1 /* $OpenBSD: sys_pipe.c,v 1.138 2022/05/09 14:49:55 visa Exp $ */ 2 3 /* 4 * Copyright (c) 1996 John S. Dyson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice immediately at the beginning of the file, without modification, 12 * this list of conditions, and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Absolutely no warranty of function or purpose is made by the author 17 * John S. Dyson. 18 * 4. Modifications may be freely made to this file if the above conditions 19 * are met. 20 */ 21 22 /* 23 * This file contains a high-performance replacement for the socket-based 24 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support 25 * all features of sockets, but does do everything that pipes normally 26 * do. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/proc.h> 32 #include <sys/fcntl.h> 33 #include <sys/file.h> 34 #include <sys/filedesc.h> 35 #include <sys/pool.h> 36 #include <sys/ioctl.h> 37 #include <sys/stat.h> 38 #include <sys/signalvar.h> 39 #include <sys/mount.h> 40 #include <sys/syscallargs.h> 41 #include <sys/event.h> 42 #include <sys/lock.h> 43 #include <sys/poll.h> 44 #ifdef KTRACE 45 #include <sys/ktrace.h> 46 #endif 47 48 #include <uvm/uvm_extern.h> 49 50 #include <sys/pipe.h> 51 52 struct pipe_pair { 53 struct pipe pp_wpipe; 54 struct pipe pp_rpipe; 55 struct rwlock pp_lock; 56 }; 57 58 /* 59 * interfaces to the outside world 60 */ 61 int pipe_read(struct file *, struct uio *, int); 62 int pipe_write(struct file *, struct uio *, int); 63 int pipe_close(struct file *, struct proc *); 64 int pipe_poll(struct file *, int events, struct proc *); 65 int pipe_kqfilter(struct file *fp, struct knote *kn); 66 int pipe_ioctl(struct file *, u_long, caddr_t, struct proc *); 67 int pipe_stat(struct file *fp, struct stat *ub, struct proc *p); 68 69 static const struct fileops pipeops = { 70 .fo_read = pipe_read, 71 .fo_write = pipe_write, 72 .fo_ioctl = pipe_ioctl, 73 .fo_poll = pipe_poll, 74 .fo_kqfilter = pipe_kqfilter, 75 .fo_stat = pipe_stat, 76 .fo_close = pipe_close 77 }; 78 79 void filt_pipedetach(struct knote *kn); 80 int filt_piperead(struct knote *kn, long hint); 81 int filt_pipewrite(struct knote *kn, long hint); 82 int filt_pipeexcept(struct knote *kn, long hint); 83 int filt_pipemodify(struct kevent *kev, struct knote *kn); 84 int filt_pipeprocess(struct knote *kn, struct kevent *kev); 85 86 const struct filterops pipe_rfiltops = { 87 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 88 .f_attach = NULL, 89 .f_detach = filt_pipedetach, 90 .f_event = filt_piperead, 91 .f_modify = filt_pipemodify, 92 .f_process = filt_pipeprocess, 93 }; 94 95 const struct filterops pipe_wfiltops = { 96 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 97 .f_attach = NULL, 98 .f_detach = filt_pipedetach, 99 .f_event = filt_pipewrite, 100 .f_modify = filt_pipemodify, 101 .f_process = filt_pipeprocess, 102 }; 103 104 const struct filterops pipe_efiltops = { 105 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 106 .f_attach = NULL, 107 .f_detach = filt_pipedetach, 108 .f_event = filt_pipeexcept, 109 .f_modify = filt_pipemodify, 110 .f_process = filt_pipeprocess, 111 }; 112 113 /* 114 * Default pipe buffer size(s), this can be kind-of large now because pipe 115 * space is pageable. The pipe code will try to maintain locality of 116 * reference for performance reasons, so small amounts of outstanding I/O 117 * will not wipe the cache. 118 */ 119 #define MINPIPESIZE (PIPE_SIZE/3) 120 121 /* 122 * Limit the number of "big" pipes 123 */ 124 #define LIMITBIGPIPES 32 125 unsigned int nbigpipe; 126 static unsigned int amountpipekva; 127 128 struct pool pipe_pair_pool; 129 130 int dopipe(struct proc *, int *, int); 131 void pipeselwakeup(struct pipe *); 132 133 int pipe_create(struct pipe *); 134 void pipe_destroy(struct pipe *); 135 int pipe_rundown(struct pipe *); 136 struct pipe *pipe_peer(struct pipe *); 137 int pipe_buffer_realloc(struct pipe *, u_int); 138 void pipe_buffer_free(struct pipe *); 139 140 int pipe_iolock(struct pipe *); 141 void pipe_iounlock(struct pipe *); 142 int pipe_iosleep(struct pipe *, const char *); 143 144 struct pipe_pair *pipe_pair_create(void); 145 void pipe_pair_destroy(struct pipe_pair *); 146 147 /* 148 * The pipe system call for the DTYPE_PIPE type of pipes 149 */ 150 151 int 152 sys_pipe(struct proc *p, void *v, register_t *retval) 153 { 154 struct sys_pipe_args /* { 155 syscallarg(int *) fdp; 156 } */ *uap = v; 157 158 return (dopipe(p, SCARG(uap, fdp), 0)); 159 } 160 161 int 162 sys_pipe2(struct proc *p, void *v, register_t *retval) 163 { 164 struct sys_pipe2_args /* { 165 syscallarg(int *) fdp; 166 syscallarg(int) flags; 167 } */ *uap = v; 168 169 if (SCARG(uap, flags) & ~(O_CLOEXEC | FNONBLOCK)) 170 return (EINVAL); 171 172 return (dopipe(p, SCARG(uap, fdp), SCARG(uap, flags))); 173 } 174 175 int 176 dopipe(struct proc *p, int *ufds, int flags) 177 { 178 struct filedesc *fdp = p->p_fd; 179 struct file *rf, *wf; 180 struct pipe_pair *pp; 181 struct pipe *rpipe, *wpipe = NULL; 182 int fds[2], cloexec, error; 183 184 cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0; 185 186 pp = pipe_pair_create(); 187 if (pp == NULL) 188 return (ENOMEM); 189 wpipe = &pp->pp_wpipe; 190 rpipe = &pp->pp_rpipe; 191 192 fdplock(fdp); 193 194 error = falloc(p, &rf, &fds[0]); 195 if (error != 0) 196 goto free2; 197 rf->f_flag = FREAD | FWRITE | (flags & FNONBLOCK); 198 rf->f_type = DTYPE_PIPE; 199 rf->f_data = rpipe; 200 rf->f_ops = &pipeops; 201 202 error = falloc(p, &wf, &fds[1]); 203 if (error != 0) 204 goto free3; 205 wf->f_flag = FREAD | FWRITE | (flags & FNONBLOCK); 206 wf->f_type = DTYPE_PIPE; 207 wf->f_data = wpipe; 208 wf->f_ops = &pipeops; 209 210 fdinsert(fdp, fds[0], cloexec, rf); 211 fdinsert(fdp, fds[1], cloexec, wf); 212 213 error = copyout(fds, ufds, sizeof(fds)); 214 if (error == 0) { 215 fdpunlock(fdp); 216 #ifdef KTRACE 217 if (KTRPOINT(p, KTR_STRUCT)) 218 ktrfds(p, fds, 2); 219 #endif 220 } else { 221 /* fdrelease() unlocks fdp. */ 222 fdrelease(p, fds[0]); 223 fdplock(fdp); 224 fdrelease(p, fds[1]); 225 } 226 227 FRELE(rf, p); 228 FRELE(wf, p); 229 return (error); 230 231 free3: 232 fdremove(fdp, fds[0]); 233 closef(rf, p); 234 rpipe = NULL; 235 free2: 236 fdpunlock(fdp); 237 pipe_destroy(wpipe); 238 pipe_destroy(rpipe); 239 return (error); 240 } 241 242 /* 243 * Allocate kva for pipe circular buffer, the space is pageable. 244 * This routine will 'realloc' the size of a pipe safely, if it fails 245 * it will retain the old buffer. 246 * If it fails it will return ENOMEM. 247 */ 248 int 249 pipe_buffer_realloc(struct pipe *cpipe, u_int size) 250 { 251 caddr_t buffer; 252 253 /* buffer uninitialized or pipe locked */ 254 KASSERT((cpipe->pipe_buffer.buffer == NULL) || 255 (cpipe->pipe_state & PIPE_LOCK)); 256 257 /* buffer should be empty */ 258 KASSERT(cpipe->pipe_buffer.cnt == 0); 259 260 KERNEL_LOCK(); 261 buffer = km_alloc(size, &kv_any, &kp_pageable, &kd_waitok); 262 KERNEL_UNLOCK(); 263 if (buffer == NULL) 264 return (ENOMEM); 265 266 /* free old resources if we are resizing */ 267 pipe_buffer_free(cpipe); 268 269 cpipe->pipe_buffer.buffer = buffer; 270 cpipe->pipe_buffer.size = size; 271 cpipe->pipe_buffer.in = 0; 272 cpipe->pipe_buffer.out = 0; 273 274 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size); 275 276 return (0); 277 } 278 279 /* 280 * initialize and allocate VM and memory for pipe 281 */ 282 int 283 pipe_create(struct pipe *cpipe) 284 { 285 int error; 286 287 error = pipe_buffer_realloc(cpipe, PIPE_SIZE); 288 if (error != 0) 289 return (error); 290 291 sigio_init(&cpipe->pipe_sigio); 292 293 getnanotime(&cpipe->pipe_ctime); 294 cpipe->pipe_atime = cpipe->pipe_ctime; 295 cpipe->pipe_mtime = cpipe->pipe_ctime; 296 297 return (0); 298 } 299 300 struct pipe * 301 pipe_peer(struct pipe *cpipe) 302 { 303 struct pipe *peer; 304 305 rw_assert_anylock(cpipe->pipe_lock); 306 307 peer = cpipe->pipe_peer; 308 if (peer == NULL || (peer->pipe_state & PIPE_EOF)) 309 return (NULL); 310 return (peer); 311 } 312 313 /* 314 * Lock a pipe for exclusive I/O access. 315 */ 316 int 317 pipe_iolock(struct pipe *cpipe) 318 { 319 int error; 320 321 rw_assert_wrlock(cpipe->pipe_lock); 322 323 while (cpipe->pipe_state & PIPE_LOCK) { 324 cpipe->pipe_state |= PIPE_LWANT; 325 error = rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO | PCATCH, 326 "pipeiolk", INFSLP); 327 if (error) 328 return (error); 329 } 330 cpipe->pipe_state |= PIPE_LOCK; 331 return (0); 332 } 333 334 /* 335 * Unlock a pipe I/O lock. 336 */ 337 void 338 pipe_iounlock(struct pipe *cpipe) 339 { 340 rw_assert_wrlock(cpipe->pipe_lock); 341 KASSERT(cpipe->pipe_state & PIPE_LOCK); 342 343 cpipe->pipe_state &= ~PIPE_LOCK; 344 if (cpipe->pipe_state & PIPE_LWANT) { 345 cpipe->pipe_state &= ~PIPE_LWANT; 346 wakeup(cpipe); 347 } 348 } 349 350 /* 351 * Unlock the pipe I/O lock and go to sleep. Returns 0 on success and the I/O 352 * lock is relocked. Otherwise if a signal was caught, non-zero is returned and 353 * the I/O lock is not locked. 354 * 355 * Any caller must obtain a reference to the pipe by incrementing `pipe_busy' 356 * before calling this function in order ensure that the same pipe is not 357 * destroyed while sleeping. 358 */ 359 int 360 pipe_iosleep(struct pipe *cpipe, const char *wmesg) 361 { 362 int error; 363 364 pipe_iounlock(cpipe); 365 error = rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO | PCATCH, wmesg, 366 INFSLP); 367 if (error) 368 return (error); 369 return (pipe_iolock(cpipe)); 370 } 371 372 void 373 pipeselwakeup(struct pipe *cpipe) 374 { 375 rw_assert_wrlock(cpipe->pipe_lock); 376 377 if (cpipe->pipe_state & PIPE_SEL) { 378 cpipe->pipe_state &= ~PIPE_SEL; 379 selwakeup(&cpipe->pipe_sel); 380 } else { 381 KNOTE(&cpipe->pipe_sel.si_note, 0); 382 } 383 384 if (cpipe->pipe_state & PIPE_ASYNC) 385 pgsigio(&cpipe->pipe_sigio, SIGIO, 0); 386 } 387 388 int 389 pipe_read(struct file *fp, struct uio *uio, int fflags) 390 { 391 struct pipe *rpipe = fp->f_data; 392 size_t nread = 0, size; 393 int error; 394 395 rw_enter_write(rpipe->pipe_lock); 396 ++rpipe->pipe_busy; 397 error = pipe_iolock(rpipe); 398 if (error) { 399 --rpipe->pipe_busy; 400 pipe_rundown(rpipe); 401 rw_exit_write(rpipe->pipe_lock); 402 return (error); 403 } 404 405 while (uio->uio_resid) { 406 /* Normal pipe buffer receive. */ 407 if (rpipe->pipe_buffer.cnt > 0) { 408 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out; 409 if (size > rpipe->pipe_buffer.cnt) 410 size = rpipe->pipe_buffer.cnt; 411 if (size > uio->uio_resid) 412 size = uio->uio_resid; 413 rw_exit_write(rpipe->pipe_lock); 414 error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out], 415 size, uio); 416 rw_enter_write(rpipe->pipe_lock); 417 if (error) { 418 break; 419 } 420 rpipe->pipe_buffer.out += size; 421 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size) 422 rpipe->pipe_buffer.out = 0; 423 424 rpipe->pipe_buffer.cnt -= size; 425 /* 426 * If there is no more to read in the pipe, reset 427 * its pointers to the beginning. This improves 428 * cache hit stats. 429 */ 430 if (rpipe->pipe_buffer.cnt == 0) { 431 rpipe->pipe_buffer.in = 0; 432 rpipe->pipe_buffer.out = 0; 433 } 434 nread += size; 435 } else { 436 /* 437 * detect EOF condition 438 * read returns 0 on EOF, no need to set error 439 */ 440 if (rpipe->pipe_state & PIPE_EOF) 441 break; 442 443 /* If the "write-side" has been blocked, wake it up. */ 444 if (rpipe->pipe_state & PIPE_WANTW) { 445 rpipe->pipe_state &= ~PIPE_WANTW; 446 wakeup(rpipe); 447 } 448 449 /* Break if some data was read. */ 450 if (nread > 0) 451 break; 452 453 /* Handle non-blocking mode operation. */ 454 if (fp->f_flag & FNONBLOCK) { 455 error = EAGAIN; 456 break; 457 } 458 459 /* Wait for more data. */ 460 rpipe->pipe_state |= PIPE_WANTR; 461 error = pipe_iosleep(rpipe, "piperd"); 462 if (error) 463 goto unlocked_error; 464 } 465 } 466 pipe_iounlock(rpipe); 467 468 if (error == 0) 469 getnanotime(&rpipe->pipe_atime); 470 unlocked_error: 471 --rpipe->pipe_busy; 472 473 if (pipe_rundown(rpipe) == 0 && rpipe->pipe_buffer.cnt < MINPIPESIZE) { 474 /* Handle write blocking hysteresis. */ 475 if (rpipe->pipe_state & PIPE_WANTW) { 476 rpipe->pipe_state &= ~PIPE_WANTW; 477 wakeup(rpipe); 478 } 479 } 480 481 if (rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF) 482 pipeselwakeup(rpipe); 483 484 rw_exit_write(rpipe->pipe_lock); 485 return (error); 486 } 487 488 int 489 pipe_write(struct file *fp, struct uio *uio, int fflags) 490 { 491 struct pipe *rpipe = fp->f_data, *wpipe; 492 struct rwlock *lock = rpipe->pipe_lock; 493 size_t orig_resid; 494 int error; 495 496 rw_enter_write(lock); 497 wpipe = pipe_peer(rpipe); 498 499 /* Detect loss of pipe read side, issue SIGPIPE if lost. */ 500 if (wpipe == NULL) { 501 rw_exit_write(lock); 502 return (EPIPE); 503 } 504 505 ++wpipe->pipe_busy; 506 error = pipe_iolock(wpipe); 507 if (error) { 508 --wpipe->pipe_busy; 509 pipe_rundown(wpipe); 510 rw_exit_write(lock); 511 return (error); 512 } 513 514 515 /* If it is advantageous to resize the pipe buffer, do so. */ 516 if (uio->uio_resid > PIPE_SIZE && 517 wpipe->pipe_buffer.size <= PIPE_SIZE && 518 wpipe->pipe_buffer.cnt == 0) { 519 unsigned int npipe; 520 521 npipe = atomic_inc_int_nv(&nbigpipe); 522 if (npipe > LIMITBIGPIPES || 523 pipe_buffer_realloc(wpipe, BIG_PIPE_SIZE) != 0) 524 atomic_dec_int(&nbigpipe); 525 } 526 527 orig_resid = uio->uio_resid; 528 529 while (uio->uio_resid) { 530 size_t space; 531 532 if (wpipe->pipe_state & PIPE_EOF) { 533 error = EPIPE; 534 break; 535 } 536 537 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 538 539 /* Writes of size <= PIPE_BUF must be atomic. */ 540 if (space < uio->uio_resid && orig_resid <= PIPE_BUF) 541 space = 0; 542 543 if (space > 0) { 544 size_t size; /* Transfer size */ 545 size_t segsize; /* first segment to transfer */ 546 547 /* 548 * Transfer size is minimum of uio transfer 549 * and free space in pipe buffer. 550 */ 551 if (space > uio->uio_resid) 552 size = uio->uio_resid; 553 else 554 size = space; 555 /* 556 * First segment to transfer is minimum of 557 * transfer size and contiguous space in 558 * pipe buffer. If first segment to transfer 559 * is less than the transfer size, we've got 560 * a wraparound in the buffer. 561 */ 562 segsize = wpipe->pipe_buffer.size - 563 wpipe->pipe_buffer.in; 564 if (segsize > size) 565 segsize = size; 566 567 /* Transfer first segment */ 568 569 rw_exit_write(lock); 570 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in], 571 segsize, uio); 572 rw_enter_write(lock); 573 574 if (error == 0 && segsize < size) { 575 /* 576 * Transfer remaining part now, to 577 * support atomic writes. Wraparound 578 * happened. 579 */ 580 #ifdef DIAGNOSTIC 581 if (wpipe->pipe_buffer.in + segsize != 582 wpipe->pipe_buffer.size) 583 panic("Expected pipe buffer wraparound disappeared"); 584 #endif 585 586 rw_exit_write(lock); 587 error = uiomove(&wpipe->pipe_buffer.buffer[0], 588 size - segsize, uio); 589 rw_enter_write(lock); 590 } 591 if (error == 0) { 592 wpipe->pipe_buffer.in += size; 593 if (wpipe->pipe_buffer.in >= 594 wpipe->pipe_buffer.size) { 595 #ifdef DIAGNOSTIC 596 if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size) 597 panic("Expected wraparound bad"); 598 #endif 599 wpipe->pipe_buffer.in = size - segsize; 600 } 601 602 wpipe->pipe_buffer.cnt += size; 603 #ifdef DIAGNOSTIC 604 if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size) 605 panic("Pipe buffer overflow"); 606 #endif 607 } 608 if (error) 609 break; 610 } else { 611 /* If the "read-side" has been blocked, wake it up. */ 612 if (wpipe->pipe_state & PIPE_WANTR) { 613 wpipe->pipe_state &= ~PIPE_WANTR; 614 wakeup(wpipe); 615 } 616 617 /* Don't block on non-blocking I/O. */ 618 if (fp->f_flag & FNONBLOCK) { 619 error = EAGAIN; 620 break; 621 } 622 623 /* 624 * We have no more space and have something to offer, 625 * wake up select/poll. 626 */ 627 pipeselwakeup(wpipe); 628 629 wpipe->pipe_state |= PIPE_WANTW; 630 error = pipe_iosleep(wpipe, "pipewr"); 631 if (error) 632 goto unlocked_error; 633 634 /* 635 * If read side wants to go away, we just issue a 636 * signal to ourselves. 637 */ 638 if (wpipe->pipe_state & PIPE_EOF) { 639 error = EPIPE; 640 break; 641 } 642 } 643 } 644 pipe_iounlock(wpipe); 645 646 unlocked_error: 647 --wpipe->pipe_busy; 648 649 if (pipe_rundown(wpipe) == 0 && wpipe->pipe_buffer.cnt > 0) { 650 /* 651 * If we have put any characters in the buffer, we wake up 652 * the reader. 653 */ 654 if (wpipe->pipe_state & PIPE_WANTR) { 655 wpipe->pipe_state &= ~PIPE_WANTR; 656 wakeup(wpipe); 657 } 658 } 659 660 /* Don't return EPIPE if I/O was successful. */ 661 if (wpipe->pipe_buffer.cnt == 0 && 662 uio->uio_resid == 0 && 663 error == EPIPE) { 664 error = 0; 665 } 666 667 if (error == 0) 668 getnanotime(&wpipe->pipe_mtime); 669 /* We have something to offer, wake up select/poll. */ 670 if (wpipe->pipe_buffer.cnt) 671 pipeselwakeup(wpipe); 672 673 rw_exit_write(lock); 674 return (error); 675 } 676 677 /* 678 * we implement a very minimal set of ioctls for compatibility with sockets. 679 */ 680 int 681 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct proc *p) 682 { 683 struct pipe *mpipe = fp->f_data; 684 int error = 0; 685 686 switch (cmd) { 687 688 case FIONBIO: 689 break; 690 691 case FIOASYNC: 692 rw_enter_write(mpipe->pipe_lock); 693 if (*(int *)data) { 694 mpipe->pipe_state |= PIPE_ASYNC; 695 } else { 696 mpipe->pipe_state &= ~PIPE_ASYNC; 697 } 698 rw_exit_write(mpipe->pipe_lock); 699 break; 700 701 case FIONREAD: 702 rw_enter_read(mpipe->pipe_lock); 703 *(int *)data = mpipe->pipe_buffer.cnt; 704 rw_exit_read(mpipe->pipe_lock); 705 break; 706 707 case FIOSETOWN: 708 case SIOCSPGRP: 709 case TIOCSPGRP: 710 error = sigio_setown(&mpipe->pipe_sigio, cmd, data); 711 break; 712 713 case FIOGETOWN: 714 case SIOCGPGRP: 715 case TIOCGPGRP: 716 sigio_getown(&mpipe->pipe_sigio, cmd, data); 717 break; 718 719 default: 720 error = ENOTTY; 721 } 722 723 return (error); 724 } 725 726 int 727 pipe_poll(struct file *fp, int events, struct proc *p) 728 { 729 struct pipe *rpipe = fp->f_data, *wpipe; 730 struct rwlock *lock = rpipe->pipe_lock; 731 int revents = 0; 732 733 rw_enter_write(lock); 734 wpipe = pipe_peer(rpipe); 735 736 if (events & (POLLIN | POLLRDNORM)) { 737 if (rpipe->pipe_buffer.cnt > 0 || 738 (rpipe->pipe_state & PIPE_EOF)) 739 revents |= events & (POLLIN | POLLRDNORM); 740 } 741 742 /* NOTE: POLLHUP and POLLOUT/POLLWRNORM are mutually exclusive */ 743 if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) 744 revents |= POLLHUP; 745 else if (events & (POLLOUT | POLLWRNORM)) { 746 if (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt >= PIPE_BUF) 747 revents |= events & (POLLOUT | POLLWRNORM); 748 } 749 750 if (revents == 0) { 751 if (events & (POLLIN | POLLRDNORM)) { 752 selrecord(p, &rpipe->pipe_sel); 753 rpipe->pipe_state |= PIPE_SEL; 754 } 755 if (events & (POLLOUT | POLLWRNORM)) { 756 selrecord(p, &wpipe->pipe_sel); 757 wpipe->pipe_state |= PIPE_SEL; 758 } 759 } 760 761 rw_exit_write(lock); 762 763 return (revents); 764 } 765 766 int 767 pipe_stat(struct file *fp, struct stat *ub, struct proc *p) 768 { 769 struct pipe *pipe = fp->f_data; 770 771 memset(ub, 0, sizeof(*ub)); 772 773 rw_enter_read(pipe->pipe_lock); 774 ub->st_mode = S_IFIFO; 775 ub->st_blksize = pipe->pipe_buffer.size; 776 ub->st_size = pipe->pipe_buffer.cnt; 777 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize; 778 ub->st_atim.tv_sec = pipe->pipe_atime.tv_sec; 779 ub->st_atim.tv_nsec = pipe->pipe_atime.tv_nsec; 780 ub->st_mtim.tv_sec = pipe->pipe_mtime.tv_sec; 781 ub->st_mtim.tv_nsec = pipe->pipe_mtime.tv_nsec; 782 ub->st_ctim.tv_sec = pipe->pipe_ctime.tv_sec; 783 ub->st_ctim.tv_nsec = pipe->pipe_ctime.tv_nsec; 784 ub->st_uid = fp->f_cred->cr_uid; 785 ub->st_gid = fp->f_cred->cr_gid; 786 rw_exit_read(pipe->pipe_lock); 787 /* 788 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen. 789 * XXX (st_dev, st_ino) should be unique. 790 */ 791 return (0); 792 } 793 794 int 795 pipe_close(struct file *fp, struct proc *p) 796 { 797 struct pipe *cpipe = fp->f_data; 798 799 fp->f_ops = NULL; 800 fp->f_data = NULL; 801 pipe_destroy(cpipe); 802 return (0); 803 } 804 805 /* 806 * Free kva for pipe circular buffer. 807 * No pipe lock check as only called from pipe_buffer_realloc() and pipeclose() 808 */ 809 void 810 pipe_buffer_free(struct pipe *cpipe) 811 { 812 u_int size; 813 814 if (cpipe->pipe_buffer.buffer == NULL) 815 return; 816 817 size = cpipe->pipe_buffer.size; 818 819 KERNEL_LOCK(); 820 km_free(cpipe->pipe_buffer.buffer, size, &kv_any, &kp_pageable); 821 KERNEL_UNLOCK(); 822 823 cpipe->pipe_buffer.buffer = NULL; 824 825 atomic_sub_int(&amountpipekva, size); 826 if (size > PIPE_SIZE) 827 atomic_dec_int(&nbigpipe); 828 } 829 830 /* 831 * shutdown the pipe, and free resources. 832 */ 833 void 834 pipe_destroy(struct pipe *cpipe) 835 { 836 struct pipe *ppipe; 837 838 if (cpipe == NULL) 839 return; 840 841 rw_enter_write(cpipe->pipe_lock); 842 843 pipeselwakeup(cpipe); 844 sigio_free(&cpipe->pipe_sigio); 845 846 /* 847 * If the other side is blocked, wake it up saying that 848 * we want to close it down. 849 */ 850 cpipe->pipe_state |= PIPE_EOF; 851 while (cpipe->pipe_busy) { 852 wakeup(cpipe); 853 cpipe->pipe_state |= PIPE_WANTD; 854 rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO, "pipecl", INFSLP); 855 } 856 857 /* Disconnect from peer. */ 858 if ((ppipe = cpipe->pipe_peer) != NULL) { 859 pipeselwakeup(ppipe); 860 861 ppipe->pipe_state |= PIPE_EOF; 862 wakeup(ppipe); 863 ppipe->pipe_peer = NULL; 864 } 865 866 pipe_buffer_free(cpipe); 867 868 rw_exit_write(cpipe->pipe_lock); 869 870 if (ppipe == NULL) 871 pipe_pair_destroy(cpipe->pipe_pair); 872 } 873 874 /* 875 * Returns non-zero if a rundown is currently ongoing. 876 */ 877 int 878 pipe_rundown(struct pipe *cpipe) 879 { 880 rw_assert_wrlock(cpipe->pipe_lock); 881 882 if (cpipe->pipe_busy > 0 || (cpipe->pipe_state & PIPE_WANTD) == 0) 883 return (0); 884 885 /* Only wakeup pipe_destroy() once the pipe is no longer busy. */ 886 cpipe->pipe_state &= ~(PIPE_WANTD | PIPE_WANTR | PIPE_WANTW); 887 wakeup(cpipe); 888 return (1); 889 } 890 891 int 892 pipe_kqfilter(struct file *fp, struct knote *kn) 893 { 894 struct pipe *rpipe = kn->kn_fp->f_data, *wpipe; 895 struct rwlock *lock = rpipe->pipe_lock; 896 int error = 0; 897 898 rw_enter_write(lock); 899 wpipe = pipe_peer(rpipe); 900 901 switch (kn->kn_filter) { 902 case EVFILT_READ: 903 kn->kn_fop = &pipe_rfiltops; 904 kn->kn_hook = rpipe; 905 klist_insert_locked(&rpipe->pipe_sel.si_note, kn); 906 break; 907 case EVFILT_WRITE: 908 if (wpipe == NULL) { 909 /* other end of pipe has been closed */ 910 error = EPIPE; 911 break; 912 } 913 kn->kn_fop = &pipe_wfiltops; 914 kn->kn_hook = wpipe; 915 klist_insert_locked(&wpipe->pipe_sel.si_note, kn); 916 break; 917 case EVFILT_EXCEPT: 918 if (kn->kn_flags & __EV_SELECT) { 919 /* Prevent triggering exceptfds. */ 920 error = EPERM; 921 break; 922 } 923 if ((kn->kn_flags & __EV_POLL) == 0) { 924 /* Disallow usage through kevent(2). */ 925 error = EINVAL; 926 break; 927 } 928 kn->kn_fop = &pipe_efiltops; 929 kn->kn_hook = rpipe; 930 klist_insert_locked(&rpipe->pipe_sel.si_note, kn); 931 break; 932 default: 933 error = EINVAL; 934 } 935 936 rw_exit_write(lock); 937 938 return (error); 939 } 940 941 void 942 filt_pipedetach(struct knote *kn) 943 { 944 struct pipe *cpipe = kn->kn_hook; 945 946 klist_remove(&cpipe->pipe_sel.si_note, kn); 947 } 948 949 int 950 filt_piperead(struct knote *kn, long hint) 951 { 952 struct pipe *rpipe = kn->kn_fp->f_data, *wpipe; 953 954 rw_assert_wrlock(rpipe->pipe_lock); 955 956 wpipe = pipe_peer(rpipe); 957 958 kn->kn_data = rpipe->pipe_buffer.cnt; 959 960 if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) { 961 kn->kn_flags |= EV_EOF; 962 if (kn->kn_flags & __EV_POLL) 963 kn->kn_flags |= __EV_HUP; 964 return (1); 965 } 966 967 return (kn->kn_data > 0); 968 } 969 970 int 971 filt_pipewrite(struct knote *kn, long hint) 972 { 973 struct pipe *rpipe = kn->kn_fp->f_data, *wpipe; 974 975 rw_assert_wrlock(rpipe->pipe_lock); 976 977 wpipe = pipe_peer(rpipe); 978 979 if (wpipe == NULL) { 980 kn->kn_data = 0; 981 kn->kn_flags |= EV_EOF; 982 if (kn->kn_flags & __EV_POLL) 983 kn->kn_flags |= __EV_HUP; 984 return (1); 985 } 986 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt; 987 988 return (kn->kn_data >= PIPE_BUF); 989 } 990 991 int 992 filt_pipeexcept(struct knote *kn, long hint) 993 { 994 struct pipe *rpipe = kn->kn_fp->f_data, *wpipe; 995 int active = 0; 996 997 rw_assert_wrlock(rpipe->pipe_lock); 998 999 wpipe = pipe_peer(rpipe); 1000 1001 if (kn->kn_flags & __EV_POLL) { 1002 if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) { 1003 kn->kn_flags |= __EV_HUP; 1004 active = 1; 1005 } 1006 } 1007 1008 return (active); 1009 } 1010 1011 int 1012 filt_pipemodify(struct kevent *kev, struct knote *kn) 1013 { 1014 struct pipe *rpipe = kn->kn_fp->f_data; 1015 int active; 1016 1017 rw_enter_write(rpipe->pipe_lock); 1018 active = knote_modify(kev, kn); 1019 rw_exit_write(rpipe->pipe_lock); 1020 1021 return (active); 1022 } 1023 1024 int 1025 filt_pipeprocess(struct knote *kn, struct kevent *kev) 1026 { 1027 struct pipe *rpipe = kn->kn_fp->f_data; 1028 int active; 1029 1030 rw_enter_write(rpipe->pipe_lock); 1031 active = knote_process(kn, kev); 1032 rw_exit_write(rpipe->pipe_lock); 1033 1034 return (active); 1035 } 1036 1037 void 1038 pipe_init(void) 1039 { 1040 pool_init(&pipe_pair_pool, sizeof(struct pipe_pair), 0, IPL_MPFLOOR, 1041 PR_WAITOK, "pipepl", NULL); 1042 } 1043 1044 struct pipe_pair * 1045 pipe_pair_create(void) 1046 { 1047 struct pipe_pair *pp; 1048 1049 pp = pool_get(&pipe_pair_pool, PR_WAITOK | PR_ZERO); 1050 pp->pp_wpipe.pipe_pair = pp; 1051 pp->pp_rpipe.pipe_pair = pp; 1052 pp->pp_wpipe.pipe_peer = &pp->pp_rpipe; 1053 pp->pp_rpipe.pipe_peer = &pp->pp_wpipe; 1054 /* 1055 * One lock is used per pipe pair in order to obtain exclusive access to 1056 * the pipe pair. 1057 */ 1058 rw_init(&pp->pp_lock, "pipelk"); 1059 pp->pp_wpipe.pipe_lock = &pp->pp_lock; 1060 pp->pp_rpipe.pipe_lock = &pp->pp_lock; 1061 1062 klist_init_rwlock(&pp->pp_wpipe.pipe_sel.si_note, &pp->pp_lock); 1063 klist_init_rwlock(&pp->pp_rpipe.pipe_sel.si_note, &pp->pp_lock); 1064 1065 if (pipe_create(&pp->pp_wpipe) || pipe_create(&pp->pp_rpipe)) 1066 goto err; 1067 return (pp); 1068 err: 1069 pipe_destroy(&pp->pp_wpipe); 1070 pipe_destroy(&pp->pp_rpipe); 1071 return (NULL); 1072 } 1073 1074 void 1075 pipe_pair_destroy(struct pipe_pair *pp) 1076 { 1077 klist_free(&pp->pp_wpipe.pipe_sel.si_note); 1078 klist_free(&pp->pp_rpipe.pipe_sel.si_note); 1079 pool_put(&pipe_pair_pool, pp); 1080 } 1081