xref: /openbsd-src/sys/kern/sys_futex.c (revision c7e8ea31cd41a963f06f0a8ba93948b06aa6b4a4)
1 /*	$OpenBSD: sys_futex.c,v 1.4 2017/08/13 20:26:33 guenther Exp $ */
2 
3 /*
4  * Copyright (c) 2016-2017 Martin Pieuchot
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/param.h>
20 #include <sys/systm.h>
21 #include <sys/proc.h>
22 #include <sys/kernel.h>
23 #include <sys/mount.h>
24 #include <sys/syscallargs.h>
25 #include <sys/pool.h>
26 #include <sys/time.h>
27 #include <sys/rwlock.h>
28 #include <sys/futex.h>
29 
30 #ifdef KTRACE
31 #include <sys/ktrace.h>
32 #endif
33 
34 /*
35  * Atomicity is only needed on MULTIPROCESSOR kernels.  Fall back on
36  * copyin(9) until non-MULTIPROCESSOR architectures have a copyin32(9)
37  * implementation.
38  */
39 #ifndef MULTIPROCESSOR
40 #define copyin32(uaddr, kaddr)	copyin((uaddr), (kaddr), sizeof(uint32_t))
41 #endif
42 
43 /*
44  * Kernel representation of a futex.
45  */
46 struct futex {
47 	LIST_ENTRY(futex)	 ft_list;	/* list of all futexes */
48 	TAILQ_HEAD(, proc)	 ft_threads;	/* sleeping queue */
49 	uint32_t		*ft_uaddr;	/* userspace address */
50 	pid_t			 ft_pid;	/* process identifier */
51 	unsigned int		 ft_refcnt;	/* # of references */
52 };
53 
54 /* Syscall helpers. */
55 int		 futex_wait(uint32_t *, uint32_t, const struct timespec *);
56 int		 futex_wake(uint32_t *, uint32_t);
57 int		 futex_requeue(uint32_t *, uint32_t, uint32_t *, uint32_t);
58 
59 /* Flags for futex_get(). */
60 #define FT_CREATE	0x1	/* Create a futex if it doesn't exist. */
61 
62 struct futex	*futex_get(uint32_t *, int);
63 void		 futex_put(struct futex *);
64 
65 /*
66  * The global futex lock serialize futex(2) calls such that no wakeup
67  * event are lost, protect the global list of all futexes and their
68  * states.
69  */
70 struct rwlock			ftlock = RWLOCK_INITIALIZER("futex");
71 static LIST_HEAD(, futex)	ftlist;
72 struct pool			ftpool;
73 
74 
75 void
76 futex_init(void)
77 {
78 	pool_init(&ftpool, sizeof(struct futex), 0, IPL_NONE,
79 	    PR_WAITOK | PR_RWLOCK, "futexpl", NULL);
80 }
81 
82 int
83 sys_futex(struct proc *p, void *v, register_t *retval)
84 {
85 	struct sys_futex_args /* {
86 		syscallarg(uint32_t *) f;
87 		syscallarg(int) op;
88 		syscallarg(inr) val;
89 		syscallarg(const struct timespec *) timeout;
90 		syscallarg(uint32_t *) g;
91 	} */ *uap = v;
92 	uint32_t *uaddr = SCARG(uap, f);
93 	int op = SCARG(uap, op);
94 	uint32_t val = SCARG(uap, val);
95 	const struct timespec *timeout = SCARG(uap, timeout);
96 	void *g = SCARG(uap, g);
97 
98 	switch (op) {
99 	case FUTEX_WAIT:
100 		KERNEL_LOCK();
101 		rw_enter_write(&ftlock);
102 		*retval = futex_wait(uaddr, val, timeout);
103 		rw_exit_write(&ftlock);
104 		KERNEL_UNLOCK();
105 		break;
106 	case FUTEX_WAKE:
107 		rw_enter_write(&ftlock);
108 		*retval = futex_wake(uaddr, val);
109 		rw_exit_write(&ftlock);
110 		break;
111 	case FUTEX_REQUEUE:
112 		rw_enter_write(&ftlock);
113 		*retval = futex_requeue(uaddr, val, g, (unsigned long)timeout);
114 		rw_exit_write(&ftlock);
115 		break;
116 	default:
117 		*retval = ENOSYS;
118 		break;
119 	}
120 
121 	return 0;
122 }
123 
124 /*
125  * Return an existing futex matching userspace address ``uaddr''.
126  *
127  * If such futex does not exist and FT_CREATE is given, create it.
128  */
129 struct futex *
130 futex_get(uint32_t *uaddr, int flag)
131 {
132 	struct futex *f;
133 
134 	rw_assert_wrlock(&ftlock);
135 
136 	LIST_FOREACH(f, &ftlist, ft_list) {
137 		if (f->ft_uaddr == uaddr && f->ft_pid == curproc->p_p->ps_pid) {
138 			f->ft_refcnt++;
139 			break;
140 		}
141 	}
142 
143 	if ((f == NULL) && (flag & FT_CREATE)) {
144 		/*
145 		 * We rely on the rwlock to ensure that no other thread
146 		 * create the same futex.
147 		 */
148 		f = pool_get(&ftpool, PR_WAITOK);
149 		TAILQ_INIT(&f->ft_threads);
150 		f->ft_uaddr = uaddr;
151 		f->ft_pid = curproc->p_p->ps_pid;
152 		f->ft_refcnt = 1;
153 		LIST_INSERT_HEAD(&ftlist, f, ft_list);
154 	}
155 
156 	return f;
157 }
158 
159 /*
160  * Release a given futex.
161  */
162 void
163 futex_put(struct futex *f)
164 {
165 	rw_assert_wrlock(&ftlock);
166 
167 	KASSERT(f->ft_refcnt > 0);
168 
169 	--f->ft_refcnt;
170 	if (f->ft_refcnt == 0) {
171 		KASSERT(TAILQ_EMPTY(&f->ft_threads));
172 		LIST_REMOVE(f, ft_list);
173 		pool_put(&ftpool, f);
174 	}
175 }
176 
177 /*
178  * Put the current thread on the sleep queue of the futex at address
179  * ``uaddr''.  Let it sleep for the specified ``timeout'' time, or
180  * indefinitly if the argument is NULL.
181  */
182 int
183 futex_wait(uint32_t *uaddr, uint32_t val, const struct timespec *timeout)
184 {
185 	struct proc *p = curproc;
186 	struct futex *f;
187 	uint64_t to_ticks = 0;
188 	uint32_t cval;
189 	int error;
190 
191 	/*
192 	 * After reading the value a race is still possible but
193 	 * we deal with it by serializing all futex syscalls.
194 	 */
195 	rw_assert_wrlock(&ftlock);
196 
197 	/*
198 	 * Read user space futex value
199 	 */
200 	if ((error = copyin32(uaddr, &cval)))
201 		return error;
202 
203 	/* If the value changed, stop here. */
204 	if (cval != val)
205 		return EAGAIN;
206 
207 	if (timeout != NULL) {
208 		struct timespec ts;
209 
210 		if ((error = copyin(timeout, &ts, sizeof(ts))))
211 			return error;
212 #ifdef KTRACE
213 		if (KTRPOINT(p, KTR_STRUCT))
214 			ktrabstimespec(p, timeout);
215 #endif
216 		to_ticks = (uint64_t)hz * ts.tv_sec +
217 		    (ts.tv_nsec + tick * 1000 - 1) / (tick * 1000) + 1;
218 		if (to_ticks > INT_MAX)
219 			to_ticks = INT_MAX;
220 	}
221 
222 	f = futex_get(uaddr, FT_CREATE);
223 	TAILQ_INSERT_TAIL(&f->ft_threads, p, p_fut_link);
224 	p->p_futex = f;
225 
226 	error = rwsleep(p, &ftlock, PUSER|PCATCH, "fsleep", (int)to_ticks);
227 	if (error == ERESTART)
228 		error = EINTR;
229 	else if (error == EWOULDBLOCK) {
230 		/* A race occured between a wakeup and a timeout. */
231 		if (p->p_futex == NULL)
232 			error = 0;
233 		else
234 			error = ETIMEDOUT;
235 	}
236 
237 	/* Remove ourself if we haven't been awaken. */
238 	if ((f = p->p_futex) != NULL) {
239 		p->p_futex = NULL;
240 		TAILQ_REMOVE(&f->ft_threads, p, p_fut_link);
241 		futex_put(f);
242 	}
243 
244 	return error;
245 }
246 
247 /*
248  * Wakeup at most ``n'' sibling threads sleeping on a futex at address
249  * ``uaddr'' and requeue at most ``m'' sibling threads on a futex at
250  * address ``uaddr2''.
251  */
252 int
253 futex_requeue(uint32_t *uaddr, uint32_t n, uint32_t *uaddr2, uint32_t m)
254 {
255 	struct futex *f, *g;
256 	struct proc *p;
257 	uint32_t count = 0;
258 
259 	rw_assert_wrlock(&ftlock);
260 
261 	f = futex_get(uaddr, 0);
262 	if (f == NULL)
263 		return 0;
264 
265 	while ((p = TAILQ_FIRST(&f->ft_threads)) != NULL && (count < (n + m))) {
266 		p->p_futex = NULL;
267 		TAILQ_REMOVE(&f->ft_threads, p, p_fut_link);
268 		futex_put(f);
269 
270 		if (count < n) {
271 			wakeup_one(p);
272 		} else if (uaddr2 != NULL) {
273 			g = futex_get(uaddr2, FT_CREATE);
274 			TAILQ_INSERT_TAIL(&g->ft_threads, p, p_fut_link);
275 			p->p_futex = g;
276 		}
277 		count++;
278 	}
279 
280 	futex_put(f);
281 
282 	return count;
283 }
284 
285 /*
286  * Wakeup at most ``n'' sibling threads sleeping on a futex at address
287  * ``uaddr''.
288  */
289 int
290 futex_wake(uint32_t *uaddr, uint32_t n)
291 {
292 	return futex_requeue(uaddr, n, NULL, 0);
293 }
294