1 /* $OpenBSD: uipc_socket.c,v 1.309 2023/08/08 22:07:25 mvs Exp $ */ 2 /* $NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1988, 1990, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/file.h> 39 #include <sys/filedesc.h> 40 #include <sys/malloc.h> 41 #include <sys/mbuf.h> 42 #include <sys/domain.h> 43 #include <sys/event.h> 44 #include <sys/protosw.h> 45 #include <sys/socket.h> 46 #include <sys/unpcb.h> 47 #include <sys/socketvar.h> 48 #include <sys/signalvar.h> 49 #include <sys/pool.h> 50 #include <sys/atomic.h> 51 #include <sys/rwlock.h> 52 #include <sys/time.h> 53 #include <sys/refcnt.h> 54 55 #ifdef DDB 56 #include <machine/db_machdep.h> 57 #endif 58 59 void sbsync(struct sockbuf *, struct mbuf *); 60 61 int sosplice(struct socket *, int, off_t, struct timeval *); 62 void sounsplice(struct socket *, struct socket *, int); 63 void soidle(void *); 64 void sotask(void *); 65 void soreaper(void *); 66 void soput(void *); 67 int somove(struct socket *, int); 68 void sorflush(struct socket *); 69 70 void filt_sordetach(struct knote *kn); 71 int filt_soread(struct knote *kn, long hint); 72 void filt_sowdetach(struct knote *kn); 73 int filt_sowrite(struct knote *kn, long hint); 74 int filt_soexcept(struct knote *kn, long hint); 75 int filt_solisten(struct knote *kn, long hint); 76 int filt_somodify(struct kevent *kev, struct knote *kn); 77 int filt_soprocess(struct knote *kn, struct kevent *kev); 78 79 const struct filterops solisten_filtops = { 80 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 81 .f_attach = NULL, 82 .f_detach = filt_sordetach, 83 .f_event = filt_solisten, 84 .f_modify = filt_somodify, 85 .f_process = filt_soprocess, 86 }; 87 88 const struct filterops soread_filtops = { 89 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 90 .f_attach = NULL, 91 .f_detach = filt_sordetach, 92 .f_event = filt_soread, 93 .f_modify = filt_somodify, 94 .f_process = filt_soprocess, 95 }; 96 97 const struct filterops sowrite_filtops = { 98 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 99 .f_attach = NULL, 100 .f_detach = filt_sowdetach, 101 .f_event = filt_sowrite, 102 .f_modify = filt_somodify, 103 .f_process = filt_soprocess, 104 }; 105 106 const struct filterops soexcept_filtops = { 107 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 108 .f_attach = NULL, 109 .f_detach = filt_sordetach, 110 .f_event = filt_soexcept, 111 .f_modify = filt_somodify, 112 .f_process = filt_soprocess, 113 }; 114 115 void klist_soassertlk(void *); 116 int klist_solock(void *); 117 void klist_sounlock(void *, int); 118 119 const struct klistops socket_klistops = { 120 .klo_assertlk = klist_soassertlk, 121 .klo_lock = klist_solock, 122 .klo_unlock = klist_sounlock, 123 }; 124 125 #ifndef SOMINCONN 126 #define SOMINCONN 80 127 #endif /* SOMINCONN */ 128 129 int somaxconn = SOMAXCONN; 130 int sominconn = SOMINCONN; 131 132 struct pool socket_pool; 133 #ifdef SOCKET_SPLICE 134 struct pool sosplice_pool; 135 struct taskq *sosplice_taskq; 136 struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk"); 137 #endif 138 139 void 140 soinit(void) 141 { 142 pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0, 143 "sockpl", NULL); 144 #ifdef SOCKET_SPLICE 145 pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0, 146 "sosppl", NULL); 147 #endif 148 } 149 150 struct socket * 151 soalloc(int wait) 152 { 153 struct socket *so; 154 155 so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) | 156 PR_ZERO); 157 if (so == NULL) 158 return (NULL); 159 rw_init_flags(&so->so_lock, "solock", RWL_DUPOK); 160 refcnt_init(&so->so_refcnt); 161 klist_init(&so->so_rcv.sb_klist, &socket_klistops, so); 162 klist_init(&so->so_snd.sb_klist, &socket_klistops, so); 163 sigio_init(&so->so_sigio); 164 TAILQ_INIT(&so->so_q0); 165 TAILQ_INIT(&so->so_q); 166 167 return (so); 168 } 169 170 /* 171 * Socket operation routines. 172 * These routines are called by the routines in 173 * sys_socket.c or from a system process, and 174 * implement the semantics of socket operations by 175 * switching out to the protocol specific routines. 176 */ 177 int 178 socreate(int dom, struct socket **aso, int type, int proto) 179 { 180 struct proc *p = curproc; /* XXX */ 181 const struct protosw *prp; 182 struct socket *so; 183 int error; 184 185 if (proto) 186 prp = pffindproto(dom, proto, type); 187 else 188 prp = pffindtype(dom, type); 189 if (prp == NULL || prp->pr_usrreqs == NULL) 190 return (EPROTONOSUPPORT); 191 if (prp->pr_type != type) 192 return (EPROTOTYPE); 193 so = soalloc(M_WAIT); 194 so->so_type = type; 195 if (suser(p) == 0) 196 so->so_state = SS_PRIV; 197 so->so_ruid = p->p_ucred->cr_ruid; 198 so->so_euid = p->p_ucred->cr_uid; 199 so->so_rgid = p->p_ucred->cr_rgid; 200 so->so_egid = p->p_ucred->cr_gid; 201 so->so_cpid = p->p_p->ps_pid; 202 so->so_proto = prp; 203 so->so_snd.sb_timeo_nsecs = INFSLP; 204 so->so_rcv.sb_timeo_nsecs = INFSLP; 205 206 solock(so); 207 error = pru_attach(so, proto, M_WAIT); 208 if (error) { 209 so->so_state |= SS_NOFDREF; 210 /* sofree() calls sounlock(). */ 211 sofree(so, 0); 212 return (error); 213 } 214 sounlock(so); 215 *aso = so; 216 return (0); 217 } 218 219 int 220 sobind(struct socket *so, struct mbuf *nam, struct proc *p) 221 { 222 soassertlocked(so); 223 return pru_bind(so, nam, p); 224 } 225 226 int 227 solisten(struct socket *so, int backlog) 228 { 229 int error; 230 231 soassertlocked(so); 232 233 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING)) 234 return (EINVAL); 235 #ifdef SOCKET_SPLICE 236 if (isspliced(so) || issplicedback(so)) 237 return (EOPNOTSUPP); 238 #endif /* SOCKET_SPLICE */ 239 error = pru_listen(so); 240 if (error) 241 return (error); 242 if (TAILQ_FIRST(&so->so_q) == NULL) 243 so->so_options |= SO_ACCEPTCONN; 244 if (backlog < 0 || backlog > somaxconn) 245 backlog = somaxconn; 246 if (backlog < sominconn) 247 backlog = sominconn; 248 so->so_qlimit = backlog; 249 return (0); 250 } 251 252 #define SOSP_FREEING_READ 1 253 #define SOSP_FREEING_WRITE 2 254 void 255 sofree(struct socket *so, int keep_lock) 256 { 257 int persocket = solock_persocket(so); 258 259 soassertlocked(so); 260 261 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 262 if (!keep_lock) 263 sounlock(so); 264 return; 265 } 266 if (so->so_head) { 267 struct socket *head = so->so_head; 268 269 /* 270 * We must not decommission a socket that's on the accept(2) 271 * queue. If we do, then accept(2) may hang after select(2) 272 * indicated that the listening socket was ready. 273 */ 274 if (so->so_onq == &head->so_q) { 275 if (!keep_lock) 276 sounlock(so); 277 return; 278 } 279 280 if (persocket) { 281 /* 282 * Concurrent close of `head' could 283 * abort `so' due to re-lock. 284 */ 285 soref(so); 286 soref(head); 287 sounlock(so); 288 solock(head); 289 solock(so); 290 291 if (so->so_onq != &head->so_q0) { 292 sounlock(head); 293 sounlock(so); 294 sorele(head); 295 sorele(so); 296 return; 297 } 298 299 sorele(head); 300 sorele(so); 301 } 302 303 soqremque(so, 0); 304 305 if (persocket) 306 sounlock(head); 307 } 308 309 if (persocket) { 310 sounlock(so); 311 refcnt_finalize(&so->so_refcnt, "sofinal"); 312 solock(so); 313 } 314 315 sigio_free(&so->so_sigio); 316 klist_free(&so->so_rcv.sb_klist); 317 klist_free(&so->so_snd.sb_klist); 318 #ifdef SOCKET_SPLICE 319 if (issplicedback(so)) { 320 int freeing = SOSP_FREEING_WRITE; 321 322 if (so->so_sp->ssp_soback == so) 323 freeing |= SOSP_FREEING_READ; 324 sounsplice(so->so_sp->ssp_soback, so, freeing); 325 } 326 if (isspliced(so)) { 327 int freeing = SOSP_FREEING_READ; 328 329 if (so == so->so_sp->ssp_socket) 330 freeing |= SOSP_FREEING_WRITE; 331 sounsplice(so, so->so_sp->ssp_socket, freeing); 332 } 333 #endif /* SOCKET_SPLICE */ 334 sbrelease(so, &so->so_snd); 335 sorflush(so); 336 if (!keep_lock) 337 sounlock(so); 338 #ifdef SOCKET_SPLICE 339 if (so->so_sp) { 340 /* Reuse splice idle, sounsplice() has been called before. */ 341 timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so); 342 timeout_add(&so->so_sp->ssp_idleto, 0); 343 } else 344 #endif /* SOCKET_SPLICE */ 345 { 346 pool_put(&socket_pool, so); 347 } 348 } 349 350 static inline uint64_t 351 solinger_nsec(struct socket *so) 352 { 353 if (so->so_linger == 0) 354 return INFSLP; 355 356 return SEC_TO_NSEC(so->so_linger); 357 } 358 359 /* 360 * Close a socket on last file table reference removal. 361 * Initiate disconnect if connected. 362 * Free socket when disconnect complete. 363 */ 364 int 365 soclose(struct socket *so, int flags) 366 { 367 struct socket *so2; 368 int error = 0; 369 370 solock(so); 371 /* Revoke async IO early. There is a final revocation in sofree(). */ 372 sigio_free(&so->so_sigio); 373 if (so->so_state & SS_ISCONNECTED) { 374 if (so->so_pcb == NULL) 375 goto discard; 376 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 377 error = sodisconnect(so); 378 if (error) 379 goto drop; 380 } 381 if (so->so_options & SO_LINGER) { 382 if ((so->so_state & SS_ISDISCONNECTING) && 383 (flags & MSG_DONTWAIT)) 384 goto drop; 385 while (so->so_state & SS_ISCONNECTED) { 386 error = sosleep_nsec(so, &so->so_timeo, 387 PSOCK | PCATCH, "netcls", 388 solinger_nsec(so)); 389 if (error) 390 break; 391 } 392 } 393 } 394 drop: 395 if (so->so_pcb) { 396 int error2; 397 error2 = pru_detach(so); 398 if (error == 0) 399 error = error2; 400 } 401 if (so->so_options & SO_ACCEPTCONN) { 402 int persocket = solock_persocket(so); 403 404 if (persocket) { 405 /* Wait concurrent sonewconn() threads. */ 406 while (so->so_newconn > 0) { 407 so->so_state |= SS_NEWCONN_WAIT; 408 sosleep_nsec(so, &so->so_newconn, PSOCK, 409 "newcon", INFSLP); 410 } 411 } 412 413 while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) { 414 if (persocket) 415 solock(so2); 416 (void) soqremque(so2, 0); 417 if (persocket) 418 sounlock(so); 419 soabort(so2); 420 if (persocket) 421 solock(so); 422 } 423 while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) { 424 if (persocket) 425 solock(so2); 426 (void) soqremque(so2, 1); 427 if (persocket) 428 sounlock(so); 429 soabort(so2); 430 if (persocket) 431 solock(so); 432 } 433 } 434 discard: 435 if (so->so_state & SS_NOFDREF) 436 panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type); 437 so->so_state |= SS_NOFDREF; 438 /* sofree() calls sounlock(). */ 439 sofree(so, 0); 440 return (error); 441 } 442 443 void 444 soabort(struct socket *so) 445 { 446 soassertlocked(so); 447 pru_abort(so); 448 } 449 450 int 451 soaccept(struct socket *so, struct mbuf *nam) 452 { 453 int error = 0; 454 455 soassertlocked(so); 456 457 if ((so->so_state & SS_NOFDREF) == 0) 458 panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type); 459 so->so_state &= ~SS_NOFDREF; 460 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 461 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 462 error = pru_accept(so, nam); 463 else 464 error = ECONNABORTED; 465 return (error); 466 } 467 468 int 469 soconnect(struct socket *so, struct mbuf *nam) 470 { 471 int error; 472 473 soassertlocked(so); 474 475 if (so->so_options & SO_ACCEPTCONN) 476 return (EOPNOTSUPP); 477 /* 478 * If protocol is connection-based, can only connect once. 479 * Otherwise, if connected, try to disconnect first. 480 * This allows user to disconnect by connecting to, e.g., 481 * a null address. 482 */ 483 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 484 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 485 (error = sodisconnect(so)))) 486 error = EISCONN; 487 else 488 error = pru_connect(so, nam); 489 return (error); 490 } 491 492 int 493 soconnect2(struct socket *so1, struct socket *so2) 494 { 495 int persocket, error; 496 497 if ((persocket = solock_persocket(so1))) 498 solock_pair(so1, so2); 499 else 500 solock(so1); 501 502 error = pru_connect2(so1, so2); 503 504 if (persocket) 505 sounlock(so2); 506 sounlock(so1); 507 return (error); 508 } 509 510 int 511 sodisconnect(struct socket *so) 512 { 513 int error; 514 515 soassertlocked(so); 516 517 if ((so->so_state & SS_ISCONNECTED) == 0) 518 return (ENOTCONN); 519 if (so->so_state & SS_ISDISCONNECTING) 520 return (EALREADY); 521 error = pru_disconnect(so); 522 return (error); 523 } 524 525 int m_getuio(struct mbuf **, int, long, struct uio *); 526 527 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT) 528 /* 529 * Send on a socket. 530 * If send must go all at once and message is larger than 531 * send buffering, then hard error. 532 * Lock against other senders. 533 * If must go all at once and not enough room now, then 534 * inform user that this would block and do nothing. 535 * Otherwise, if nonblocking, send as much as possible. 536 * The data to be sent is described by "uio" if nonzero, 537 * otherwise by the mbuf chain "top" (which must be null 538 * if uio is not). Data provided in mbuf chain must be small 539 * enough to send all at once. 540 * 541 * Returns nonzero on error, timeout or signal; callers 542 * must check for short counts if EINTR/ERESTART are returned. 543 * Data and control buffers are freed on return. 544 */ 545 int 546 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 547 struct mbuf *control, int flags) 548 { 549 long space, clen = 0; 550 size_t resid; 551 int error; 552 int atomic = sosendallatonce(so) || top; 553 554 if (uio) 555 resid = uio->uio_resid; 556 else 557 resid = top->m_pkthdr.len; 558 /* MSG_EOR on a SOCK_STREAM socket is invalid. */ 559 if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) { 560 m_freem(top); 561 m_freem(control); 562 return (EINVAL); 563 } 564 if (uio && uio->uio_procp) 565 uio->uio_procp->p_ru.ru_msgsnd++; 566 if (control) { 567 /* 568 * In theory clen should be unsigned (since control->m_len is). 569 * However, space must be signed, as it might be less than 0 570 * if we over-committed, and we must use a signed comparison 571 * of space and clen. 572 */ 573 clen = control->m_len; 574 /* reserve extra space for AF_UNIX's internalize */ 575 if (so->so_proto->pr_domain->dom_family == AF_UNIX && 576 clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) && 577 mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 578 clen = CMSG_SPACE( 579 (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) * 580 (sizeof(struct fdpass) / sizeof(int))); 581 } 582 583 #define snderr(errno) { error = errno; goto release; } 584 585 solock(so); 586 restart: 587 if ((error = sblock(so, &so->so_snd, SBLOCKWAIT(flags))) != 0) 588 goto out; 589 so->so_snd.sb_state |= SS_ISSENDING; 590 do { 591 if (so->so_snd.sb_state & SS_CANTSENDMORE) 592 snderr(EPIPE); 593 if (so->so_error) { 594 error = so->so_error; 595 so->so_error = 0; 596 snderr(error); 597 } 598 if ((so->so_state & SS_ISCONNECTED) == 0) { 599 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 600 if (!(resid == 0 && clen != 0)) 601 snderr(ENOTCONN); 602 } else if (addr == NULL) 603 snderr(EDESTADDRREQ); 604 } 605 space = sbspace(so, &so->so_snd); 606 if (flags & MSG_OOB) 607 space += 1024; 608 if (so->so_proto->pr_domain->dom_family == AF_UNIX) { 609 if (atomic && resid > so->so_snd.sb_hiwat) 610 snderr(EMSGSIZE); 611 } else { 612 if (clen > so->so_snd.sb_hiwat || 613 (atomic && resid > so->so_snd.sb_hiwat - clen)) 614 snderr(EMSGSIZE); 615 } 616 if (space < clen || 617 (space - clen < resid && 618 (atomic || space < so->so_snd.sb_lowat))) { 619 if (flags & MSG_DONTWAIT) 620 snderr(EWOULDBLOCK); 621 sbunlock(so, &so->so_snd); 622 error = sbwait(so, &so->so_snd); 623 so->so_snd.sb_state &= ~SS_ISSENDING; 624 if (error) 625 goto out; 626 goto restart; 627 } 628 space -= clen; 629 do { 630 if (uio == NULL) { 631 /* 632 * Data is prepackaged in "top". 633 */ 634 resid = 0; 635 if (flags & MSG_EOR) 636 top->m_flags |= M_EOR; 637 } else { 638 sounlock(so); 639 error = m_getuio(&top, atomic, space, uio); 640 solock(so); 641 if (error) 642 goto release; 643 space -= top->m_pkthdr.len; 644 resid = uio->uio_resid; 645 if (flags & MSG_EOR) 646 top->m_flags |= M_EOR; 647 } 648 if (resid == 0) 649 so->so_snd.sb_state &= ~SS_ISSENDING; 650 if (top && so->so_options & SO_ZEROIZE) 651 top->m_flags |= M_ZEROIZE; 652 if (flags & MSG_OOB) 653 error = pru_sendoob(so, top, addr, control); 654 else 655 error = pru_send(so, top, addr, control); 656 clen = 0; 657 control = NULL; 658 top = NULL; 659 if (error) 660 goto release; 661 } while (resid && space > 0); 662 } while (resid); 663 664 release: 665 so->so_snd.sb_state &= ~SS_ISSENDING; 666 sbunlock(so, &so->so_snd); 667 out: 668 sounlock(so); 669 m_freem(top); 670 m_freem(control); 671 return (error); 672 } 673 674 int 675 m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio) 676 { 677 struct mbuf *m, *top = NULL; 678 struct mbuf **nextp = ⊤ 679 u_long len, mlen; 680 size_t resid = uio->uio_resid; 681 int error; 682 683 do { 684 if (top == NULL) { 685 MGETHDR(m, M_WAIT, MT_DATA); 686 mlen = MHLEN; 687 m->m_pkthdr.len = 0; 688 m->m_pkthdr.ph_ifidx = 0; 689 } else { 690 MGET(m, M_WAIT, MT_DATA); 691 mlen = MLEN; 692 } 693 /* chain mbuf together */ 694 *nextp = m; 695 nextp = &m->m_next; 696 697 resid = ulmin(resid, space); 698 if (resid >= MINCLSIZE) { 699 MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES)); 700 if ((m->m_flags & M_EXT) == 0) 701 MCLGETL(m, M_NOWAIT, MCLBYTES); 702 if ((m->m_flags & M_EXT) == 0) 703 goto nopages; 704 mlen = m->m_ext.ext_size; 705 len = ulmin(mlen, resid); 706 /* 707 * For datagram protocols, leave room 708 * for protocol headers in first mbuf. 709 */ 710 if (atomic && m == top && len < mlen - max_hdr) 711 m->m_data += max_hdr; 712 } else { 713 nopages: 714 len = ulmin(mlen, resid); 715 /* 716 * For datagram protocols, leave room 717 * for protocol headers in first mbuf. 718 */ 719 if (atomic && m == top && len < mlen - max_hdr) 720 m_align(m, len); 721 } 722 723 error = uiomove(mtod(m, caddr_t), len, uio); 724 if (error) { 725 m_freem(top); 726 return (error); 727 } 728 729 /* adjust counters */ 730 resid = uio->uio_resid; 731 space -= len; 732 m->m_len = len; 733 top->m_pkthdr.len += len; 734 735 /* Is there more space and more data? */ 736 } while (space > 0 && resid > 0); 737 738 *mp = top; 739 return 0; 740 } 741 742 /* 743 * Following replacement or removal of the first mbuf on the first 744 * mbuf chain of a socket buffer, push necessary state changes back 745 * into the socket buffer so that other consumers see the values 746 * consistently. 'nextrecord' is the callers locally stored value of 747 * the original value of sb->sb_mb->m_nextpkt which must be restored 748 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 749 */ 750 void 751 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 752 { 753 754 /* 755 * First, update for the new value of nextrecord. If necessary, 756 * make it the first record. 757 */ 758 if (sb->sb_mb != NULL) 759 sb->sb_mb->m_nextpkt = nextrecord; 760 else 761 sb->sb_mb = nextrecord; 762 763 /* 764 * Now update any dependent socket buffer fields to reflect 765 * the new state. This is an inline of SB_EMPTY_FIXUP, with 766 * the addition of a second clause that takes care of the 767 * case where sb_mb has been updated, but remains the last 768 * record. 769 */ 770 if (sb->sb_mb == NULL) { 771 sb->sb_mbtail = NULL; 772 sb->sb_lastrecord = NULL; 773 } else if (sb->sb_mb->m_nextpkt == NULL) 774 sb->sb_lastrecord = sb->sb_mb; 775 } 776 777 /* 778 * Implement receive operations on a socket. 779 * We depend on the way that records are added to the sockbuf 780 * by sbappend*. In particular, each record (mbufs linked through m_next) 781 * must begin with an address if the protocol so specifies, 782 * followed by an optional mbuf or mbufs containing ancillary data, 783 * and then zero or more mbufs of data. 784 * In order to avoid blocking network for the entire time here, we release 785 * the solock() while doing the actual copy to user space. 786 * Although the sockbuf is locked, new data may still be appended, 787 * and thus we must maintain consistency of the sockbuf during that time. 788 * 789 * The caller may receive the data as a single mbuf chain by supplying 790 * an mbuf **mp0 for use in returning the chain. The uio is then used 791 * only for the count in uio_resid. 792 */ 793 int 794 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 795 struct mbuf **mp0, struct mbuf **controlp, int *flagsp, 796 socklen_t controllen) 797 { 798 struct mbuf *m, **mp; 799 struct mbuf *cm; 800 u_long len, offset, moff; 801 int flags, error, type, uio_error = 0; 802 const struct protosw *pr = so->so_proto; 803 struct mbuf *nextrecord; 804 size_t resid, orig_resid = uio->uio_resid; 805 806 mp = mp0; 807 if (paddr) 808 *paddr = NULL; 809 if (controlp) 810 *controlp = NULL; 811 if (flagsp) 812 flags = *flagsp &~ MSG_EOR; 813 else 814 flags = 0; 815 if (flags & MSG_OOB) { 816 m = m_get(M_WAIT, MT_DATA); 817 solock(so); 818 error = pru_rcvoob(so, m, flags & MSG_PEEK); 819 sounlock(so); 820 if (error) 821 goto bad; 822 do { 823 error = uiomove(mtod(m, caddr_t), 824 ulmin(uio->uio_resid, m->m_len), uio); 825 m = m_free(m); 826 } while (uio->uio_resid && error == 0 && m); 827 bad: 828 m_freem(m); 829 return (error); 830 } 831 if (mp) 832 *mp = NULL; 833 834 solock_shared(so); 835 restart: 836 if ((error = sblock(so, &so->so_rcv, SBLOCKWAIT(flags))) != 0) { 837 sounlock_shared(so); 838 return (error); 839 } 840 841 m = so->so_rcv.sb_mb; 842 #ifdef SOCKET_SPLICE 843 if (isspliced(so)) 844 m = NULL; 845 #endif /* SOCKET_SPLICE */ 846 /* 847 * If we have less data than requested, block awaiting more 848 * (subject to any timeout) if: 849 * 1. the current count is less than the low water mark, 850 * 2. MSG_WAITALL is set, and it is possible to do the entire 851 * receive operation at once if we block (resid <= hiwat), or 852 * 3. MSG_DONTWAIT is not set. 853 * If MSG_WAITALL is set but resid is larger than the receive buffer, 854 * we have to do the receive in sections, and thus risk returning 855 * a short count if a timeout or signal occurs after we start. 856 */ 857 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && 858 so->so_rcv.sb_cc < uio->uio_resid) && 859 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 860 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 861 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { 862 #ifdef DIAGNOSTIC 863 if (m == NULL && so->so_rcv.sb_cc) 864 #ifdef SOCKET_SPLICE 865 if (!isspliced(so)) 866 #endif /* SOCKET_SPLICE */ 867 panic("receive 1: so %p, so_type %d, sb_cc %lu", 868 so, so->so_type, so->so_rcv.sb_cc); 869 #endif 870 if (so->so_error) { 871 if (m) 872 goto dontblock; 873 error = so->so_error; 874 if ((flags & MSG_PEEK) == 0) 875 so->so_error = 0; 876 goto release; 877 } 878 if (so->so_rcv.sb_state & SS_CANTRCVMORE) { 879 if (m) 880 goto dontblock; 881 else if (so->so_rcv.sb_cc == 0) 882 goto release; 883 } 884 for (; m; m = m->m_next) 885 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 886 m = so->so_rcv.sb_mb; 887 goto dontblock; 888 } 889 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 890 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 891 error = ENOTCONN; 892 goto release; 893 } 894 if (uio->uio_resid == 0 && controlp == NULL) 895 goto release; 896 if (flags & MSG_DONTWAIT) { 897 error = EWOULDBLOCK; 898 goto release; 899 } 900 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 901 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 902 sbunlock(so, &so->so_rcv); 903 error = sbwait(so, &so->so_rcv); 904 if (error) { 905 sounlock_shared(so); 906 return (error); 907 } 908 goto restart; 909 } 910 dontblock: 911 /* 912 * On entry here, m points to the first record of the socket buffer. 913 * From this point onward, we maintain 'nextrecord' as a cache of the 914 * pointer to the next record in the socket buffer. We must keep the 915 * various socket buffer pointers and local stack versions of the 916 * pointers in sync, pushing out modifications before operations that 917 * may sleep, and re-reading them afterwards. 918 * 919 * Otherwise, we will race with the network stack appending new data 920 * or records onto the socket buffer by using inconsistent/stale 921 * versions of the field, possibly resulting in socket buffer 922 * corruption. 923 */ 924 if (uio->uio_procp) 925 uio->uio_procp->p_ru.ru_msgrcv++; 926 KASSERT(m == so->so_rcv.sb_mb); 927 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 928 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 929 nextrecord = m->m_nextpkt; 930 if (pr->pr_flags & PR_ADDR) { 931 #ifdef DIAGNOSTIC 932 if (m->m_type != MT_SONAME) 933 panic("receive 1a: so %p, so_type %d, m %p, m_type %d", 934 so, so->so_type, m, m->m_type); 935 #endif 936 orig_resid = 0; 937 if (flags & MSG_PEEK) { 938 if (paddr) 939 *paddr = m_copym(m, 0, m->m_len, M_NOWAIT); 940 m = m->m_next; 941 } else { 942 sbfree(so, &so->so_rcv, m); 943 if (paddr) { 944 *paddr = m; 945 so->so_rcv.sb_mb = m->m_next; 946 m->m_next = NULL; 947 m = so->so_rcv.sb_mb; 948 } else { 949 so->so_rcv.sb_mb = m_free(m); 950 m = so->so_rcv.sb_mb; 951 } 952 sbsync(&so->so_rcv, nextrecord); 953 } 954 } 955 while (m && m->m_type == MT_CONTROL && error == 0) { 956 int skip = 0; 957 if (flags & MSG_PEEK) { 958 if (mtod(m, struct cmsghdr *)->cmsg_type == 959 SCM_RIGHTS) { 960 /* don't leak internalized SCM_RIGHTS msgs */ 961 skip = 1; 962 } else if (controlp) 963 *controlp = m_copym(m, 0, m->m_len, M_NOWAIT); 964 m = m->m_next; 965 } else { 966 sbfree(so, &so->so_rcv, m); 967 so->so_rcv.sb_mb = m->m_next; 968 m->m_nextpkt = m->m_next = NULL; 969 cm = m; 970 m = so->so_rcv.sb_mb; 971 sbsync(&so->so_rcv, nextrecord); 972 if (controlp) { 973 if (pr->pr_domain->dom_externalize) { 974 sounlock_shared(so); 975 error = 976 (*pr->pr_domain->dom_externalize) 977 (cm, controllen, flags); 978 solock_shared(so); 979 } 980 *controlp = cm; 981 } else { 982 /* 983 * Dispose of any SCM_RIGHTS message that went 984 * through the read path rather than recv. 985 */ 986 if (pr->pr_domain->dom_dispose) 987 pr->pr_domain->dom_dispose(cm); 988 m_free(cm); 989 } 990 } 991 if (m != NULL) 992 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 993 else 994 nextrecord = so->so_rcv.sb_mb; 995 if (controlp && !skip) 996 controlp = &(*controlp)->m_next; 997 orig_resid = 0; 998 } 999 1000 /* If m is non-NULL, we have some data to read. */ 1001 if (m) { 1002 type = m->m_type; 1003 if (type == MT_OOBDATA) 1004 flags |= MSG_OOB; 1005 if (m->m_flags & M_BCAST) 1006 flags |= MSG_BCAST; 1007 if (m->m_flags & M_MCAST) 1008 flags |= MSG_MCAST; 1009 } 1010 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1011 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1012 1013 moff = 0; 1014 offset = 0; 1015 while (m && uio->uio_resid > 0 && error == 0) { 1016 if (m->m_type == MT_OOBDATA) { 1017 if (type != MT_OOBDATA) 1018 break; 1019 } else if (type == MT_OOBDATA) { 1020 break; 1021 } else if (m->m_type == MT_CONTROL) { 1022 /* 1023 * If there is more than one control message in the 1024 * stream, we do a short read. Next can be received 1025 * or disposed by another system call. 1026 */ 1027 break; 1028 #ifdef DIAGNOSTIC 1029 } else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) { 1030 panic("receive 3: so %p, so_type %d, m %p, m_type %d", 1031 so, so->so_type, m, m->m_type); 1032 #endif 1033 } 1034 so->so_rcv.sb_state &= ~SS_RCVATMARK; 1035 len = uio->uio_resid; 1036 if (so->so_oobmark && len > so->so_oobmark - offset) 1037 len = so->so_oobmark - offset; 1038 if (len > m->m_len - moff) 1039 len = m->m_len - moff; 1040 /* 1041 * If mp is set, just pass back the mbufs. 1042 * Otherwise copy them out via the uio, then free. 1043 * Sockbuf must be consistent here (points to current mbuf, 1044 * it points to next record) when we drop priority; 1045 * we must note any additions to the sockbuf when we 1046 * block interrupts again. 1047 */ 1048 if (mp == NULL && uio_error == 0) { 1049 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1050 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1051 resid = uio->uio_resid; 1052 sounlock_shared(so); 1053 uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio); 1054 solock_shared(so); 1055 if (uio_error) 1056 uio->uio_resid = resid - len; 1057 } else 1058 uio->uio_resid -= len; 1059 if (len == m->m_len - moff) { 1060 if (m->m_flags & M_EOR) 1061 flags |= MSG_EOR; 1062 if (flags & MSG_PEEK) { 1063 m = m->m_next; 1064 moff = 0; 1065 orig_resid = 0; 1066 } else { 1067 nextrecord = m->m_nextpkt; 1068 sbfree(so, &so->so_rcv, m); 1069 if (mp) { 1070 *mp = m; 1071 mp = &m->m_next; 1072 so->so_rcv.sb_mb = m = m->m_next; 1073 *mp = NULL; 1074 } else { 1075 so->so_rcv.sb_mb = m_free(m); 1076 m = so->so_rcv.sb_mb; 1077 } 1078 /* 1079 * If m != NULL, we also know that 1080 * so->so_rcv.sb_mb != NULL. 1081 */ 1082 KASSERT(so->so_rcv.sb_mb == m); 1083 if (m) { 1084 m->m_nextpkt = nextrecord; 1085 if (nextrecord == NULL) 1086 so->so_rcv.sb_lastrecord = m; 1087 } else { 1088 so->so_rcv.sb_mb = nextrecord; 1089 SB_EMPTY_FIXUP(&so->so_rcv); 1090 } 1091 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1092 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1093 } 1094 } else { 1095 if (flags & MSG_PEEK) { 1096 moff += len; 1097 orig_resid = 0; 1098 } else { 1099 if (mp) 1100 *mp = m_copym(m, 0, len, M_WAIT); 1101 m->m_data += len; 1102 m->m_len -= len; 1103 so->so_rcv.sb_cc -= len; 1104 so->so_rcv.sb_datacc -= len; 1105 } 1106 } 1107 if (so->so_oobmark) { 1108 if ((flags & MSG_PEEK) == 0) { 1109 so->so_oobmark -= len; 1110 if (so->so_oobmark == 0) { 1111 so->so_rcv.sb_state |= SS_RCVATMARK; 1112 break; 1113 } 1114 } else { 1115 offset += len; 1116 if (offset == so->so_oobmark) 1117 break; 1118 } 1119 } 1120 if (flags & MSG_EOR) 1121 break; 1122 /* 1123 * If the MSG_WAITALL flag is set (for non-atomic socket), 1124 * we must not quit until "uio->uio_resid == 0" or an error 1125 * termination. If a signal/timeout occurs, return 1126 * with a short count but without error. 1127 * Keep sockbuf locked against other readers. 1128 */ 1129 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1130 !sosendallatonce(so) && !nextrecord) { 1131 if (so->so_rcv.sb_state & SS_CANTRCVMORE || 1132 so->so_error) 1133 break; 1134 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1135 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1136 error = sbwait(so, &so->so_rcv); 1137 if (error) { 1138 sbunlock(so, &so->so_rcv); 1139 sounlock_shared(so); 1140 return (0); 1141 } 1142 if ((m = so->so_rcv.sb_mb) != NULL) 1143 nextrecord = m->m_nextpkt; 1144 } 1145 } 1146 1147 if (m && pr->pr_flags & PR_ATOMIC) { 1148 flags |= MSG_TRUNC; 1149 if ((flags & MSG_PEEK) == 0) 1150 (void) sbdroprecord(so, &so->so_rcv); 1151 } 1152 if ((flags & MSG_PEEK) == 0) { 1153 if (m == NULL) { 1154 /* 1155 * First part is an inline SB_EMPTY_FIXUP(). Second 1156 * part makes sure sb_lastrecord is up-to-date if 1157 * there is still data in the socket buffer. 1158 */ 1159 so->so_rcv.sb_mb = nextrecord; 1160 if (so->so_rcv.sb_mb == NULL) { 1161 so->so_rcv.sb_mbtail = NULL; 1162 so->so_rcv.sb_lastrecord = NULL; 1163 } else if (nextrecord->m_nextpkt == NULL) 1164 so->so_rcv.sb_lastrecord = nextrecord; 1165 } 1166 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1167 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1168 if (pr->pr_flags & PR_WANTRCVD) 1169 pru_rcvd(so); 1170 } 1171 if (orig_resid == uio->uio_resid && orig_resid && 1172 (flags & MSG_EOR) == 0 && 1173 (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) { 1174 sbunlock(so, &so->so_rcv); 1175 goto restart; 1176 } 1177 1178 if (uio_error) 1179 error = uio_error; 1180 1181 if (flagsp) 1182 *flagsp |= flags; 1183 release: 1184 sbunlock(so, &so->so_rcv); 1185 sounlock_shared(so); 1186 return (error); 1187 } 1188 1189 int 1190 soshutdown(struct socket *so, int how) 1191 { 1192 int error = 0; 1193 1194 solock(so); 1195 switch (how) { 1196 case SHUT_RD: 1197 sorflush(so); 1198 break; 1199 case SHUT_RDWR: 1200 sorflush(so); 1201 /* FALLTHROUGH */ 1202 case SHUT_WR: 1203 error = pru_shutdown(so); 1204 break; 1205 default: 1206 error = EINVAL; 1207 break; 1208 } 1209 sounlock(so); 1210 1211 return (error); 1212 } 1213 1214 void 1215 sorflush(struct socket *so) 1216 { 1217 struct sockbuf *sb = &so->so_rcv; 1218 struct mbuf *m; 1219 const struct protosw *pr = so->so_proto; 1220 int error; 1221 1222 error = sblock(so, sb, SBL_WAIT | SBL_NOINTR); 1223 /* with SBL_WAIT and SLB_NOINTR sblock() must not fail */ 1224 KASSERT(error == 0); 1225 socantrcvmore(so); 1226 m = sb->sb_mb; 1227 memset(&sb->sb_startzero, 0, 1228 (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero); 1229 sb->sb_timeo_nsecs = INFSLP; 1230 sbunlock(so, sb); 1231 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1232 (*pr->pr_domain->dom_dispose)(m); 1233 m_purge(m); 1234 } 1235 1236 #ifdef SOCKET_SPLICE 1237 1238 #define so_splicelen so_sp->ssp_len 1239 #define so_splicemax so_sp->ssp_max 1240 #define so_idletv so_sp->ssp_idletv 1241 #define so_idleto so_sp->ssp_idleto 1242 #define so_splicetask so_sp->ssp_task 1243 1244 int 1245 sosplice(struct socket *so, int fd, off_t max, struct timeval *tv) 1246 { 1247 struct file *fp; 1248 struct socket *sosp; 1249 struct sosplice *sp; 1250 struct taskq *tq; 1251 int error = 0; 1252 1253 soassertlocked(so); 1254 1255 if (sosplice_taskq == NULL) { 1256 rw_enter_write(&sosplice_lock); 1257 if (sosplice_taskq == NULL) { 1258 tq = taskq_create("sosplice", 1, IPL_SOFTNET, 1259 TASKQ_MPSAFE); 1260 if (tq == NULL) { 1261 rw_exit_write(&sosplice_lock); 1262 return (ENOMEM); 1263 } 1264 /* Ensure the taskq is fully visible to other CPUs. */ 1265 membar_producer(); 1266 sosplice_taskq = tq; 1267 } 1268 rw_exit_write(&sosplice_lock); 1269 } else { 1270 /* Ensure the taskq is fully visible on this CPU. */ 1271 membar_consumer(); 1272 } 1273 1274 if ((so->so_proto->pr_flags & PR_SPLICE) == 0) 1275 return (EPROTONOSUPPORT); 1276 if (so->so_options & SO_ACCEPTCONN) 1277 return (EOPNOTSUPP); 1278 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1279 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1280 return (ENOTCONN); 1281 if (so->so_sp == NULL) { 1282 sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO); 1283 if (so->so_sp == NULL) 1284 so->so_sp = sp; 1285 else 1286 pool_put(&sosplice_pool, sp); 1287 } 1288 1289 /* If no fd is given, unsplice by removing existing link. */ 1290 if (fd < 0) { 1291 /* Lock receive buffer. */ 1292 if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0) { 1293 return (error); 1294 } 1295 if (so->so_sp->ssp_socket) 1296 sounsplice(so, so->so_sp->ssp_socket, 0); 1297 sbunlock(so, &so->so_rcv); 1298 return (0); 1299 } 1300 1301 if (max && max < 0) 1302 return (EINVAL); 1303 1304 if (tv && (tv->tv_sec < 0 || !timerisvalid(tv))) 1305 return (EINVAL); 1306 1307 /* Find sosp, the drain socket where data will be spliced into. */ 1308 if ((error = getsock(curproc, fd, &fp)) != 0) 1309 return (error); 1310 sosp = fp->f_data; 1311 if (sosp->so_proto->pr_usrreqs->pru_send != 1312 so->so_proto->pr_usrreqs->pru_send) { 1313 error = EPROTONOSUPPORT; 1314 goto frele; 1315 } 1316 if (sosp->so_sp == NULL) { 1317 sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO); 1318 if (sosp->so_sp == NULL) 1319 sosp->so_sp = sp; 1320 else 1321 pool_put(&sosplice_pool, sp); 1322 } 1323 1324 /* Lock both receive and send buffer. */ 1325 if ((error = sblock(so, &so->so_rcv, SBL_WAIT)) != 0) { 1326 goto frele; 1327 } 1328 if ((error = sblock(so, &sosp->so_snd, SBL_WAIT)) != 0) { 1329 sbunlock(so, &so->so_rcv); 1330 goto frele; 1331 } 1332 1333 if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) { 1334 error = EBUSY; 1335 goto release; 1336 } 1337 if (sosp->so_options & SO_ACCEPTCONN) { 1338 error = EOPNOTSUPP; 1339 goto release; 1340 } 1341 if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) { 1342 error = ENOTCONN; 1343 goto release; 1344 } 1345 1346 /* Splice so and sosp together. */ 1347 so->so_sp->ssp_socket = sosp; 1348 sosp->so_sp->ssp_soback = so; 1349 so->so_splicelen = 0; 1350 so->so_splicemax = max; 1351 if (tv) 1352 so->so_idletv = *tv; 1353 else 1354 timerclear(&so->so_idletv); 1355 timeout_set_proc(&so->so_idleto, soidle, so); 1356 task_set(&so->so_splicetask, sotask, so); 1357 1358 /* 1359 * To prevent softnet interrupt from calling somove() while 1360 * we sleep, the socket buffers are not marked as spliced yet. 1361 */ 1362 if (somove(so, M_WAIT)) { 1363 so->so_rcv.sb_flags |= SB_SPLICE; 1364 sosp->so_snd.sb_flags |= SB_SPLICE; 1365 } 1366 1367 release: 1368 sbunlock(sosp, &sosp->so_snd); 1369 sbunlock(so, &so->so_rcv); 1370 frele: 1371 /* 1372 * FRELE() must not be called with the socket lock held. It is safe to 1373 * release the lock here as long as no other operation happen on the 1374 * socket when sosplice() returns. The dance could be avoided by 1375 * grabbing the socket lock inside this function. 1376 */ 1377 sounlock(so); 1378 FRELE(fp, curproc); 1379 solock(so); 1380 return (error); 1381 } 1382 1383 void 1384 sounsplice(struct socket *so, struct socket *sosp, int freeing) 1385 { 1386 soassertlocked(so); 1387 1388 task_del(sosplice_taskq, &so->so_splicetask); 1389 timeout_del(&so->so_idleto); 1390 sosp->so_snd.sb_flags &= ~SB_SPLICE; 1391 so->so_rcv.sb_flags &= ~SB_SPLICE; 1392 so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL; 1393 /* Do not wakeup a socket that is about to be freed. */ 1394 if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so)) 1395 sorwakeup(so); 1396 if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp)) 1397 sowwakeup(sosp); 1398 } 1399 1400 void 1401 soidle(void *arg) 1402 { 1403 struct socket *so = arg; 1404 1405 solock(so); 1406 if (so->so_rcv.sb_flags & SB_SPLICE) { 1407 so->so_error = ETIMEDOUT; 1408 sounsplice(so, so->so_sp->ssp_socket, 0); 1409 } 1410 sounlock(so); 1411 } 1412 1413 void 1414 sotask(void *arg) 1415 { 1416 struct socket *so = arg; 1417 1418 solock(so); 1419 if (so->so_rcv.sb_flags & SB_SPLICE) { 1420 /* 1421 * We may not sleep here as sofree() and unsplice() may be 1422 * called from softnet interrupt context. This would remove 1423 * the socket during somove(). 1424 */ 1425 somove(so, M_DONTWAIT); 1426 } 1427 sounlock(so); 1428 1429 /* Avoid user land starvation. */ 1430 yield(); 1431 } 1432 1433 /* 1434 * The socket splicing task or idle timeout may sleep while grabbing the net 1435 * lock. As sofree() can be called anytime, sotask() or soidle() could access 1436 * the socket memory of a freed socket after wakeup. So delay the pool_put() 1437 * after all pending socket splicing tasks or timeouts have finished. Do this 1438 * by scheduling it on the same threads. 1439 */ 1440 void 1441 soreaper(void *arg) 1442 { 1443 struct socket *so = arg; 1444 1445 /* Reuse splice task, sounsplice() has been called before. */ 1446 task_set(&so->so_sp->ssp_task, soput, so); 1447 task_add(sosplice_taskq, &so->so_sp->ssp_task); 1448 } 1449 1450 void 1451 soput(void *arg) 1452 { 1453 struct socket *so = arg; 1454 1455 pool_put(&sosplice_pool, so->so_sp); 1456 pool_put(&socket_pool, so); 1457 } 1458 1459 /* 1460 * Move data from receive buffer of spliced source socket to send 1461 * buffer of drain socket. Try to move as much as possible in one 1462 * big chunk. It is a TCP only implementation. 1463 * Return value 0 means splicing has been finished, 1 continue. 1464 */ 1465 int 1466 somove(struct socket *so, int wait) 1467 { 1468 struct socket *sosp = so->so_sp->ssp_socket; 1469 struct mbuf *m, **mp, *nextrecord; 1470 u_long len, off, oobmark; 1471 long space; 1472 int error = 0, maxreached = 0; 1473 unsigned int rcvstate; 1474 1475 soassertlocked(so); 1476 1477 nextpkt: 1478 if (so->so_error) { 1479 error = so->so_error; 1480 goto release; 1481 } 1482 if (sosp->so_snd.sb_state & SS_CANTSENDMORE) { 1483 error = EPIPE; 1484 goto release; 1485 } 1486 if (sosp->so_error && sosp->so_error != ETIMEDOUT && 1487 sosp->so_error != EFBIG && sosp->so_error != ELOOP) { 1488 error = sosp->so_error; 1489 goto release; 1490 } 1491 if ((sosp->so_state & SS_ISCONNECTED) == 0) 1492 goto release; 1493 1494 /* Calculate how many bytes can be copied now. */ 1495 len = so->so_rcv.sb_datacc; 1496 if (so->so_splicemax) { 1497 KASSERT(so->so_splicelen < so->so_splicemax); 1498 if (so->so_splicemax <= so->so_splicelen + len) { 1499 len = so->so_splicemax - so->so_splicelen; 1500 maxreached = 1; 1501 } 1502 } 1503 space = sbspace(sosp, &sosp->so_snd); 1504 if (so->so_oobmark && so->so_oobmark < len && 1505 so->so_oobmark < space + 1024) 1506 space += 1024; 1507 if (space <= 0) { 1508 maxreached = 0; 1509 goto release; 1510 } 1511 if (space < len) { 1512 maxreached = 0; 1513 if (space < sosp->so_snd.sb_lowat) 1514 goto release; 1515 len = space; 1516 } 1517 sosp->so_snd.sb_state |= SS_ISSENDING; 1518 1519 SBLASTRECORDCHK(&so->so_rcv, "somove 1"); 1520 SBLASTMBUFCHK(&so->so_rcv, "somove 1"); 1521 m = so->so_rcv.sb_mb; 1522 if (m == NULL) 1523 goto release; 1524 nextrecord = m->m_nextpkt; 1525 1526 /* Drop address and control information not used with splicing. */ 1527 if (so->so_proto->pr_flags & PR_ADDR) { 1528 #ifdef DIAGNOSTIC 1529 if (m->m_type != MT_SONAME) 1530 panic("somove soname: so %p, so_type %d, m %p, " 1531 "m_type %d", so, so->so_type, m, m->m_type); 1532 #endif 1533 m = m->m_next; 1534 } 1535 while (m && m->m_type == MT_CONTROL) 1536 m = m->m_next; 1537 if (m == NULL) { 1538 sbdroprecord(so, &so->so_rcv); 1539 if (so->so_proto->pr_flags & PR_WANTRCVD) 1540 pru_rcvd(so); 1541 goto nextpkt; 1542 } 1543 1544 /* 1545 * By splicing sockets connected to localhost, userland might create a 1546 * loop. Dissolve splicing with error if loop is detected by counter. 1547 * 1548 * If we deal with looped broadcast/multicast packet we bail out with 1549 * no error to suppress splice termination. 1550 */ 1551 if ((m->m_flags & M_PKTHDR) && 1552 ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) || 1553 ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) { 1554 error = ELOOP; 1555 goto release; 1556 } 1557 1558 if (so->so_proto->pr_flags & PR_ATOMIC) { 1559 if ((m->m_flags & M_PKTHDR) == 0) 1560 panic("somove !PKTHDR: so %p, so_type %d, m %p, " 1561 "m_type %d", so, so->so_type, m, m->m_type); 1562 if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) { 1563 error = EMSGSIZE; 1564 goto release; 1565 } 1566 if (len < m->m_pkthdr.len) 1567 goto release; 1568 if (m->m_pkthdr.len < len) { 1569 maxreached = 0; 1570 len = m->m_pkthdr.len; 1571 } 1572 /* 1573 * Throw away the name mbuf after it has been assured 1574 * that the whole first record can be processed. 1575 */ 1576 m = so->so_rcv.sb_mb; 1577 sbfree(so, &so->so_rcv, m); 1578 so->so_rcv.sb_mb = m_free(m); 1579 sbsync(&so->so_rcv, nextrecord); 1580 } 1581 /* 1582 * Throw away the control mbufs after it has been assured 1583 * that the whole first record can be processed. 1584 */ 1585 m = so->so_rcv.sb_mb; 1586 while (m && m->m_type == MT_CONTROL) { 1587 sbfree(so, &so->so_rcv, m); 1588 so->so_rcv.sb_mb = m_free(m); 1589 m = so->so_rcv.sb_mb; 1590 sbsync(&so->so_rcv, nextrecord); 1591 } 1592 1593 SBLASTRECORDCHK(&so->so_rcv, "somove 2"); 1594 SBLASTMBUFCHK(&so->so_rcv, "somove 2"); 1595 1596 /* Take at most len mbufs out of receive buffer. */ 1597 for (off = 0, mp = &m; off <= len && *mp; 1598 off += (*mp)->m_len, mp = &(*mp)->m_next) { 1599 u_long size = len - off; 1600 1601 #ifdef DIAGNOSTIC 1602 if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER) 1603 panic("somove type: so %p, so_type %d, m %p, " 1604 "m_type %d", so, so->so_type, *mp, (*mp)->m_type); 1605 #endif 1606 if ((*mp)->m_len > size) { 1607 /* 1608 * Move only a partial mbuf at maximum splice length or 1609 * if the drain buffer is too small for this large mbuf. 1610 */ 1611 if (!maxreached && so->so_snd.sb_datacc > 0) { 1612 len -= size; 1613 break; 1614 } 1615 *mp = m_copym(so->so_rcv.sb_mb, 0, size, wait); 1616 if (*mp == NULL) { 1617 len -= size; 1618 break; 1619 } 1620 so->so_rcv.sb_mb->m_data += size; 1621 so->so_rcv.sb_mb->m_len -= size; 1622 so->so_rcv.sb_cc -= size; 1623 so->so_rcv.sb_datacc -= size; 1624 } else { 1625 *mp = so->so_rcv.sb_mb; 1626 sbfree(so, &so->so_rcv, *mp); 1627 so->so_rcv.sb_mb = (*mp)->m_next; 1628 sbsync(&so->so_rcv, nextrecord); 1629 } 1630 } 1631 *mp = NULL; 1632 1633 SBLASTRECORDCHK(&so->so_rcv, "somove 3"); 1634 SBLASTMBUFCHK(&so->so_rcv, "somove 3"); 1635 SBCHECK(so, &so->so_rcv); 1636 if (m == NULL) 1637 goto release; 1638 m->m_nextpkt = NULL; 1639 if (m->m_flags & M_PKTHDR) { 1640 m_resethdr(m); 1641 m->m_pkthdr.len = len; 1642 } 1643 1644 /* Send window update to source peer as receive buffer has changed. */ 1645 if (so->so_proto->pr_flags & PR_WANTRCVD) 1646 pru_rcvd(so); 1647 1648 /* Receive buffer did shrink by len bytes, adjust oob. */ 1649 rcvstate = so->so_rcv.sb_state; 1650 so->so_rcv.sb_state &= ~SS_RCVATMARK; 1651 oobmark = so->so_oobmark; 1652 so->so_oobmark = oobmark > len ? oobmark - len : 0; 1653 if (oobmark) { 1654 if (oobmark == len) 1655 so->so_rcv.sb_state |= SS_RCVATMARK; 1656 if (oobmark >= len) 1657 oobmark = 0; 1658 } 1659 1660 /* 1661 * Handle oob data. If any malloc fails, ignore error. 1662 * TCP urgent data is not very reliable anyway. 1663 */ 1664 while (((rcvstate & SS_RCVATMARK) || oobmark) && 1665 (so->so_options & SO_OOBINLINE)) { 1666 struct mbuf *o = NULL; 1667 1668 if (rcvstate & SS_RCVATMARK) { 1669 o = m_get(wait, MT_DATA); 1670 rcvstate &= ~SS_RCVATMARK; 1671 } else if (oobmark) { 1672 o = m_split(m, oobmark, wait); 1673 if (o) { 1674 error = pru_send(sosp, m, NULL, NULL); 1675 if (error) { 1676 if (sosp->so_snd.sb_state & 1677 SS_CANTSENDMORE) 1678 error = EPIPE; 1679 m_freem(o); 1680 goto release; 1681 } 1682 len -= oobmark; 1683 so->so_splicelen += oobmark; 1684 m = o; 1685 o = m_get(wait, MT_DATA); 1686 } 1687 oobmark = 0; 1688 } 1689 if (o) { 1690 o->m_len = 1; 1691 *mtod(o, caddr_t) = *mtod(m, caddr_t); 1692 error = pru_sendoob(sosp, o, NULL, NULL); 1693 if (error) { 1694 if (sosp->so_snd.sb_state & SS_CANTSENDMORE) 1695 error = EPIPE; 1696 m_freem(m); 1697 goto release; 1698 } 1699 len -= 1; 1700 so->so_splicelen += 1; 1701 if (oobmark) { 1702 oobmark -= 1; 1703 if (oobmark == 0) 1704 rcvstate |= SS_RCVATMARK; 1705 } 1706 m_adj(m, 1); 1707 } 1708 } 1709 1710 /* Append all remaining data to drain socket. */ 1711 if (so->so_rcv.sb_cc == 0 || maxreached) 1712 sosp->so_snd.sb_state &= ~SS_ISSENDING; 1713 error = pru_send(sosp, m, NULL, NULL); 1714 if (error) { 1715 if (sosp->so_snd.sb_state & SS_CANTSENDMORE) 1716 error = EPIPE; 1717 goto release; 1718 } 1719 so->so_splicelen += len; 1720 1721 /* Move several packets if possible. */ 1722 if (!maxreached && nextrecord) 1723 goto nextpkt; 1724 1725 release: 1726 sosp->so_snd.sb_state &= ~SS_ISSENDING; 1727 if (!error && maxreached && so->so_splicemax == so->so_splicelen) 1728 error = EFBIG; 1729 if (error) 1730 so->so_error = error; 1731 if (((so->so_rcv.sb_state & SS_CANTRCVMORE) && 1732 so->so_rcv.sb_cc == 0) || 1733 (sosp->so_snd.sb_state & SS_CANTSENDMORE) || 1734 maxreached || error) { 1735 sounsplice(so, sosp, 0); 1736 return (0); 1737 } 1738 if (timerisset(&so->so_idletv)) 1739 timeout_add_tv(&so->so_idleto, &so->so_idletv); 1740 return (1); 1741 } 1742 1743 #endif /* SOCKET_SPLICE */ 1744 1745 void 1746 sorwakeup(struct socket *so) 1747 { 1748 soassertlocked(so); 1749 1750 #ifdef SOCKET_SPLICE 1751 if (so->so_rcv.sb_flags & SB_SPLICE) { 1752 /* 1753 * TCP has a sendbuffer that can handle multiple packets 1754 * at once. So queue the stream a bit to accumulate data. 1755 * The sosplice thread will call somove() later and send 1756 * the packets calling tcp_output() only once. 1757 * In the UDP case, send out the packets immediately. 1758 * Using a thread would make things slower. 1759 */ 1760 if (so->so_proto->pr_flags & PR_WANTRCVD) 1761 task_add(sosplice_taskq, &so->so_splicetask); 1762 else 1763 somove(so, M_DONTWAIT); 1764 } 1765 if (isspliced(so)) 1766 return; 1767 #endif 1768 sowakeup(so, &so->so_rcv); 1769 if (so->so_upcall) 1770 (*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT); 1771 } 1772 1773 void 1774 sowwakeup(struct socket *so) 1775 { 1776 soassertlocked(so); 1777 1778 #ifdef SOCKET_SPLICE 1779 if (so->so_snd.sb_flags & SB_SPLICE) 1780 task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask); 1781 if (issplicedback(so)) 1782 return; 1783 #endif 1784 sowakeup(so, &so->so_snd); 1785 } 1786 1787 int 1788 sosetopt(struct socket *so, int level, int optname, struct mbuf *m) 1789 { 1790 int error = 0; 1791 1792 if (level != SOL_SOCKET) { 1793 if (so->so_proto->pr_ctloutput) { 1794 solock(so); 1795 error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, 1796 level, optname, m); 1797 sounlock(so); 1798 return (error); 1799 } 1800 error = ENOPROTOOPT; 1801 } else { 1802 switch (optname) { 1803 1804 case SO_LINGER: 1805 if (m == NULL || m->m_len != sizeof (struct linger) || 1806 mtod(m, struct linger *)->l_linger < 0 || 1807 mtod(m, struct linger *)->l_linger > SHRT_MAX) 1808 return (EINVAL); 1809 1810 solock(so); 1811 so->so_linger = mtod(m, struct linger *)->l_linger; 1812 if (*mtod(m, int *)) 1813 so->so_options |= optname; 1814 else 1815 so->so_options &= ~optname; 1816 sounlock(so); 1817 1818 break; 1819 case SO_BINDANY: 1820 if ((error = suser(curproc)) != 0) /* XXX */ 1821 return (error); 1822 /* FALLTHROUGH */ 1823 1824 case SO_DEBUG: 1825 case SO_KEEPALIVE: 1826 case SO_USELOOPBACK: 1827 case SO_BROADCAST: 1828 case SO_REUSEADDR: 1829 case SO_REUSEPORT: 1830 case SO_OOBINLINE: 1831 case SO_TIMESTAMP: 1832 case SO_ZEROIZE: 1833 if (m == NULL || m->m_len < sizeof (int)) 1834 return (EINVAL); 1835 1836 solock(so); 1837 if (*mtod(m, int *)) 1838 so->so_options |= optname; 1839 else 1840 so->so_options &= ~optname; 1841 sounlock(so); 1842 1843 break; 1844 case SO_DONTROUTE: 1845 if (m == NULL || m->m_len < sizeof (int)) 1846 return (EINVAL); 1847 if (*mtod(m, int *)) 1848 error = EOPNOTSUPP; 1849 break; 1850 1851 case SO_SNDBUF: 1852 case SO_RCVBUF: 1853 case SO_SNDLOWAT: 1854 case SO_RCVLOWAT: 1855 { 1856 struct sockbuf *sb = (optname == SO_SNDBUF || 1857 optname == SO_SNDLOWAT ? 1858 &so->so_snd : &so->so_rcv); 1859 u_long cnt; 1860 1861 if (m == NULL || m->m_len < sizeof (int)) 1862 return (EINVAL); 1863 cnt = *mtod(m, int *); 1864 if ((long)cnt <= 0) 1865 cnt = 1; 1866 1867 solock(so); 1868 switch (optname) { 1869 case SO_SNDBUF: 1870 case SO_RCVBUF: 1871 if (sb->sb_state & 1872 (SS_CANTSENDMORE | SS_CANTRCVMORE)) { 1873 error = EINVAL; 1874 break; 1875 } 1876 if (sbcheckreserve(cnt, sb->sb_wat) || 1877 sbreserve(so, sb, cnt)) { 1878 error = ENOBUFS; 1879 break; 1880 } 1881 sb->sb_wat = cnt; 1882 break; 1883 case SO_SNDLOWAT: 1884 case SO_RCVLOWAT: 1885 sb->sb_lowat = (cnt > sb->sb_hiwat) ? 1886 sb->sb_hiwat : cnt; 1887 break; 1888 } 1889 sounlock(so); 1890 break; 1891 } 1892 1893 case SO_SNDTIMEO: 1894 case SO_RCVTIMEO: 1895 { 1896 struct sockbuf *sb = (optname == SO_SNDTIMEO ? 1897 &so->so_snd : &so->so_rcv); 1898 struct timeval tv; 1899 uint64_t nsecs; 1900 1901 if (m == NULL || m->m_len < sizeof (tv)) 1902 return (EINVAL); 1903 memcpy(&tv, mtod(m, struct timeval *), sizeof tv); 1904 if (!timerisvalid(&tv)) 1905 return (EINVAL); 1906 nsecs = TIMEVAL_TO_NSEC(&tv); 1907 if (nsecs == UINT64_MAX) 1908 return (EDOM); 1909 if (nsecs == 0) 1910 nsecs = INFSLP; 1911 1912 solock(so); 1913 sb->sb_timeo_nsecs = nsecs; 1914 sounlock(so); 1915 break; 1916 } 1917 1918 case SO_RTABLE: 1919 if (so->so_proto->pr_domain && 1920 so->so_proto->pr_domain->dom_protosw && 1921 so->so_proto->pr_ctloutput) { 1922 const struct domain *dom = 1923 so->so_proto->pr_domain; 1924 1925 level = dom->dom_protosw->pr_protocol; 1926 solock(so); 1927 error = (*so->so_proto->pr_ctloutput) 1928 (PRCO_SETOPT, so, level, optname, m); 1929 sounlock(so); 1930 } else 1931 error = ENOPROTOOPT; 1932 break; 1933 #ifdef SOCKET_SPLICE 1934 case SO_SPLICE: 1935 solock(so); 1936 if (m == NULL) { 1937 error = sosplice(so, -1, 0, NULL); 1938 } else if (m->m_len < sizeof(int)) { 1939 error = EINVAL; 1940 } else if (m->m_len < sizeof(struct splice)) { 1941 error = sosplice(so, *mtod(m, int *), 0, NULL); 1942 } else { 1943 error = sosplice(so, 1944 mtod(m, struct splice *)->sp_fd, 1945 mtod(m, struct splice *)->sp_max, 1946 &mtod(m, struct splice *)->sp_idle); 1947 } 1948 sounlock(so); 1949 break; 1950 #endif /* SOCKET_SPLICE */ 1951 1952 default: 1953 error = ENOPROTOOPT; 1954 break; 1955 } 1956 } 1957 1958 return (error); 1959 } 1960 1961 int 1962 sogetopt(struct socket *so, int level, int optname, struct mbuf *m) 1963 { 1964 int error = 0; 1965 1966 if (level != SOL_SOCKET) { 1967 if (so->so_proto->pr_ctloutput) { 1968 m->m_len = 0; 1969 1970 solock(so); 1971 error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so, 1972 level, optname, m); 1973 sounlock(so); 1974 return (error); 1975 } else 1976 return (ENOPROTOOPT); 1977 } else { 1978 m->m_len = sizeof (int); 1979 1980 switch (optname) { 1981 1982 case SO_LINGER: 1983 m->m_len = sizeof (struct linger); 1984 solock_shared(so); 1985 mtod(m, struct linger *)->l_onoff = 1986 so->so_options & SO_LINGER; 1987 mtod(m, struct linger *)->l_linger = so->so_linger; 1988 sounlock_shared(so); 1989 break; 1990 1991 case SO_BINDANY: 1992 case SO_USELOOPBACK: 1993 case SO_DEBUG: 1994 case SO_KEEPALIVE: 1995 case SO_REUSEADDR: 1996 case SO_REUSEPORT: 1997 case SO_BROADCAST: 1998 case SO_OOBINLINE: 1999 case SO_TIMESTAMP: 2000 case SO_ZEROIZE: 2001 *mtod(m, int *) = so->so_options & optname; 2002 break; 2003 2004 case SO_DONTROUTE: 2005 *mtod(m, int *) = 0; 2006 break; 2007 2008 case SO_TYPE: 2009 *mtod(m, int *) = so->so_type; 2010 break; 2011 2012 case SO_ERROR: 2013 solock(so); 2014 *mtod(m, int *) = so->so_error; 2015 so->so_error = 0; 2016 sounlock(so); 2017 2018 break; 2019 2020 case SO_DOMAIN: 2021 *mtod(m, int *) = so->so_proto->pr_domain->dom_family; 2022 break; 2023 2024 case SO_PROTOCOL: 2025 *mtod(m, int *) = so->so_proto->pr_protocol; 2026 break; 2027 2028 case SO_SNDBUF: 2029 *mtod(m, int *) = so->so_snd.sb_hiwat; 2030 break; 2031 2032 case SO_RCVBUF: 2033 *mtod(m, int *) = so->so_rcv.sb_hiwat; 2034 break; 2035 2036 case SO_SNDLOWAT: 2037 *mtod(m, int *) = so->so_snd.sb_lowat; 2038 break; 2039 2040 case SO_RCVLOWAT: 2041 *mtod(m, int *) = so->so_rcv.sb_lowat; 2042 break; 2043 2044 case SO_SNDTIMEO: 2045 case SO_RCVTIMEO: 2046 { 2047 struct sockbuf *sb = (optname == SO_SNDTIMEO ? 2048 &so->so_snd : &so->so_rcv); 2049 struct timeval tv; 2050 uint64_t nsecs; 2051 2052 solock_shared(so); 2053 nsecs = sb->sb_timeo_nsecs; 2054 sounlock_shared(so); 2055 2056 m->m_len = sizeof(struct timeval); 2057 memset(&tv, 0, sizeof(tv)); 2058 if (nsecs != INFSLP) 2059 NSEC_TO_TIMEVAL(nsecs, &tv); 2060 memcpy(mtod(m, struct timeval *), &tv, sizeof tv); 2061 break; 2062 } 2063 2064 case SO_RTABLE: 2065 if (so->so_proto->pr_domain && 2066 so->so_proto->pr_domain->dom_protosw && 2067 so->so_proto->pr_ctloutput) { 2068 const struct domain *dom = 2069 so->so_proto->pr_domain; 2070 2071 level = dom->dom_protosw->pr_protocol; 2072 solock(so); 2073 error = (*so->so_proto->pr_ctloutput) 2074 (PRCO_GETOPT, so, level, optname, m); 2075 sounlock(so); 2076 if (error) 2077 return (error); 2078 break; 2079 } 2080 return (ENOPROTOOPT); 2081 2082 #ifdef SOCKET_SPLICE 2083 case SO_SPLICE: 2084 { 2085 off_t len; 2086 2087 m->m_len = sizeof(off_t); 2088 solock_shared(so); 2089 len = so->so_sp ? so->so_sp->ssp_len : 0; 2090 sounlock_shared(so); 2091 memcpy(mtod(m, off_t *), &len, sizeof(off_t)); 2092 break; 2093 } 2094 #endif /* SOCKET_SPLICE */ 2095 2096 case SO_PEERCRED: 2097 if (so->so_proto->pr_protocol == AF_UNIX) { 2098 struct unpcb *unp = sotounpcb(so); 2099 2100 solock(so); 2101 if (unp->unp_flags & UNP_FEIDS) { 2102 m->m_len = sizeof(unp->unp_connid); 2103 memcpy(mtod(m, caddr_t), 2104 &(unp->unp_connid), m->m_len); 2105 sounlock(so); 2106 break; 2107 } 2108 sounlock(so); 2109 2110 return (ENOTCONN); 2111 } 2112 return (EOPNOTSUPP); 2113 2114 default: 2115 return (ENOPROTOOPT); 2116 } 2117 return (0); 2118 } 2119 } 2120 2121 void 2122 sohasoutofband(struct socket *so) 2123 { 2124 pgsigio(&so->so_sigio, SIGURG, 0); 2125 knote_locked(&so->so_rcv.sb_klist, 0); 2126 } 2127 2128 int 2129 soo_kqfilter(struct file *fp, struct knote *kn) 2130 { 2131 struct socket *so = kn->kn_fp->f_data; 2132 struct sockbuf *sb; 2133 2134 solock(so); 2135 switch (kn->kn_filter) { 2136 case EVFILT_READ: 2137 if (so->so_options & SO_ACCEPTCONN) 2138 kn->kn_fop = &solisten_filtops; 2139 else 2140 kn->kn_fop = &soread_filtops; 2141 sb = &so->so_rcv; 2142 break; 2143 case EVFILT_WRITE: 2144 kn->kn_fop = &sowrite_filtops; 2145 sb = &so->so_snd; 2146 break; 2147 case EVFILT_EXCEPT: 2148 kn->kn_fop = &soexcept_filtops; 2149 sb = &so->so_rcv; 2150 break; 2151 default: 2152 sounlock(so); 2153 return (EINVAL); 2154 } 2155 2156 klist_insert_locked(&sb->sb_klist, kn); 2157 sounlock(so); 2158 2159 return (0); 2160 } 2161 2162 void 2163 filt_sordetach(struct knote *kn) 2164 { 2165 struct socket *so = kn->kn_fp->f_data; 2166 2167 klist_remove(&so->so_rcv.sb_klist, kn); 2168 } 2169 2170 int 2171 filt_soread(struct knote *kn, long hint) 2172 { 2173 struct socket *so = kn->kn_fp->f_data; 2174 int rv = 0; 2175 2176 soassertlocked(so); 2177 2178 kn->kn_data = so->so_rcv.sb_cc; 2179 #ifdef SOCKET_SPLICE 2180 if (isspliced(so)) { 2181 rv = 0; 2182 } else 2183 #endif /* SOCKET_SPLICE */ 2184 if (so->so_rcv.sb_state & SS_CANTRCVMORE) { 2185 kn->kn_flags |= EV_EOF; 2186 if (kn->kn_flags & __EV_POLL) { 2187 if (so->so_state & SS_ISDISCONNECTED) 2188 kn->kn_flags |= __EV_HUP; 2189 } 2190 kn->kn_fflags = so->so_error; 2191 rv = 1; 2192 } else if (so->so_error) { /* temporary udp error */ 2193 rv = 1; 2194 } else if (kn->kn_sfflags & NOTE_LOWAT) { 2195 rv = (kn->kn_data >= kn->kn_sdata); 2196 } else { 2197 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2198 } 2199 2200 return rv; 2201 } 2202 2203 void 2204 filt_sowdetach(struct knote *kn) 2205 { 2206 struct socket *so = kn->kn_fp->f_data; 2207 2208 klist_remove(&so->so_snd.sb_klist, kn); 2209 } 2210 2211 int 2212 filt_sowrite(struct knote *kn, long hint) 2213 { 2214 struct socket *so = kn->kn_fp->f_data; 2215 int rv; 2216 2217 soassertlocked(so); 2218 2219 kn->kn_data = sbspace(so, &so->so_snd); 2220 if (so->so_snd.sb_state & SS_CANTSENDMORE) { 2221 kn->kn_flags |= EV_EOF; 2222 if (kn->kn_flags & __EV_POLL) { 2223 if (so->so_state & SS_ISDISCONNECTED) 2224 kn->kn_flags |= __EV_HUP; 2225 } 2226 kn->kn_fflags = so->so_error; 2227 rv = 1; 2228 } else if (so->so_error) { /* temporary udp error */ 2229 rv = 1; 2230 } else if (((so->so_state & SS_ISCONNECTED) == 0) && 2231 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 2232 rv = 0; 2233 } else if (kn->kn_sfflags & NOTE_LOWAT) { 2234 rv = (kn->kn_data >= kn->kn_sdata); 2235 } else { 2236 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2237 } 2238 2239 return (rv); 2240 } 2241 2242 int 2243 filt_soexcept(struct knote *kn, long hint) 2244 { 2245 struct socket *so = kn->kn_fp->f_data; 2246 int rv = 0; 2247 2248 soassertlocked(so); 2249 2250 #ifdef SOCKET_SPLICE 2251 if (isspliced(so)) { 2252 rv = 0; 2253 } else 2254 #endif /* SOCKET_SPLICE */ 2255 if (kn->kn_sfflags & NOTE_OOB) { 2256 if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) { 2257 kn->kn_fflags |= NOTE_OOB; 2258 kn->kn_data -= so->so_oobmark; 2259 rv = 1; 2260 } 2261 } 2262 2263 if (kn->kn_flags & __EV_POLL) { 2264 if (so->so_state & SS_ISDISCONNECTED) { 2265 kn->kn_flags |= __EV_HUP; 2266 rv = 1; 2267 } 2268 } 2269 2270 return rv; 2271 } 2272 2273 int 2274 filt_solisten(struct knote *kn, long hint) 2275 { 2276 struct socket *so = kn->kn_fp->f_data; 2277 int active; 2278 2279 soassertlocked(so); 2280 2281 kn->kn_data = so->so_qlen; 2282 active = (kn->kn_data != 0); 2283 2284 if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) { 2285 if (so->so_state & SS_ISDISCONNECTED) { 2286 kn->kn_flags |= __EV_HUP; 2287 active = 1; 2288 } else { 2289 active = soreadable(so); 2290 } 2291 } 2292 2293 return (active); 2294 } 2295 2296 int 2297 filt_somodify(struct kevent *kev, struct knote *kn) 2298 { 2299 struct socket *so = kn->kn_fp->f_data; 2300 int rv; 2301 2302 solock(so); 2303 rv = knote_modify(kev, kn); 2304 sounlock(so); 2305 2306 return (rv); 2307 } 2308 2309 int 2310 filt_soprocess(struct knote *kn, struct kevent *kev) 2311 { 2312 struct socket *so = kn->kn_fp->f_data; 2313 int rv; 2314 2315 solock(so); 2316 rv = knote_process(kn, kev); 2317 sounlock(so); 2318 2319 return (rv); 2320 } 2321 2322 void 2323 klist_soassertlk(void *arg) 2324 { 2325 struct socket *so = arg; 2326 2327 soassertlocked(so); 2328 } 2329 2330 int 2331 klist_solock(void *arg) 2332 { 2333 struct socket *so = arg; 2334 2335 solock(so); 2336 return (1); 2337 } 2338 2339 void 2340 klist_sounlock(void *arg, int ls) 2341 { 2342 struct socket *so = arg; 2343 2344 sounlock(so); 2345 } 2346 2347 #ifdef DDB 2348 void 2349 sobuf_print(struct sockbuf *, 2350 int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))); 2351 2352 void 2353 sobuf_print(struct sockbuf *sb, 2354 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 2355 { 2356 (*pr)("\tsb_cc: %lu\n", sb->sb_cc); 2357 (*pr)("\tsb_datacc: %lu\n", sb->sb_datacc); 2358 (*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat); 2359 (*pr)("\tsb_wat: %lu\n", sb->sb_wat); 2360 (*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt); 2361 (*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax); 2362 (*pr)("\tsb_lowat: %ld\n", sb->sb_lowat); 2363 (*pr)("\tsb_mb: %p\n", sb->sb_mb); 2364 (*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail); 2365 (*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord); 2366 (*pr)("\tsb_sel: ...\n"); 2367 (*pr)("\tsb_flags: %04x\n", sb->sb_flags); 2368 (*pr)("\tsb_state: %04x\n", sb->sb_state); 2369 (*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs); 2370 } 2371 2372 void 2373 so_print(void *v, 2374 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 2375 { 2376 struct socket *so = v; 2377 2378 (*pr)("socket %p\n", so); 2379 (*pr)("so_type: %i\n", so->so_type); 2380 (*pr)("so_options: 0x%04x\n", so->so_options); /* %b */ 2381 (*pr)("so_linger: %i\n", so->so_linger); 2382 (*pr)("so_state: 0x%04x\n", so->so_state); 2383 (*pr)("so_pcb: %p\n", so->so_pcb); 2384 (*pr)("so_proto: %p\n", so->so_proto); 2385 (*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio); 2386 2387 (*pr)("so_head: %p\n", so->so_head); 2388 (*pr)("so_onq: %p\n", so->so_onq); 2389 (*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0)); 2390 (*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q)); 2391 (*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe)); 2392 (*pr)("so_q0len: %i\n", so->so_q0len); 2393 (*pr)("so_qlen: %i\n", so->so_qlen); 2394 (*pr)("so_qlimit: %i\n", so->so_qlimit); 2395 (*pr)("so_timeo: %i\n", so->so_timeo); 2396 (*pr)("so_obmark: %lu\n", so->so_oobmark); 2397 2398 (*pr)("so_sp: %p\n", so->so_sp); 2399 if (so->so_sp != NULL) { 2400 (*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket); 2401 (*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback); 2402 (*pr)("\tssp_len: %lld\n", 2403 (unsigned long long)so->so_sp->ssp_len); 2404 (*pr)("\tssp_max: %lld\n", 2405 (unsigned long long)so->so_sp->ssp_max); 2406 (*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec, 2407 so->so_sp->ssp_idletv.tv_usec); 2408 (*pr)("\tssp_idleto: %spending (@%i)\n", 2409 timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ", 2410 so->so_sp->ssp_idleto.to_time); 2411 } 2412 2413 (*pr)("so_rcv:\n"); 2414 sobuf_print(&so->so_rcv, pr); 2415 (*pr)("so_snd:\n"); 2416 sobuf_print(&so->so_snd, pr); 2417 2418 (*pr)("so_upcall: %p so_upcallarg: %p\n", 2419 so->so_upcall, so->so_upcallarg); 2420 2421 (*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid); 2422 (*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid); 2423 (*pr)("so_cpid: %d\n", so->so_cpid); 2424 } 2425 #endif 2426