 1 continue.
1576  */
1577 int
1578 somove(struct socket *so, int wait)
1579 {
1580 	struct socket	*sosp = so->so_sp->ssp_socket;
1581 	struct mbuf	*m, **mp, *nextrecord;
1582 	u_long		 len, off, oobmark;
1583 	long		 space;
1584 	int		 error = 0, maxreached = 0;
1585 	unsigned int	 rcvstate;
1586 
1587 	soassertlocked(so);
1588 
1589  nextpkt:
1590 	if (so->so_error) {
1591 		error = so->so_error;
1592 		goto release;
1593 	}
1594 	if (sosp->so_snd.sb_state & SS_CANTSENDMORE) {
1595 		error = EPIPE;
1596 		goto release;
1597 	}
1598 	if (sosp->so_error && sosp->so_error != ETIMEDOUT &&
1599 	    sosp->so_error != EFBIG && sosp->so_error != ELOOP) {
1600 		error = sosp->so_error;
1601 		goto release;
1602 	}
1603 	if ((sosp->so_state & SS_ISCONNECTED) == 0)
1604 		goto release;
1605 
1606 	/* Calculate how many bytes can be copied now. */
1607 	len = so->so_rcv.sb_datacc;
1608 	if (so->so_splicemax) {
1609 		KASSERT(so->so_splicelen < so->so_splicemax);
1610 		if (so->so_splicemax <= so->so_splicelen + len) {
1611 			len = so->so_splicemax - so->so_splicelen;
1612 			maxreached = 1;
1613 		}
1614 	}
1615 	space = sbspace(sosp, &sosp->so_snd);
1616 	if (so->so_oobmark && so->so_oobmark < len &&
1617 	    so->so_oobmark < space + 1024)
1618 		space += 1024;
1619 	if (space <= 0) {
1620 		maxreached = 0;
1621 		goto release;
1622 	}
1623 	if (space < len) {
1624 		maxreached = 0;
1625 		if (space < sosp->so_snd.sb_lowat)
1626 			goto release;
1627 		len = space;
1628 	}
1629 	sosp->so_snd.sb_state |= SS_ISSENDING;
1630 
1631 	SBLASTRECORDCHK(&so->so_rcv, "somove 1");
1632 	SBLASTMBUFCHK(&so->so_rcv, "somove 1");
1633 	m = so->so_rcv.sb_mb;
1634 	if (m == NULL)
1635 		goto release;
1636 	nextrecord = m->m_nextpkt;
1637 
1638 	/* Drop address and control information not used with splicing. */
1639 	if (so->so_proto->pr_flags & PR_ADDR) {
1640 #ifdef DIAGNOSTIC
1641 		if (m->m_type != MT_SONAME)
1642 			panic("somove soname: so %p, so_type %d, m %p, "
1643 			    "m_type %d", so, so->so_type, m, m->m_type);
1644 #endif
1645 		m = m->m_next;
1646 	}
1647 	while (m && m->m_type == MT_CONTROL)
1648 		m = m->m_next;
1649 	if (m == NULL) {
1650 		sbdroprecord(so, &so->so_rcv);
1651 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1652 			pru_rcvd(so);
1653 		goto nextpkt;
1654 	}
1655 
1656 	/*
1657 	 * By splicing sockets connected to localhost, userland might create a
1658 	 * loop.  Dissolve splicing with error if loop is detected by counter.
1659 	 *
1660 	 * If we deal with looped broadcast/multicast packet we bail out with
1661 	 * no error to suppress splice termination.
1662 	 */
1663 	if ((m->m_flags & M_PKTHDR) &&
1664 	    ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) ||
1665 	    ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) {
1666 		error = ELOOP;
1667 		goto release;
1668 	}
1669 
1670 	if (so->so_proto->pr_flags & PR_ATOMIC) {
1671 		if ((m->m_flags & M_PKTHDR) == 0)
1672 			panic("somove !PKTHDR: so %p, so_type %d, m %p, "
1673 			    "m_type %d", so, so->so_type, m, m->m_type);
1674 		if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) {
1675 			error = EMSGSIZE;
1676 			goto release;
1677 		}
1678 		if (len < m->m_pkthdr.len)
1679 			goto release;
1680 		if (m->m_pkthdr.len < len) {
1681 			maxreached = 0;
1682 			len = m->m_pkthdr.len;
1683 		}
1684 		/*
1685 		 * Throw away the name mbuf after it has been assured
1686 		 * that the whole first record can be processed.
1687 		 */
1688 		m = so->so_rcv.sb_mb;
1689 		sbfree(so, &so->so_rcv, m);
1690 		so->so_rcv.sb_mb = m_free(m);
1691 		sbsync(&so->so_rcv, nextrecord);
1692 	}
1693 	/*
1694 	 * Throw away the control mbufs after it has been assured
1695 	 * that the whole first record can be processed.
1696 	 */
1697 	m = so->so_rcv.sb_mb;
1698 	while (m && m->m_type == MT_CONTROL) {
1699 		sbfree(so, &so->so_rcv, m);
1700 		so->so_rcv.sb_mb = m_free(m);
1701 		m = so->so_rcv.sb_mb;
1702 		sbsync(&so->so_rcv, nextrecord);
1703 	}
1704 
1705 	SBLASTRECORDCHK(&so->so_rcv, "somove 2");
1706 	SBLASTMBUFCHK(&so->so_rcv, "somove 2");
1707 
1708 	/* Take at most len mbufs out of receive buffer. */
1709 	for (off = 0, mp = &m; off <= len && *mp;
1710 	    off += (*mp)->m_len, mp = &(*mp)->m_next) {
1711 		u_long size = len - off;
1712 
1713 #ifdef DIAGNOSTIC
1714 		if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER)
1715 			panic("somove type: so %p, so_type %d, m %p, "
1716 			    "m_type %d", so, so->so_type, *mp, (*mp)->m_type);
1717 #endif
1718 		if ((*mp)->m_len > size) {
1719 			/*
1720 			 * Move only a partial mbuf at maximum splice length or
1721 			 * if the drain buffer is too small for this large mbuf.
1722 			 */
1723 			if (!maxreached && so->so_snd.sb_datacc > 0) {
1724 				len -= size;
1725 				break;
1726 			}
1727 			*mp = m_copym(so->so_rcv.sb_mb, 0, size, wait);
1728 			if (*mp == NULL) {
1729 				len -= size;
1730 				break;
1731 			}
1732 			so->so_rcv.sb_mb->m_data += size;
1733 			so->so_rcv.sb_mb->m_len -= size;
1734 			so->so_rcv.sb_cc -= size;
1735 			so->so_rcv.sb_datacc -= size;
1736 		} else {
1737 			*mp = so->so_rcv.sb_mb;
1738 			sbfree(so, &so->so_rcv, *mp);
1739 			so->so_rcv.sb_mb = (*mp)->m_next;
1740 			sbsync(&so->so_rcv, nextrecord);
1741 		}
1742 	}
1743 	*mp = NULL;
1744 
1745 	SBLASTRECORDCHK(&so->so_rcv, "somove 3");
1746 	SBLASTMBUFCHK(&so->so_rcv, "somove 3");
1747 	SBCHECK(so, &so->so_rcv);
1748 	if (m == NULL)
1749 		goto release;
1750 	m->m_nextpkt = NULL;
1751 	if (m->m_flags & M_PKTHDR) {
1752 		m_resethdr(m);
1753 		m->m_pkthdr.len = len;
1754 	}
1755 
1756 	/* Send window update to source peer as receive buffer has changed. */
1757 	if (so->so_proto->pr_flags & PR_WANTRCVD)
1758 		pru_rcvd(so);
1759 
1760 	/* Receive buffer did shrink by len bytes, adjust oob. */
1761 	mtx_enter(&so->so_rcv.sb_mtx);
1762 	rcvstate = so->so_rcv.sb_state;
1763 	so->so_rcv.sb_state &= ~SS_RCVATMARK;
1764 	oobmark = so->so_oobmark;
1765 	so->so_oobmark = oobmark > len ? oobmark - len : 0;
1766 	if (oobmark) {
1767 		if (oobmark == len)
1768 			so->so_rcv.sb_state |= SS_RCVATMARK;
1769 		if (oobmark >= len)
1770 			oobmark = 0;
1771 	}
1772 	mtx_leave(&so->so_rcv.sb_mtx);
1773 
1774 	/*
1775 	 * Handle oob data.  If any malloc fails, ignore error.
1776 	 * TCP urgent data is not very reliable anyway.
1777 	 */
1778 	while (((rcvstate & SS_RCVATMARK) || oobmark) &&
1779 	    (so->so_options & SO_OOBINLINE)) {
1780 		struct mbuf *o = NULL;
1781 
1782 		if (rcvstate & SS_RCVATMARK) {
1783 			o = m_get(wait, MT_DATA);
1784 			rcvstate &= ~SS_RCVATMARK;
1785 		} else if (oobmark) {
1786 			o = m_split(m, oobmark, wait);
1787 			if (o) {
1788 				error = pru_send(sosp, m, NULL, NULL);
1789 				if (error) {
1790 					if (sosp->so_snd.sb_state &
1791 					    SS_CANTSENDMORE)
1792 						error = EPIPE;
1793 					m_freem(o);
1794 					goto release;
1795 				}
1796 				len -= oobmark;
1797 				so->so_splicelen += oobmark;
1798 				m = o;
1799 				o = m_get(wait, MT_DATA);
1800 			}
1801 			oobmark = 0;
1802 		}
1803 		if (o) {
1804 			o->m_len = 1;
1805 			*mtod(o, caddr_t) = *mtod(m, caddr_t);
1806 			error = pru_sendoob(sosp, o, NULL, NULL);
1807 			if (error) {
1808 				if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1809 					error = EPIPE;
1810 				m_freem(m);
1811 				goto release;
1812 			}
1813 			len -= 1;
1814 			so->so_splicelen += 1;
1815 			if (oobmark) {
1816 				oobmark -= 1;
1817 				if (oobmark == 0)
1818 					rcvstate |= SS_RCVATMARK;
1819 			}
1820 			m_adj(m, 1);
1821 		}
1822 	}
1823 
1824 	/* Append all remaining data to drain socket. */
1825 	if (so->so_rcv.sb_cc == 0 || maxreached)
1826 		sosp->so_snd.sb_state &= ~SS_ISSENDING;
1827 	error = pru_send(sosp, m, NULL, NULL);
1828 	if (error) {
1829 		if (sosp->so_snd.sb_state & SS_CANTSENDMORE)
1830 			error = EPIPE;
1831 		goto release;
1832 	}
1833 	so->so_splicelen += len;
1834 
1835 	/* Move several packets if possible. */
1836 	if (!maxreached && nextrecord)
1837 		goto nextpkt;
1838 
1839  release:
1840 	sosp->so_snd.sb_state &= ~SS_ISSENDING;
1841 	if (!error && maxreached && so->so_splicemax == so->so_splicelen)
1842 		error = EFBIG;
1843 	if (error)
1844 		so->so_error = error;
1845 	if (((so->so_rcv.sb_state & SS_CANTRCVMORE) &&
1846 	    so->so_rcv.sb_cc == 0) ||
1847 	    (sosp->so_snd.sb_state & SS_CANTSENDMORE) ||
1848 	    maxreached || error) {
1849 		sounsplice(so, sosp, 0);
1850 		return (0);
1851 	}
1852 	if (timerisset(&so->so_idletv))
1853 		timeout_add_tv(&so->so_idleto, &so->so_idletv);
1854 	return (1);
1855 }
1856 
1857 #endif /* SOCKET_SPLICE */
1858 
1859 void
1860 sorwakeup(struct socket *so)
1861 {
1862 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
1863 		soassertlocked_readonly(so);
1864 
1865 #ifdef SOCKET_SPLICE
1866 	if (so->so_rcv.sb_flags & SB_SPLICE) {
1867 		/*
1868 		 * TCP has a sendbuffer that can handle multiple packets
1869 		 * at once.  So queue the stream a bit to accumulate data.
1870 		 * The sosplice thread will call somove() later and send
1871 		 * the packets calling tcp_output() only once.
1872 		 * In the UDP case, send out the packets immediately.
1873 		 * Using a thread would make things slower.
1874 		 */
1875 		if (so->so_proto->pr_flags & PR_WANTRCVD)
1876 			task_add(sosplice_taskq, &so->so_splicetask);
1877 		else
1878 			somove(so, M_DONTWAIT);
1879 	}
1880 	if (isspliced(so))
1881 		return;
1882 #endif
1883 	sowakeup(so, &so->so_rcv);
1884 	if (so->so_upcall)
1885 		(*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT);
1886 }
1887 
1888 void
1889 sowwakeup(struct socket *so)
1890 {
1891 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
1892 		soassertlocked_readonly(so);
1893 
1894 #ifdef SOCKET_SPLICE
1895 	if (so->so_snd.sb_flags & SB_SPLICE)
1896 		task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask);
1897 	if (issplicedback(so))
1898 		return;
1899 #endif
1900 	sowakeup(so, &so->so_snd);
1901 }
1902 
1903 int
1904 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1905 {
1906 	int error = 0;
1907 
1908 	if (level != SOL_SOCKET) {
1909 		if (so->so_proto->pr_ctloutput) {
1910 			solock(so);
1911 			error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so,
1912 			    level, optname, m);
1913 			sounlock(so);
1914 			return (error);
1915 		}
1916 		error = ENOPROTOOPT;
1917 	} else {
1918 		switch (optname) {
1919 
1920 		case SO_LINGER:
1921 			if (m == NULL || m->m_len != sizeof (struct linger) ||
1922 			    mtod(m, struct linger *)->l_linger < 0 ||
1923 			    mtod(m, struct linger *)->l_linger > SHRT_MAX)
1924 				return (EINVAL);
1925 
1926 			solock(so);
1927 			so->so_linger = mtod(m, struct linger *)->l_linger;
1928 			if (*mtod(m, int *))
1929 				so->so_options |= optname;
1930 			else
1931 				so->so_options &= ~optname;
1932 			sounlock(so);
1933 
1934 			break;
1935 		case SO_BINDANY:
1936 			if ((error = suser(curproc)) != 0)	/* XXX */
1937 				return (error);
1938 			/* FALLTHROUGH */
1939 
1940 		case SO_DEBUG:
1941 		case SO_KEEPALIVE:
1942 		case SO_USELOOPBACK:
1943 		case SO_BROADCAST:
1944 		case SO_REUSEADDR:
1945 		case SO_REUSEPORT:
1946 		case SO_OOBINLINE:
1947 		case SO_TIMESTAMP:
1948 		case SO_ZEROIZE:
1949 			if (m == NULL || m->m_len < sizeof (int))
1950 				return (EINVAL);
1951 
1952 			solock(so);
1953 			if (*mtod(m, int *))
1954 				so->so_options |= optname;
1955 			else
1956 				so->so_options &= ~optname;
1957 			sounlock(so);
1958 
1959 			break;
1960 		case SO_DONTROUTE:
1961 			if (m == NULL || m->m_len < sizeof (int))
1962 				return (EINVAL);
1963 			if (*mtod(m, int *))
1964 				error = EOPNOTSUPP;
1965 			break;
1966 
1967 		case SO_SNDBUF:
1968 		case SO_RCVBUF:
1969 		case SO_SNDLOWAT:
1970 		case SO_RCVLOWAT:
1971 		    {
1972 			struct sockbuf *sb = (optname == SO_SNDBUF ||
1973 			    optname == SO_SNDLOWAT ?
1974 			    &so->so_snd : &so->so_rcv);
1975 			u_long cnt;
1976 
1977 			if (m == NULL || m->m_len < sizeof (int))
1978 				return (EINVAL);
1979 			cnt = *mtod(m, int *);
1980 			if ((long)cnt <= 0)
1981 				cnt = 1;
1982 
1983 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
1984 				solock(so);
1985 			mtx_enter(&sb->sb_mtx);
1986 
1987 			switch (optname) {
1988 			case SO_SNDBUF:
1989 			case SO_RCVBUF:
1990 				if (sb->sb_state &
1991 				    (SS_CANTSENDMORE | SS_CANTRCVMORE)) {
1992 					error = EINVAL;
1993 					break;
1994 				}
1995 				if (sbcheckreserve(cnt, sb->sb_wat) ||
1996 				    sbreserve(so, sb, cnt)) {
1997 					error = ENOBUFS;
1998 					break;
1999 				}
2000 				sb->sb_wat = cnt;
2001 				break;
2002 			case SO_SNDLOWAT:
2003 			case SO_RCVLOWAT:
2004 				sb->sb_lowat = (cnt > sb->sb_hiwat) ?
2005 				    sb->sb_hiwat : cnt;
2006 				break;
2007 			}
2008 
2009 			mtx_leave(&sb->sb_mtx);
2010 			if (((sb->sb_flags & SB_MTXLOCK) == 0))
2011 				sounlock(so);
2012 
2013 			break;
2014 		    }
2015 
2016 		case SO_SNDTIMEO:
2017 		case SO_RCVTIMEO:
2018 		    {
2019 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2020 			    &so->so_snd : &so->so_rcv);
2021 			struct timeval tv;
2022 			uint64_t nsecs;
2023 
2024 			if (m == NULL || m->m_len < sizeof (tv))
2025 				return (EINVAL);
2026 			memcpy(&tv, mtod(m, struct timeval *), sizeof tv);
2027 			if (!timerisvalid(&tv))
2028 				return (EINVAL);
2029 			nsecs = TIMEVAL_TO_NSEC(&tv);
2030 			if (nsecs == UINT64_MAX)
2031 				return (EDOM);
2032 			if (nsecs == 0)
2033 				nsecs = INFSLP;
2034 
2035 			mtx_enter(&sb->sb_mtx);
2036 			sb->sb_timeo_nsecs = nsecs;
2037 			mtx_leave(&sb->sb_mtx);
2038 			break;
2039 		    }
2040 
2041 		case SO_RTABLE:
2042 			if (so->so_proto->pr_domain &&
2043 			    so->so_proto->pr_domain->dom_protosw &&
2044 			    so->so_proto->pr_ctloutput) {
2045 				const struct domain *dom =
2046 				    so->so_proto->pr_domain;
2047 
2048 				level = dom->dom_protosw->pr_protocol;
2049 				solock(so);
2050 				error = (*so->so_proto->pr_ctloutput)
2051 				    (PRCO_SETOPT, so, level, optname, m);
2052 				sounlock(so);
2053 			} else
2054 				error = ENOPROTOOPT;
2055 			break;
2056 #ifdef SOCKET_SPLICE
2057 		case SO_SPLICE:
2058 			if (m == NULL) {
2059 				error = sosplice(so, -1, 0, NULL);
2060 			} else if (m->m_len < sizeof(int)) {
2061 				error = EINVAL;
2062 			} else if (m->m_len < sizeof(struct splice)) {
2063 				error = sosplice(so, *mtod(m, int *), 0, NULL);
2064 			} else {
2065 				error = sosplice(so,
2066 				    mtod(m, struct splice *)->sp_fd,
2067 				    mtod(m, struct splice *)->sp_max,
2068 				   &mtod(m, struct splice *)->sp_idle);
2069 			}
2070 			break;
2071 #endif /* SOCKET_SPLICE */
2072 
2073 		default:
2074 			error = ENOPROTOOPT;
2075 			break;
2076 		}
2077 	}
2078 
2079 	return (error);
2080 }
2081 
2082 int
2083 sogetopt(struct socket *so, int level, int optname, struct mbuf *m)
2084 {
2085 	int error = 0;
2086 
2087 	if (level != SOL_SOCKET) {
2088 		if (so->so_proto->pr_ctloutput) {
2089 			m->m_len = 0;
2090 
2091 			solock(so);
2092 			error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so,
2093 			    level, optname, m);
2094 			sounlock(so);
2095 			return (error);
2096 		} else
2097 			return (ENOPROTOOPT);
2098 	} else {
2099 		m->m_len = sizeof (int);
2100 
2101 		switch (optname) {
2102 
2103 		case SO_LINGER:
2104 			m->m_len = sizeof (struct linger);
2105 			solock_shared(so);
2106 			mtod(m, struct linger *)->l_onoff =
2107 				so->so_options & SO_LINGER;
2108 			mtod(m, struct linger *)->l_linger = so->so_linger;
2109 			sounlock_shared(so);
2110 			break;
2111 
2112 		case SO_BINDANY:
2113 		case SO_USELOOPBACK:
2114 		case SO_DEBUG:
2115 		case SO_KEEPALIVE:
2116 		case SO_REUSEADDR:
2117 		case SO_REUSEPORT:
2118 		case SO_BROADCAST:
2119 		case SO_OOBINLINE:
2120 		case SO_ACCEPTCONN:
2121 		case SO_TIMESTAMP:
2122 		case SO_ZEROIZE:
2123 			*mtod(m, int *) = so->so_options & optname;
2124 			break;
2125 
2126 		case SO_DONTROUTE:
2127 			*mtod(m, int *) = 0;
2128 			break;
2129 
2130 		case SO_TYPE:
2131 			*mtod(m, int *) = so->so_type;
2132 			break;
2133 
2134 		case SO_ERROR:
2135 			solock(so);
2136 			*mtod(m, int *) = so->so_error;
2137 			so->so_error = 0;
2138 			sounlock(so);
2139 
2140 			break;
2141 
2142 		case SO_DOMAIN:
2143 			*mtod(m, int *) = so->so_proto->pr_domain->dom_family;
2144 			break;
2145 
2146 		case SO_PROTOCOL:
2147 			*mtod(m, int *) = so->so_proto->pr_protocol;
2148 			break;
2149 
2150 		case SO_SNDBUF:
2151 			*mtod(m, int *) = so->so_snd.sb_hiwat;
2152 			break;
2153 
2154 		case SO_RCVBUF:
2155 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
2156 			break;
2157 
2158 		case SO_SNDLOWAT:
2159 			*mtod(m, int *) = so->so_snd.sb_lowat;
2160 			break;
2161 
2162 		case SO_RCVLOWAT:
2163 			*mtod(m, int *) = so->so_rcv.sb_lowat;
2164 			break;
2165 
2166 		case SO_SNDTIMEO:
2167 		case SO_RCVTIMEO:
2168 		    {
2169 			struct sockbuf *sb = (optname == SO_SNDTIMEO ?
2170 			    &so->so_snd : &so->so_rcv);
2171 			struct timeval tv;
2172 			uint64_t nsecs;
2173 
2174 			mtx_enter(&sb->sb_mtx);
2175 			nsecs = sb->sb_timeo_nsecs;
2176 			mtx_leave(&sb->sb_mtx);
2177 
2178 			m->m_len = sizeof(struct timeval);
2179 			memset(&tv, 0, sizeof(tv));
2180 			if (nsecs != INFSLP)
2181 				NSEC_TO_TIMEVAL(nsecs, &tv);
2182 			memcpy(mtod(m, struct timeval *), &tv, sizeof tv);
2183 			break;
2184 		    }
2185 
2186 		case SO_RTABLE:
2187 			if (so->so_proto->pr_domain &&
2188 			    so->so_proto->pr_domain->dom_protosw &&
2189 			    so->so_proto->pr_ctloutput) {
2190 				const struct domain *dom =
2191 				    so->so_proto->pr_domain;
2192 
2193 				level = dom->dom_protosw->pr_protocol;
2194 				solock(so);
2195 				error = (*so->so_proto->pr_ctloutput)
2196 				    (PRCO_GETOPT, so, level, optname, m);
2197 				sounlock(so);
2198 				if (error)
2199 					return (error);
2200 				break;
2201 			}
2202 			return (ENOPROTOOPT);
2203 
2204 #ifdef SOCKET_SPLICE
2205 		case SO_SPLICE:
2206 		    {
2207 			off_t len;
2208 
2209 			m->m_len = sizeof(off_t);
2210 			solock_shared(so);
2211 			len = so->so_sp ? so->so_sp->ssp_len : 0;
2212 			sounlock_shared(so);
2213 			memcpy(mtod(m, off_t *), &len, sizeof(off_t));
2214 			break;
2215 		    }
2216 #endif /* SOCKET_SPLICE */
2217 
2218 		case SO_PEERCRED:
2219 			if (so->so_proto->pr_protocol == AF_UNIX) {
2220 				struct unpcb *unp = sotounpcb(so);
2221 
2222 				solock(so);
2223 				if (unp->unp_flags & UNP_FEIDS) {
2224 					m->m_len = sizeof(unp->unp_connid);
2225 					memcpy(mtod(m, caddr_t),
2226 					    &(unp->unp_connid), m->m_len);
2227 					sounlock(so);
2228 					break;
2229 				}
2230 				sounlock(so);
2231 
2232 				return (ENOTCONN);
2233 			}
2234 			return (EOPNOTSUPP);
2235 
2236 		default:
2237 			return (ENOPROTOOPT);
2238 		}
2239 		return (0);
2240 	}
2241 }
2242 
2243 void
2244 sohasoutofband(struct socket *so)
2245 {
2246 	pgsigio(&so->so_sigio, SIGURG, 0);
2247 	knote(&so->so_rcv.sb_klist, 0);
2248 }
2249 
2250 void
2251 sofilt_lock(struct socket *so, struct sockbuf *sb)
2252 {
2253 	switch (so->so_proto->pr_domain->dom_family) {
2254 	case PF_INET:
2255 	case PF_INET6:
2256 		NET_LOCK_SHARED();
2257 		break;
2258 	default:
2259 		rw_enter_write(&so->so_lock);
2260 		break;
2261 	}
2262 
2263 	mtx_enter(&sb->sb_mtx);
2264 }
2265 
2266 void
2267 sofilt_unlock(struct socket *so, struct sockbuf *sb)
2268 {
2269 	mtx_leave(&sb->sb_mtx);
2270 
2271 	switch (so->so_proto->pr_domain->dom_family) {
2272 	case PF_INET:
2273 	case PF_INET6:
2274 		NET_UNLOCK_SHARED();
2275 		break;
2276 	default:
2277 		rw_exit_write(&so->so_lock);
2278 		break;
2279 	}
2280 }
2281 
2282 int
2283 soo_kqfilter(struct file *fp, struct knote *kn)
2284 {
2285 	struct socket *so = kn->kn_fp->f_data;
2286 	struct sockbuf *sb;
2287 
2288 	switch (kn->kn_filter) {
2289 	case EVFILT_READ:
2290 		kn->kn_fop = &soread_filtops;
2291 		sb = &so->so_rcv;
2292 		break;
2293 	case EVFILT_WRITE:
2294 		kn->kn_fop = &sowrite_filtops;
2295 		sb = &so->so_snd;
2296 		break;
2297 	case EVFILT_EXCEPT:
2298 		kn->kn_fop = &soexcept_filtops;
2299 		sb = &so->so_rcv;
2300 		break;
2301 	default:
2302 		return (EINVAL);
2303 	}
2304 
2305 	klist_insert(&sb->sb_klist, kn);
2306 
2307 	return (0);
2308 }
2309 
2310 void
2311 filt_sordetach(struct knote *kn)
2312 {
2313 	struct socket *so = kn->kn_fp->f_data;
2314 
2315 	klist_remove(&so->so_rcv.sb_klist, kn);
2316 }
2317 
2318 int
2319 filt_soread(struct knote *kn, long hint)
2320 {
2321 	struct socket *so = kn->kn_fp->f_data;
2322 	int rv = 0;
2323 
2324 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2325 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2326 		soassertlocked_readonly(so);
2327 
2328 	if (so->so_options & SO_ACCEPTCONN) {
2329 		if (so->so_rcv.sb_flags & SB_MTXLOCK)
2330 			soassertlocked_readonly(so);
2331 
2332 		kn->kn_data = so->so_qlen;
2333 		rv = (kn->kn_data != 0);
2334 
2335 		if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) {
2336 			if (so->so_state & SS_ISDISCONNECTED) {
2337 				kn->kn_flags |= __EV_HUP;
2338 				rv = 1;
2339 			} else {
2340 				rv = soreadable(so);
2341 			}
2342 		}
2343 
2344 		return rv;
2345 	}
2346 
2347 	kn->kn_data = so->so_rcv.sb_cc;
2348 #ifdef SOCKET_SPLICE
2349 	if (isspliced(so)) {
2350 		rv = 0;
2351 	} else
2352 #endif /* SOCKET_SPLICE */
2353 	if (so->so_rcv.sb_state & SS_CANTRCVMORE) {
2354 		kn->kn_flags |= EV_EOF;
2355 		if (kn->kn_flags & __EV_POLL) {
2356 			if (so->so_state & SS_ISDISCONNECTED)
2357 				kn->kn_flags |= __EV_HUP;
2358 		}
2359 		kn->kn_fflags = so->so_error;
2360 		rv = 1;
2361 	} else if (so->so_error) {
2362 		rv = 1;
2363 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2364 		rv = (kn->kn_data >= kn->kn_sdata);
2365 	} else {
2366 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2367 	}
2368 
2369 	return rv;
2370 }
2371 
2372 void
2373 filt_sowdetach(struct knote *kn)
2374 {
2375 	struct socket *so = kn->kn_fp->f_data;
2376 
2377 	klist_remove(&so->so_snd.sb_klist, kn);
2378 }
2379 
2380 int
2381 filt_sowrite(struct knote *kn, long hint)
2382 {
2383 	struct socket *so = kn->kn_fp->f_data;
2384 	int rv;
2385 
2386 	MUTEX_ASSERT_LOCKED(&so->so_snd.sb_mtx);
2387 	if ((so->so_snd.sb_flags & SB_MTXLOCK) == 0)
2388 		soassertlocked_readonly(so);
2389 
2390 	kn->kn_data = sbspace(so, &so->so_snd);
2391 	if (so->so_snd.sb_state & SS_CANTSENDMORE) {
2392 		kn->kn_flags |= EV_EOF;
2393 		if (kn->kn_flags & __EV_POLL) {
2394 			if (so->so_state & SS_ISDISCONNECTED)
2395 				kn->kn_flags |= __EV_HUP;
2396 		}
2397 		kn->kn_fflags = so->so_error;
2398 		rv = 1;
2399 	} else if (so->so_error) {
2400 		rv = 1;
2401 	} else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2402 	    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
2403 		rv = 0;
2404 	} else if (kn->kn_sfflags & NOTE_LOWAT) {
2405 		rv = (kn->kn_data >= kn->kn_sdata);
2406 	} else {
2407 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
2408 	}
2409 
2410 	return (rv);
2411 }
2412 
2413 int
2414 filt_soexcept(struct knote *kn, long hint)
2415 {
2416 	struct socket *so = kn->kn_fp->f_data;
2417 	int rv = 0;
2418 
2419 	MUTEX_ASSERT_LOCKED(&so->so_rcv.sb_mtx);
2420 	if ((so->so_rcv.sb_flags & SB_MTXLOCK) == 0)
2421 		soassertlocked_readonly(so);
2422 
2423 #ifdef SOCKET_SPLICE
2424 	if (isspliced(so)) {
2425 		rv = 0;
2426 	} else
2427 #endif /* SOCKET_SPLICE */
2428 	if (kn->kn_sfflags & NOTE_OOB) {
2429 		if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) {
2430 			kn->kn_fflags |= NOTE_OOB;
2431 			kn->kn_data -= so->so_oobmark;
2432 			rv = 1;
2433 		}
2434 	}
2435 
2436 	if (kn->kn_flags & __EV_POLL) {
2437 		if (so->so_state & SS_ISDISCONNECTED) {
2438 			kn->kn_flags |= __EV_HUP;
2439 			rv = 1;
2440 		}
2441 	}
2442 
2443 	return rv;
2444 }
2445 
2446 int
2447 filt_sowmodify(struct kevent *kev, struct knote *kn)
2448 {
2449 	struct socket *so = kn->kn_fp->f_data;
2450 	int rv;
2451 
2452 	sofilt_lock(so, &so->so_snd);
2453 	rv = knote_modify(kev, kn);
2454 	sofilt_unlock(so, &so->so_snd);
2455 
2456 	return (rv);
2457 }
2458 
2459 int
2460 filt_sowprocess(struct knote *kn, struct kevent *kev)
2461 {
2462 	struct socket *so = kn->kn_fp->f_data;
2463 	int rv;
2464 
2465 	sofilt_lock(so, &so->so_snd);
2466 	rv = knote_process(kn, kev);
2467 	sofilt_unlock(so, &so->so_snd);
2468 
2469 	return (rv);
2470 }
2471 
2472 int
2473 filt_sormodify(struct kevent *kev, struct knote *kn)
2474 {
2475 	struct socket *so = kn->kn_fp->f_data;
2476 	int rv;
2477 
2478 	sofilt_lock(so, &so->so_rcv);
2479 	rv = knote_modify(kev, kn);
2480 	sofilt_unlock(so, &so->so_rcv);
2481 
2482 	return (rv);
2483 }
2484 
2485 int
2486 filt_sorprocess(struct knote *kn, struct kevent *kev)
2487 {
2488 	struct socket *so = kn->kn_fp->f_data;
2489 	int rv;
2490 
2491 	sofilt_lock(so, &so->so_rcv);
2492 	rv = knote_process(kn, kev);
2493 	sofilt_unlock(so, &so->so_rcv);
2494 
2495 	return (rv);
2496 }
2497 
2498 #ifdef DDB
2499 void
2500 sobuf_print(struct sockbuf *,
2501     int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))));
2502 
2503 void
2504 sobuf_print(struct sockbuf *sb,
2505     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2506 {
2507 	(*pr)("\tsb_cc: %lu\n", sb->sb_cc);
2508 	(*pr)("\tsb_datacc: %lu\n", sb->sb_datacc);
2509 	(*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat);
2510 	(*pr)("\tsb_wat: %lu\n", sb->sb_wat);
2511 	(*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt);
2512 	(*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax);
2513 	(*pr)("\tsb_lowat: %ld\n", sb->sb_lowat);
2514 	(*pr)("\tsb_mb: %p\n", sb->sb_mb);
2515 	(*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail);
2516 	(*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord);
2517 	(*pr)("\tsb_sel: ...\n");
2518 	(*pr)("\tsb_flags: %04x\n", sb->sb_flags);
2519 	(*pr)("\tsb_state: %04x\n", sb->sb_state);
2520 	(*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs);
2521 }
2522 
2523 void
2524 so_print(void *v,
2525     int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
2526 {
2527 	struct socket *so = v;
2528 
2529 	(*pr)("socket %p\n", so);
2530 	(*pr)("so_type: %i\n", so->so_type);
2531 	(*pr)("so_options: 0x%04x\n", so->so_options); /* %b */
2532 	(*pr)("so_linger: %i\n", so->so_linger);
2533 	(*pr)("so_state: 0x%04x\n", so->so_state);
2534 	(*pr)("so_pcb: %p\n", so->so_pcb);
2535 	(*pr)("so_proto: %p\n", so->so_proto);
2536 	(*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio);
2537 
2538 	(*pr)("so_head: %p\n", so->so_head);
2539 	(*pr)("so_onq: %p\n", so->so_onq);
2540 	(*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0));
2541 	(*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q));
2542 	(*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe));
2543 	(*pr)("so_q0len: %i\n", so->so_q0len);
2544 	(*pr)("so_qlen: %i\n", so->so_qlen);
2545 	(*pr)("so_qlimit: %i\n", so->so_qlimit);
2546 	(*pr)("so_timeo: %i\n", so->so_timeo);
2547 	(*pr)("so_obmark: %lu\n", so->so_oobmark);
2548 
2549 	(*pr)("so_sp: %p\n", so->so_sp);
2550 	if (so->so_sp != NULL) {
2551 		(*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket);
2552 		(*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback);
2553 		(*pr)("\tssp_len: %lld\n",
2554 		    (unsigned long long)so->so_sp->ssp_len);
2555 		(*pr)("\tssp_max: %lld\n",
2556 		    (unsigned long long)so->so_sp->ssp_max);
2557 		(*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec,
2558 		    so->so_sp->ssp_idletv.tv_usec);
2559 		(*pr)("\tssp_idleto: %spending (@%i)\n",
2560 		    timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ",
2561 		    so->so_sp->ssp_idleto.to_time);
2562 	}
2563 
2564 	(*pr)("so_rcv:\n");
2565 	sobuf_print(&so->so_rcv, pr);
2566 	(*pr)("so_snd:\n");
2567 	sobuf_print(&so->so_snd, pr);
2568 
2569 	(*pr)("so_upcall: %p so_upcallarg: %p\n",
2570 	    so->so_upcall, so->so_upcallarg);
2571 
2572 	(*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid);
2573 	(*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid);
2574 	(*pr)("so_cpid: %d\n", so->so_cpid);
2575 }
2576 #endif
2577