xref: /openbsd-src/sys/kern/subr_pool.c (revision db289ae7eb44b37393356adc5d50d87836bcd8a9)
1 /*	$OpenBSD: subr_pool.c,v 1.101 2011/04/04 11:13:55 deraadt Exp $	*/
2 /*	$NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/proc.h>
37 #include <sys/errno.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/pool.h>
41 #include <sys/syslog.h>
42 #include <sys/sysctl.h>
43 
44 #include <uvm/uvm.h>
45 #include <dev/rndvar.h>
46 
47 /*
48  * Pool resource management utility.
49  *
50  * Memory is allocated in pages which are split into pieces according to
51  * the pool item size. Each page is kept on one of three lists in the
52  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
53  * for empty, full and partially-full pages respectively. The individual
54  * pool items are on a linked list headed by `ph_itemlist' in each page
55  * header. The memory for building the page list is either taken from
56  * the allocated pages themselves (for small pool items) or taken from
57  * an internal pool of page headers (`phpool').
58  */
59 
60 /* List of all pools */
61 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
62 
63 /* Private pool for page header structures */
64 struct pool phpool;
65 
66 struct pool_item_header {
67 	/* Page headers */
68 	LIST_ENTRY(pool_item_header)
69 				ph_pagelist;	/* pool page list */
70 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
71 	RB_ENTRY(pool_item_header)
72 				ph_node;	/* Off-page page headers */
73 	int			ph_nmissing;	/* # of chunks in use */
74 	caddr_t			ph_page;	/* this page's address */
75 	caddr_t			ph_colored;	/* page's colored address */
76 	int			ph_pagesize;
77 	int			ph_magic;
78 };
79 
80 struct pool_item {
81 #ifdef DIAGNOSTIC
82 	u_int32_t pi_magic;
83 #endif
84 	/* Other entries use only this list entry */
85 	TAILQ_ENTRY(pool_item)	pi_list;
86 };
87 
88 #ifdef DEADBEEF1
89 #define	PI_MAGIC DEADBEEF1
90 #else
91 #define	PI_MAGIC 0xdeafbeef
92 #endif
93 
94 #ifdef POOL_DEBUG
95 int	pool_debug = 1;
96 #else
97 int	pool_debug = 0;
98 #endif
99 
100 #define	POOL_NEEDS_CATCHUP(pp)						\
101 	((pp)->pr_nitems < (pp)->pr_minitems)
102 
103 /*
104  * Every pool gets a unique serial number assigned to it. If this counter
105  * wraps, we're screwed, but we shouldn't create so many pools anyway.
106  */
107 unsigned int pool_serial;
108 
109 int	 pool_catchup(struct pool *);
110 void	 pool_prime_page(struct pool *, caddr_t, struct pool_item_header *);
111 void	 pool_update_curpage(struct pool *);
112 void	*pool_do_get(struct pool *, int);
113 void	 pool_do_put(struct pool *, void *);
114 void	 pr_rmpage(struct pool *, struct pool_item_header *,
115 	    struct pool_pagelist *);
116 int	pool_chk_page(struct pool *, const char *, struct pool_item_header *);
117 struct pool_item_header *pool_alloc_item_header(struct pool *, caddr_t , int);
118 
119 void	*pool_allocator_alloc(struct pool *, int, int *);
120 void	 pool_allocator_free(struct pool *, void *);
121 
122 /*
123  * XXX - quick hack. For pools with large items we want to use a special
124  *       allocator. For now, instead of having the allocator figure out
125  *       the allocation size from the pool (which can be done trivially
126  *       with round_page(pr_itemsperpage * pr_size)) which would require
127  *	 lots of changes everywhere, we just create allocators for each
128  *	 size. We limit those to 128 pages.
129  */
130 #define POOL_LARGE_MAXPAGES 128
131 struct pool_allocator pool_allocator_large[POOL_LARGE_MAXPAGES];
132 struct pool_allocator pool_allocator_large_ni[POOL_LARGE_MAXPAGES];
133 void	*pool_large_alloc(struct pool *, int, int *);
134 void	pool_large_free(struct pool *, void *);
135 void	*pool_large_alloc_ni(struct pool *, int, int *);
136 void	pool_large_free_ni(struct pool *, void *);
137 
138 
139 #ifdef DDB
140 void	 pool_print_pagelist(struct pool_pagelist *,
141 	    int (*)(const char *, ...));
142 void	 pool_print1(struct pool *, const char *, int (*)(const char *, ...));
143 #endif
144 
145 #define pool_sleep(pl) msleep(pl, &pl->pr_mtx, PSWP, pl->pr_wchan, 0)
146 
147 static __inline int
148 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
149 {
150 	long diff = (vaddr_t)a->ph_page - (vaddr_t)b->ph_page;
151 	if (diff < 0)
152 		return -(-diff >= a->ph_pagesize);
153 	else if (diff > 0)
154 		return (diff >= b->ph_pagesize);
155 	else
156 		return (0);
157 }
158 
159 RB_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
160 RB_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
161 
162 /*
163  * Return the pool page header based on page address.
164  */
165 static __inline struct pool_item_header *
166 pr_find_pagehead(struct pool *pp, void *v)
167 {
168 	struct pool_item_header *ph, tmp;
169 
170 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
171 		caddr_t page;
172 
173 		page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask);
174 
175 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
176 	}
177 
178 	/*
179 	 * The trick we're using in the tree compare function is to compare
180 	 * two elements equal when they overlap. We want to return the
181 	 * page header that belongs to the element just before this address.
182 	 * We don't want this element to compare equal to the next element,
183 	 * so the compare function takes the pagesize from the lower element.
184 	 * If this header is the lower, its pagesize is zero, so it can't
185 	 * overlap with the next header. But if the header we're looking for
186 	 * is lower, we'll use its pagesize and it will overlap and return
187 	 * equal.
188 	 */
189 	tmp.ph_page = v;
190 	tmp.ph_pagesize = 0;
191 	ph = RB_FIND(phtree, &pp->pr_phtree, &tmp);
192 
193 	if (ph) {
194 		KASSERT(ph->ph_page <= (caddr_t)v);
195 		KASSERT(ph->ph_page + ph->ph_pagesize > (caddr_t)v);
196 	}
197 	return ph;
198 }
199 
200 /*
201  * Remove a page from the pool.
202  */
203 void
204 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
205     struct pool_pagelist *pq)
206 {
207 
208 	/*
209 	 * If the page was idle, decrement the idle page count.
210 	 */
211 	if (ph->ph_nmissing == 0) {
212 #ifdef DIAGNOSTIC
213 		if (pp->pr_nidle == 0)
214 			panic("pr_rmpage: nidle inconsistent");
215 		if (pp->pr_nitems < pp->pr_itemsperpage)
216 			panic("pr_rmpage: nitems inconsistent");
217 #endif
218 		pp->pr_nidle--;
219 	}
220 
221 	pp->pr_nitems -= pp->pr_itemsperpage;
222 
223 	/*
224 	 * Unlink a page from the pool and release it (or queue it for release).
225 	 */
226 	LIST_REMOVE(ph, ph_pagelist);
227 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
228 		RB_REMOVE(phtree, &pp->pr_phtree, ph);
229 	if (pq) {
230 		LIST_INSERT_HEAD(pq, ph, ph_pagelist);
231 	} else {
232 		pool_allocator_free(pp, ph->ph_page);
233 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
234 			pool_put(&phpool, ph);
235 	}
236 	pp->pr_npages--;
237 	pp->pr_npagefree++;
238 
239 	pool_update_curpage(pp);
240 }
241 
242 /*
243  * Initialize the given pool resource structure.
244  *
245  * We export this routine to allow other kernel parts to declare
246  * static pools that must be initialized before malloc() is available.
247  */
248 void
249 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
250     const char *wchan, struct pool_allocator *palloc)
251 {
252 	int off, slack;
253 
254 #ifdef MALLOC_DEBUG
255 	if ((flags & PR_DEBUG) && (ioff != 0 || align != 0))
256 		flags &= ~PR_DEBUG;
257 #endif
258 	/*
259 	 * Check arguments and construct default values.
260 	 */
261 	if (palloc == NULL) {
262 		if (size > PAGE_SIZE) {
263 			int psize;
264 
265 			/*
266 			 * XXX - should take align into account as well.
267 			 */
268 			if (size == round_page(size))
269 				psize = size / PAGE_SIZE;
270 			else
271 				psize = PAGE_SIZE / roundup(size % PAGE_SIZE,
272 				    1024);
273 			if (psize > POOL_LARGE_MAXPAGES)
274 				psize = POOL_LARGE_MAXPAGES;
275 			if (flags & PR_WAITOK)
276 				palloc = &pool_allocator_large_ni[psize-1];
277 			else
278 				palloc = &pool_allocator_large[psize-1];
279 			if (palloc->pa_pagesz == 0) {
280 				palloc->pa_pagesz = psize * PAGE_SIZE;
281 				if (flags & PR_WAITOK) {
282 					palloc->pa_alloc = pool_large_alloc_ni;
283 					palloc->pa_free = pool_large_free_ni;
284 				} else {
285 					palloc->pa_alloc = pool_large_alloc;
286 					palloc->pa_free = pool_large_free;
287 				}
288 			}
289 		} else {
290 			palloc = &pool_allocator_nointr;
291 		}
292 	}
293 	if (palloc->pa_pagesz == 0) {
294 		palloc->pa_pagesz = PAGE_SIZE;
295 	}
296 	if (palloc->pa_pagemask == 0) {
297 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
298 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
299 	}
300 
301 	if (align == 0)
302 		align = ALIGN(1);
303 
304 	if (size < sizeof(struct pool_item))
305 		size = sizeof(struct pool_item);
306 
307 	size = roundup(size, align);
308 #ifdef DIAGNOSTIC
309 	if (size > palloc->pa_pagesz)
310 		panic("pool_init: pool item size (%lu) too large",
311 		    (u_long)size);
312 #endif
313 
314 	/*
315 	 * Initialize the pool structure.
316 	 */
317 	LIST_INIT(&pp->pr_emptypages);
318 	LIST_INIT(&pp->pr_fullpages);
319 	LIST_INIT(&pp->pr_partpages);
320 	pp->pr_curpage = NULL;
321 	pp->pr_npages = 0;
322 	pp->pr_minitems = 0;
323 	pp->pr_minpages = 0;
324 	pp->pr_maxpages = 8;
325 	pp->pr_roflags = flags;
326 	pp->pr_flags = 0;
327 	pp->pr_size = size;
328 	pp->pr_align = align;
329 	pp->pr_wchan = wchan;
330 	pp->pr_alloc = palloc;
331 	pp->pr_nitems = 0;
332 	pp->pr_nout = 0;
333 	pp->pr_hardlimit = UINT_MAX;
334 	pp->pr_hardlimit_warning = NULL;
335 	pp->pr_hardlimit_ratecap.tv_sec = 0;
336 	pp->pr_hardlimit_ratecap.tv_usec = 0;
337 	pp->pr_hardlimit_warning_last.tv_sec = 0;
338 	pp->pr_hardlimit_warning_last.tv_usec = 0;
339 	pp->pr_serial = ++pool_serial;
340 	if (pool_serial == 0)
341 		panic("pool_init: too much uptime");
342 
343         /* constructor, destructor, and arg */
344 	pp->pr_ctor = NULL;
345 	pp->pr_dtor = NULL;
346 	pp->pr_arg = NULL;
347 
348 	/*
349 	 * Decide whether to put the page header off page to avoid
350 	 * wasting too large a part of the page. Off-page page headers
351 	 * go into an RB tree, so we can match a returned item with
352 	 * its header based on the page address.
353 	 * We use 1/16 of the page size as the threshold (XXX: tune)
354 	 */
355 	if (pp->pr_size < palloc->pa_pagesz/16 && pp->pr_size < PAGE_SIZE) {
356 		/* Use the end of the page for the page header */
357 		pp->pr_roflags |= PR_PHINPAGE;
358 		pp->pr_phoffset = off = palloc->pa_pagesz -
359 		    ALIGN(sizeof(struct pool_item_header));
360 	} else {
361 		/* The page header will be taken from our page header pool */
362 		pp->pr_phoffset = 0;
363 		off = palloc->pa_pagesz;
364 		RB_INIT(&pp->pr_phtree);
365 	}
366 
367 	/*
368 	 * Alignment is to take place at `ioff' within the item. This means
369 	 * we must reserve up to `align - 1' bytes on the page to allow
370 	 * appropriate positioning of each item.
371 	 *
372 	 * Silently enforce `0 <= ioff < align'.
373 	 */
374 	pp->pr_itemoffset = ioff = ioff % align;
375 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
376 	KASSERT(pp->pr_itemsperpage != 0);
377 
378 	/*
379 	 * Use the slack between the chunks and the page header
380 	 * for "cache coloring".
381 	 */
382 	slack = off - pp->pr_itemsperpage * pp->pr_size;
383 	pp->pr_maxcolor = (slack / align) * align;
384 	pp->pr_curcolor = 0;
385 
386 	pp->pr_nget = 0;
387 	pp->pr_nfail = 0;
388 	pp->pr_nput = 0;
389 	pp->pr_npagealloc = 0;
390 	pp->pr_npagefree = 0;
391 	pp->pr_hiwat = 0;
392 	pp->pr_nidle = 0;
393 
394 	pp->pr_ipl = -1;
395 	mtx_init(&pp->pr_mtx, IPL_NONE);
396 
397 	if (phpool.pr_size == 0) {
398 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
399 		    0, "phpool", NULL);
400 		pool_setipl(&phpool, IPL_HIGH);
401 	}
402 
403 	/* pglistalloc/constraint parameters */
404 	pp->pr_crange = &no_constraint;
405 	pp->pr_pa_nsegs = 0;
406 
407 	/* Insert this into the list of all pools. */
408 	TAILQ_INSERT_HEAD(&pool_head, pp, pr_poollist);
409 }
410 
411 void
412 pool_setipl(struct pool *pp, int ipl)
413 {
414 	pp->pr_ipl = ipl;
415 	mtx_init(&pp->pr_mtx, ipl);
416 }
417 
418 /*
419  * Decommission a pool resource.
420  */
421 void
422 pool_destroy(struct pool *pp)
423 {
424 	struct pool_item_header *ph;
425 
426 #ifdef DIAGNOSTIC
427 	if (pp->pr_nout != 0)
428 		panic("pool_destroy: pool busy: still out: %u", pp->pr_nout);
429 #endif
430 
431 	/* Remove all pages */
432 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
433 		pr_rmpage(pp, ph, NULL);
434 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
435 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
436 
437 	/* Remove from global pool list */
438 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
439 }
440 
441 struct pool_item_header *
442 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
443 {
444 	struct pool_item_header *ph;
445 
446 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
447 		ph = (struct pool_item_header *)(storage + pp->pr_phoffset);
448 	else
449 		ph = pool_get(&phpool, (flags & ~(PR_WAITOK | PR_ZERO)) |
450 		    PR_NOWAIT);
451 	if (pool_debug)
452 		ph->ph_magic = PI_MAGIC;
453 	return (ph);
454 }
455 
456 /*
457  * Grab an item from the pool; must be called at appropriate spl level
458  */
459 void *
460 pool_get(struct pool *pp, int flags)
461 {
462 	void *v;
463 
464 	KASSERT(flags & (PR_WAITOK | PR_NOWAIT));
465 
466 #ifdef DIAGNOSTIC
467 	if ((flags & PR_WAITOK) != 0)
468 		assertwaitok();
469 #endif /* DIAGNOSTIC */
470 
471 	mtx_enter(&pp->pr_mtx);
472 	v = pool_do_get(pp, flags);
473 	mtx_leave(&pp->pr_mtx);
474 	if (v == NULL)
475 		return (v);
476 
477 	if (pp->pr_ctor) {
478 		if (flags & PR_ZERO)
479 			panic("pool_get: PR_ZERO when ctor set");
480 		if (pp->pr_ctor(pp->pr_arg, v, flags)) {
481 			mtx_enter(&pp->pr_mtx);
482 			pool_do_put(pp, v);
483 			mtx_leave(&pp->pr_mtx);
484 			v = NULL;
485 		}
486 	} else {
487 		if (flags & PR_ZERO)
488 			memset(v, 0, pp->pr_size);
489 	}
490 	if (v != NULL)
491 		pp->pr_nget++;
492 	return (v);
493 }
494 
495 void *
496 pool_do_get(struct pool *pp, int flags)
497 {
498 	struct pool_item *pi;
499 	struct pool_item_header *ph;
500 	void *v;
501 	int slowdown = 0;
502 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
503 	int i, *ip;
504 #endif
505 
506 #ifdef MALLOC_DEBUG
507 	if (pp->pr_roflags & PR_DEBUG) {
508 		void *addr;
509 
510 		addr = NULL;
511 		debug_malloc(pp->pr_size, M_DEBUG,
512 		    (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr);
513 		return (addr);
514 	}
515 #endif
516 
517 startover:
518 	/*
519 	 * Check to see if we've reached the hard limit.  If we have,
520 	 * and we can wait, then wait until an item has been returned to
521 	 * the pool.
522 	 */
523 #ifdef DIAGNOSTIC
524 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit))
525 		panic("pool_do_get: %s: crossed hard limit", pp->pr_wchan);
526 #endif
527 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
528 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
529 			/*
530 			 * XXX: A warning isn't logged in this case.  Should
531 			 * it be?
532 			 */
533 			pp->pr_flags |= PR_WANTED;
534 			pool_sleep(pp);
535 			goto startover;
536 		}
537 
538 		/*
539 		 * Log a message that the hard limit has been hit.
540 		 */
541 		if (pp->pr_hardlimit_warning != NULL &&
542 		    ratecheck(&pp->pr_hardlimit_warning_last,
543 		    &pp->pr_hardlimit_ratecap))
544 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
545 
546 		pp->pr_nfail++;
547 		return (NULL);
548 	}
549 
550 	/*
551 	 * The convention we use is that if `curpage' is not NULL, then
552 	 * it points at a non-empty bucket. In particular, `curpage'
553 	 * never points at a page header which has PR_PHINPAGE set and
554 	 * has no items in its bucket.
555 	 */
556 	if ((ph = pp->pr_curpage) == NULL) {
557 #ifdef DIAGNOSTIC
558 		if (pp->pr_nitems != 0) {
559 			printf("pool_do_get: %s: curpage NULL, nitems %u\n",
560 			    pp->pr_wchan, pp->pr_nitems);
561 			panic("pool_do_get: nitems inconsistent");
562 		}
563 #endif
564 
565 		/*
566 		 * Call the back-end page allocator for more memory.
567 		 */
568 		v = pool_allocator_alloc(pp, flags, &slowdown);
569 		if (__predict_true(v != NULL))
570 			ph = pool_alloc_item_header(pp, v, flags);
571 
572 		if (__predict_false(v == NULL || ph == NULL)) {
573 			if (v != NULL)
574 				pool_allocator_free(pp, v);
575 
576 			if ((flags & PR_WAITOK) == 0) {
577 				pp->pr_nfail++;
578 				return (NULL);
579 			}
580 
581 			/*
582 			 * Wait for items to be returned to this pool.
583 			 *
584 			 * XXX: maybe we should wake up once a second and
585 			 * try again?
586 			 */
587 			pp->pr_flags |= PR_WANTED;
588 			pool_sleep(pp);
589 			goto startover;
590 		}
591 
592 		/* We have more memory; add it to the pool */
593 		pool_prime_page(pp, v, ph);
594 		pp->pr_npagealloc++;
595 
596 		if (slowdown && (flags & PR_WAITOK)) {
597 			mtx_leave(&pp->pr_mtx);
598 			yield();
599 			mtx_enter(&pp->pr_mtx);
600 		}
601 
602 		/* Start the allocation process over. */
603 		goto startover;
604 	}
605 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
606 		panic("pool_do_get: %s: page empty", pp->pr_wchan);
607 	}
608 #ifdef DIAGNOSTIC
609 	if (__predict_false(pp->pr_nitems == 0)) {
610 		printf("pool_do_get: %s: items on itemlist, nitems %u\n",
611 		    pp->pr_wchan, pp->pr_nitems);
612 		panic("pool_do_get: nitems inconsistent");
613 	}
614 #endif
615 
616 #ifdef DIAGNOSTIC
617 	if (__predict_false(pi->pi_magic != PI_MAGIC))
618 		panic("pool_do_get(%s): free list modified: "
619 		    "page %p; item addr %p; offset 0x%x=0x%x",
620 		    pp->pr_wchan, ph->ph_page, pi, 0, pi->pi_magic);
621 #ifdef POOL_DEBUG
622 	if (pool_debug && ph->ph_magic) {
623 		for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int);
624 		    i < pp->pr_size / sizeof(int); i++) {
625 			if (ip[i] != ph->ph_magic) {
626 				panic("pool_do_get(%s): free list modified: "
627 				    "page %p; item addr %p; offset 0x%x=0x%x",
628 				    pp->pr_wchan, ph->ph_page, pi,
629 				    i * sizeof(int), ip[i]);
630 			}
631 		}
632 	}
633 #endif /* POOL_DEBUG */
634 #endif /* DIAGNOSTIC */
635 
636 	/*
637 	 * Remove from item list.
638 	 */
639 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
640 	pp->pr_nitems--;
641 	pp->pr_nout++;
642 	if (ph->ph_nmissing == 0) {
643 #ifdef DIAGNOSTIC
644 		if (__predict_false(pp->pr_nidle == 0))
645 			panic("pool_do_get: nidle inconsistent");
646 #endif
647 		pp->pr_nidle--;
648 
649 		/*
650 		 * This page was previously empty.  Move it to the list of
651 		 * partially-full pages.  This page is already curpage.
652 		 */
653 		LIST_REMOVE(ph, ph_pagelist);
654 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
655 	}
656 	ph->ph_nmissing++;
657 	if (TAILQ_EMPTY(&ph->ph_itemlist)) {
658 #ifdef DIAGNOSTIC
659 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
660 			panic("pool_do_get: %s: nmissing inconsistent",
661 			    pp->pr_wchan);
662 		}
663 #endif
664 		/*
665 		 * This page is now full.  Move it to the full list
666 		 * and select a new current page.
667 		 */
668 		LIST_REMOVE(ph, ph_pagelist);
669 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
670 		pool_update_curpage(pp);
671 	}
672 
673 	/*
674 	 * If we have a low water mark and we are now below that low
675 	 * water mark, add more items to the pool.
676 	 */
677 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
678 		/*
679 		 * XXX: Should we log a warning?  Should we set up a timeout
680 		 * to try again in a second or so?  The latter could break
681 		 * a caller's assumptions about interrupt protection, etc.
682 		 */
683 	}
684 	return (v);
685 }
686 
687 /*
688  * Return resource to the pool; must be called at appropriate spl level
689  */
690 void
691 pool_put(struct pool *pp, void *v)
692 {
693 	if (pp->pr_dtor)
694 		pp->pr_dtor(pp->pr_arg, v);
695 	mtx_enter(&pp->pr_mtx);
696 	pool_do_put(pp, v);
697 	mtx_leave(&pp->pr_mtx);
698 	pp->pr_nput++;
699 }
700 
701 /*
702  * Internal version of pool_put().
703  */
704 void
705 pool_do_put(struct pool *pp, void *v)
706 {
707 	struct pool_item *pi = v;
708 	struct pool_item_header *ph;
709 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
710 	int i, *ip;
711 #endif
712 
713 	if (v == NULL)
714 		panic("pool_put of NULL");
715 
716 #ifdef MALLOC_DEBUG
717 	if (pp->pr_roflags & PR_DEBUG) {
718 		debug_free(v, M_DEBUG);
719 		return;
720 	}
721 #endif
722 
723 #ifdef DIAGNOSTIC
724 	if (pp->pr_ipl != -1)
725 		splassert(pp->pr_ipl);
726 
727 	if (__predict_false(pp->pr_nout == 0)) {
728 		printf("pool %s: putting with none out\n",
729 		    pp->pr_wchan);
730 		panic("pool_do_put");
731 	}
732 #endif
733 
734 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
735 		panic("pool_do_put: %s: page header missing", pp->pr_wchan);
736 	}
737 
738 	/*
739 	 * Return to item list.
740 	 */
741 #ifdef DIAGNOSTIC
742 	pi->pi_magic = PI_MAGIC;
743 #ifdef POOL_DEBUG
744 	if (ph->ph_magic) {
745 		for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int);
746 		    i < pp->pr_size / sizeof(int); i++)
747 			ip[i] = ph->ph_magic;
748 	}
749 #endif /* POOL_DEBUG */
750 #endif /* DIAGNOSTIC */
751 
752 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
753 	ph->ph_nmissing--;
754 	pp->pr_nitems++;
755 	pp->pr_nout--;
756 
757 	/* Cancel "pool empty" condition if it exists */
758 	if (pp->pr_curpage == NULL)
759 		pp->pr_curpage = ph;
760 
761 	if (pp->pr_flags & PR_WANTED) {
762 		pp->pr_flags &= ~PR_WANTED;
763 		if (ph->ph_nmissing == 0)
764 			pp->pr_nidle++;
765 		wakeup(pp);
766 		return;
767 	}
768 
769 	/*
770 	 * If this page is now empty, do one of two things:
771 	 *
772 	 *	(1) If we have more pages than the page high water mark,
773 	 *	    free the page back to the system.
774 	 *
775 	 *	(2) Otherwise, move the page to the empty page list.
776 	 *
777 	 * Either way, select a new current page (so we use a partially-full
778 	 * page if one is available).
779 	 */
780 	if (ph->ph_nmissing == 0) {
781 		pp->pr_nidle++;
782 		if (pp->pr_nidle > pp->pr_maxpages) {
783 			pr_rmpage(pp, ph, NULL);
784 		} else {
785 			LIST_REMOVE(ph, ph_pagelist);
786 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
787 		}
788 		pool_update_curpage(pp);
789 	}
790 
791 	/*
792 	 * If the page was previously completely full, move it to the
793 	 * partially-full list and make it the current page.  The next
794 	 * allocation will get the item from this page, instead of
795 	 * further fragmenting the pool.
796 	 */
797 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
798 		LIST_REMOVE(ph, ph_pagelist);
799 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
800 		pp->pr_curpage = ph;
801 	}
802 }
803 
804 /*
805  * Add N items to the pool.
806  */
807 int
808 pool_prime(struct pool *pp, int n)
809 {
810 	struct pool_item_header *ph;
811 	caddr_t cp;
812 	int newpages;
813 	int slowdown;
814 
815 	mtx_enter(&pp->pr_mtx);
816 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
817 
818 	while (newpages-- > 0) {
819 		cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown);
820 		if (__predict_true(cp != NULL))
821 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
822 		if (__predict_false(cp == NULL || ph == NULL)) {
823 			if (cp != NULL)
824 				pool_allocator_free(pp, cp);
825 			break;
826 		}
827 
828 		pool_prime_page(pp, cp, ph);
829 		pp->pr_npagealloc++;
830 		pp->pr_minpages++;
831 	}
832 
833 	if (pp->pr_minpages >= pp->pr_maxpages)
834 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
835 
836 	mtx_leave(&pp->pr_mtx);
837 	return (0);
838 }
839 
840 /*
841  * Add a page worth of items to the pool.
842  *
843  * Note, we must be called with the pool descriptor LOCKED.
844  */
845 void
846 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
847 {
848 	struct pool_item *pi;
849 	caddr_t cp = storage;
850 	unsigned int align = pp->pr_align;
851 	unsigned int ioff = pp->pr_itemoffset;
852 	int n;
853 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
854 	int i, *ip;
855 #endif
856 
857 	/*
858 	 * Insert page header.
859 	 */
860 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
861 	TAILQ_INIT(&ph->ph_itemlist);
862 	ph->ph_page = storage;
863 	ph->ph_pagesize = pp->pr_alloc->pa_pagesz;
864 	ph->ph_nmissing = 0;
865 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
866 		RB_INSERT(phtree, &pp->pr_phtree, ph);
867 
868 	pp->pr_nidle++;
869 
870 	/*
871 	 * Color this page.
872 	 */
873 	cp = (caddr_t)(cp + pp->pr_curcolor);
874 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
875 		pp->pr_curcolor = 0;
876 
877 	/*
878 	 * Adjust storage to apply alignment to `pr_itemoffset' in each item.
879 	 */
880 	if (ioff != 0)
881 		cp = (caddr_t)(cp + (align - ioff));
882 	ph->ph_colored = cp;
883 
884 	/*
885 	 * Insert remaining chunks on the bucket list.
886 	 */
887 	n = pp->pr_itemsperpage;
888 	pp->pr_nitems += n;
889 
890 	while (n--) {
891 		pi = (struct pool_item *)cp;
892 
893 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
894 
895 		/* Insert on page list */
896 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
897 
898 #ifdef DIAGNOSTIC
899 		pi->pi_magic = PI_MAGIC;
900 #ifdef POOL_DEBUG
901 		if (ph->ph_magic) {
902 			for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int);
903 			    i < pp->pr_size / sizeof(int); i++)
904 				ip[i] = ph->ph_magic;
905 		}
906 #endif /* POOL_DEBUG */
907 #endif /* DIAGNOSTIC */
908 		cp = (caddr_t)(cp + pp->pr_size);
909 	}
910 
911 	/*
912 	 * If the pool was depleted, point at the new page.
913 	 */
914 	if (pp->pr_curpage == NULL)
915 		pp->pr_curpage = ph;
916 
917 	if (++pp->pr_npages > pp->pr_hiwat)
918 		pp->pr_hiwat = pp->pr_npages;
919 }
920 
921 /*
922  * Used by pool_get() when nitems drops below the low water mark.  This
923  * is used to catch up pr_nitems with the low water mark.
924  *
925  * Note we never wait for memory here, we let the caller decide what to do.
926  */
927 int
928 pool_catchup(struct pool *pp)
929 {
930 	struct pool_item_header *ph;
931 	caddr_t cp;
932 	int error = 0;
933 	int slowdown;
934 
935 	while (POOL_NEEDS_CATCHUP(pp)) {
936 		/*
937 		 * Call the page back-end allocator for more memory.
938 		 */
939 		cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown);
940 		if (__predict_true(cp != NULL))
941 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
942 		if (__predict_false(cp == NULL || ph == NULL)) {
943 			if (cp != NULL)
944 				pool_allocator_free(pp, cp);
945 			error = ENOMEM;
946 			break;
947 		}
948 		pool_prime_page(pp, cp, ph);
949 		pp->pr_npagealloc++;
950 	}
951 
952 	return (error);
953 }
954 
955 void
956 pool_update_curpage(struct pool *pp)
957 {
958 
959 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
960 	if (pp->pr_curpage == NULL) {
961 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
962 	}
963 }
964 
965 void
966 pool_setlowat(struct pool *pp, int n)
967 {
968 
969 	pp->pr_minitems = n;
970 	pp->pr_minpages = (n == 0)
971 		? 0
972 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
973 
974 	mtx_enter(&pp->pr_mtx);
975 	/* Make sure we're caught up with the newly-set low water mark. */
976 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
977 		/*
978 		 * XXX: Should we log a warning?  Should we set up a timeout
979 		 * to try again in a second or so?  The latter could break
980 		 * a caller's assumptions about interrupt protection, etc.
981 		 */
982 	}
983 	mtx_leave(&pp->pr_mtx);
984 }
985 
986 void
987 pool_sethiwat(struct pool *pp, int n)
988 {
989 
990 	pp->pr_maxpages = (n == 0)
991 		? 0
992 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
993 }
994 
995 int
996 pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap)
997 {
998 	int error = 0;
999 
1000 	if (n < pp->pr_nout) {
1001 		error = EINVAL;
1002 		goto done;
1003 	}
1004 
1005 	pp->pr_hardlimit = n;
1006 	pp->pr_hardlimit_warning = warnmsg;
1007 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1008 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1009 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1010 
1011 done:
1012 	return (error);
1013 }
1014 
1015 void
1016 pool_set_constraints(struct pool *pp, struct uvm_constraint_range *range,
1017     int nsegs)
1018 {
1019 	/*
1020 	 * Subsequent changes to the constrictions are only
1021 	 * allowed to make them _more_ strict.
1022 	 */
1023 	KASSERT(pp->pr_crange->ucr_high >= range->ucr_high &&
1024 	    pp->pr_crange->ucr_low <= range->ucr_low);
1025 
1026 	pp->pr_crange = range;
1027 	pp->pr_pa_nsegs = nsegs;
1028 }
1029 
1030 void
1031 pool_set_ctordtor(struct pool *pp, int (*ctor)(void *, void *, int),
1032     void (*dtor)(void *, void *), void *arg)
1033 {
1034 	pp->pr_ctor = ctor;
1035 	pp->pr_dtor = dtor;
1036 	pp->pr_arg = arg;
1037 }
1038 /*
1039  * Release all complete pages that have not been used recently.
1040  *
1041  * Returns non-zero if any pages have been reclaimed.
1042  */
1043 int
1044 pool_reclaim(struct pool *pp)
1045 {
1046 	struct pool_item_header *ph, *phnext;
1047 	struct pool_pagelist pq;
1048 
1049 	LIST_INIT(&pq);
1050 
1051 	mtx_enter(&pp->pr_mtx);
1052 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1053 		phnext = LIST_NEXT(ph, ph_pagelist);
1054 
1055 		/* Check our minimum page claim */
1056 		if (pp->pr_npages <= pp->pr_minpages)
1057 			break;
1058 
1059 		KASSERT(ph->ph_nmissing == 0);
1060 
1061 		/*
1062 		 * If freeing this page would put us below
1063 		 * the low water mark, stop now.
1064 		 */
1065 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1066 		    pp->pr_minitems)
1067 			break;
1068 
1069 		pr_rmpage(pp, ph, &pq);
1070 	}
1071 	mtx_leave(&pp->pr_mtx);
1072 
1073 	if (LIST_EMPTY(&pq))
1074 		return (0);
1075 	while ((ph = LIST_FIRST(&pq)) != NULL) {
1076 		LIST_REMOVE(ph, ph_pagelist);
1077 		pool_allocator_free(pp, ph->ph_page);
1078 		if (pp->pr_roflags & PR_PHINPAGE)
1079 			continue;
1080 		pool_put(&phpool, ph);
1081 	}
1082 
1083 	return (1);
1084 }
1085 
1086 /*
1087  * Release all complete pages that have not been used recently
1088  * from all pools.
1089  */
1090 void
1091 pool_reclaim_all(void)
1092 {
1093 	struct pool	*pp;
1094 	TAILQ_FOREACH(pp, &pool_head, pr_poollist)
1095 		pool_reclaim(pp);
1096 }
1097 
1098 #ifdef DDB
1099 #include <machine/db_machdep.h>
1100 #include <ddb/db_interface.h>
1101 #include <ddb/db_output.h>
1102 
1103 /*
1104  * Diagnostic helpers.
1105  */
1106 void
1107 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1108 {
1109 	pool_print1(pp, modif, pr);
1110 }
1111 
1112 void
1113 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...))
1114 {
1115 	struct pool_item_header *ph;
1116 #ifdef DIAGNOSTIC
1117 	struct pool_item *pi;
1118 #endif
1119 
1120 	LIST_FOREACH(ph, pl, ph_pagelist) {
1121 		(*pr)("\t\tpage %p, nmissing %d\n",
1122 		    ph->ph_page, ph->ph_nmissing);
1123 #ifdef DIAGNOSTIC
1124 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1125 			if (pi->pi_magic != PI_MAGIC) {
1126 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1127 				    pi, pi->pi_magic);
1128 			}
1129 		}
1130 #endif
1131 	}
1132 }
1133 
1134 void
1135 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1136 {
1137 	struct pool_item_header *ph;
1138 	int print_pagelist = 0;
1139 	char c;
1140 
1141 	while ((c = *modif++) != '\0') {
1142 		if (c == 'p')
1143 			print_pagelist = 1;
1144 		modif++;
1145 	}
1146 
1147 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1148 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1149 	    pp->pr_roflags);
1150 	(*pr)("\talloc %p\n", pp->pr_alloc);
1151 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1152 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1153 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1154 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1155 
1156 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1157 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1158 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1159 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1160 
1161 	if (print_pagelist == 0)
1162 		return;
1163 
1164 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1165 		(*pr)("\n\tempty page list:\n");
1166 	pool_print_pagelist(&pp->pr_emptypages, pr);
1167 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1168 		(*pr)("\n\tfull page list:\n");
1169 	pool_print_pagelist(&pp->pr_fullpages, pr);
1170 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1171 		(*pr)("\n\tpartial-page list:\n");
1172 	pool_print_pagelist(&pp->pr_partpages, pr);
1173 
1174 	if (pp->pr_curpage == NULL)
1175 		(*pr)("\tno current page\n");
1176 	else
1177 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1178 }
1179 
1180 void
1181 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif)
1182 {
1183 	struct pool *pp;
1184 	char maxp[16];
1185 	int ovflw;
1186 	char mode;
1187 
1188 	mode = modif[0];
1189 	if (mode != '\0' && mode != 'a') {
1190 		db_printf("usage: show all pools [/a]\n");
1191 		return;
1192 	}
1193 
1194 	if (mode == '\0')
1195 		db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n",
1196 		    "Name",
1197 		    "Size",
1198 		    "Requests",
1199 		    "Fail",
1200 		    "Releases",
1201 		    "Pgreq",
1202 		    "Pgrel",
1203 		    "Npage",
1204 		    "Hiwat",
1205 		    "Minpg",
1206 		    "Maxpg",
1207 		    "Idle");
1208 	else
1209 		db_printf("%-10s %18s %18s\n",
1210 		    "Name", "Address", "Allocator");
1211 
1212 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1213 		if (mode == 'a') {
1214 			db_printf("%-10s %18p %18p\n", pp->pr_wchan, pp,
1215 			    pp->pr_alloc);
1216 			continue;
1217 		}
1218 
1219 		if (!pp->pr_nget)
1220 			continue;
1221 
1222 		if (pp->pr_maxpages == UINT_MAX)
1223 			snprintf(maxp, sizeof maxp, "inf");
1224 		else
1225 			snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages);
1226 
1227 #define PRWORD(ovflw, fmt, width, fixed, val) do {	\
1228 	(ovflw) += db_printf((fmt),			\
1229 	    (width) - (fixed) - (ovflw) > 0 ?		\
1230 	    (width) - (fixed) - (ovflw) : 0,		\
1231 	    (val)) - (width);				\
1232 	if ((ovflw) < 0)				\
1233 		(ovflw) = 0;				\
1234 } while (/* CONSTCOND */0)
1235 
1236 		ovflw = 0;
1237 		PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan);
1238 		PRWORD(ovflw, " %*u", 4, 1, pp->pr_size);
1239 		PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget);
1240 		PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail);
1241 		PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput);
1242 		PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc);
1243 		PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree);
1244 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages);
1245 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat);
1246 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages);
1247 		PRWORD(ovflw, " %*s", 6, 1, maxp);
1248 		PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle);
1249 
1250 		pool_chk(pp, pp->pr_wchan);
1251 	}
1252 }
1253 
1254 int
1255 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1256 {
1257 	struct pool_item *pi;
1258 	caddr_t page;
1259 	int n;
1260 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
1261 	int i, *ip;
1262 #endif
1263 
1264 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1265 	if (page != ph->ph_page &&
1266 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1267 		if (label != NULL)
1268 			printf("%s: ", label);
1269 		printf("pool(%p:%s): page inconsistency: page %p; "
1270 		    "at page head addr %p (p %p)\n",
1271 		    pp, pp->pr_wchan, ph->ph_page, ph, page);
1272 		return 1;
1273 	}
1274 
1275 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1276 	     pi != NULL;
1277 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
1278 
1279 #ifdef DIAGNOSTIC
1280 		if (pi->pi_magic != PI_MAGIC) {
1281 			if (label != NULL)
1282 				printf("%s: ", label);
1283 			printf("pool(%s): free list modified: "
1284 			    "page %p; item ordinal %d; addr %p "
1285 			    "(p %p); offset 0x%x=0x%x\n",
1286 			    pp->pr_wchan, ph->ph_page, n, pi, page,
1287 			    0, pi->pi_magic);
1288 		}
1289 #ifdef POOL_DEBUG
1290 		if (pool_debug && ph->ph_magic) {
1291 			for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int);
1292 			    i < pp->pr_size / sizeof(int); i++) {
1293 				if (ip[i] != ph->ph_magic) {
1294 					printf("pool(%s): free list modified: "
1295 					    "page %p; item ordinal %d; addr %p "
1296 					    "(p %p); offset 0x%x=0x%x\n",
1297 					    pp->pr_wchan, ph->ph_page, n, pi,
1298 					    page, i * sizeof(int), ip[i]);
1299 				}
1300 			}
1301 		}
1302 
1303 #endif /* POOL_DEBUG */
1304 #endif /* DIAGNOSTIC */
1305 		page =
1306 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1307 		if (page == ph->ph_page)
1308 			continue;
1309 
1310 		if (label != NULL)
1311 			printf("%s: ", label);
1312 		printf("pool(%p:%s): page inconsistency: page %p;"
1313 		    " item ordinal %d; addr %p (p %p)\n", pp,
1314 		    pp->pr_wchan, ph->ph_page, n, pi, page);
1315 		return 1;
1316 	}
1317 	return 0;
1318 }
1319 
1320 int
1321 pool_chk(struct pool *pp, const char *label)
1322 {
1323 	struct pool_item_header *ph;
1324 	int r = 0;
1325 
1326 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist)
1327 		r += pool_chk_page(pp, label, ph);
1328 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist)
1329 		r += pool_chk_page(pp, label, ph);
1330 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist)
1331 		r += pool_chk_page(pp, label, ph);
1332 
1333 	return (r);
1334 }
1335 
1336 void
1337 pool_walk(struct pool *pp, int full, int (*pr)(const char *, ...),
1338     void (*func)(void *, int, int (*)(const char *, ...)))
1339 {
1340 	struct pool_item_header *ph;
1341 	struct pool_item *pi;
1342 	caddr_t cp;
1343 	int n;
1344 
1345 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1346 		cp = ph->ph_colored;
1347 		n = ph->ph_nmissing;
1348 
1349 		while (n--) {
1350 			func(cp, full, pr);
1351 			cp += pp->pr_size;
1352 		}
1353 	}
1354 
1355 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1356 		cp = ph->ph_colored;
1357 		n = ph->ph_nmissing;
1358 
1359 		do {
1360 			TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1361 				if (cp == (caddr_t)pi)
1362 					break;
1363 			}
1364 			if (cp != (caddr_t)pi) {
1365 				func(cp, full, pr);
1366 				n--;
1367 			}
1368 
1369 			cp += pp->pr_size;
1370 		} while (n > 0);
1371 	}
1372 }
1373 #endif
1374 
1375 /*
1376  * We have three different sysctls.
1377  * kern.pool.npools - the number of pools.
1378  * kern.pool.pool.<pool#> - the pool struct for the pool#.
1379  * kern.pool.name.<pool#> - the name for pool#.
1380  */
1381 int
1382 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep)
1383 {
1384 	struct pool *pp, *foundpool = NULL;
1385 	size_t buflen = where != NULL ? *sizep : 0;
1386 	int npools = 0, s;
1387 	unsigned int lookfor;
1388 	size_t len;
1389 
1390 	switch (*name) {
1391 	case KERN_POOL_NPOOLS:
1392 		if (namelen != 1 || buflen != sizeof(int))
1393 			return (EINVAL);
1394 		lookfor = 0;
1395 		break;
1396 	case KERN_POOL_NAME:
1397 		if (namelen != 2 || buflen < 1)
1398 			return (EINVAL);
1399 		lookfor = name[1];
1400 		break;
1401 	case KERN_POOL_POOL:
1402 		if (namelen != 2 || buflen != sizeof(struct pool))
1403 			return (EINVAL);
1404 		lookfor = name[1];
1405 		break;
1406 	default:
1407 		return (EINVAL);
1408 	}
1409 
1410 	s = splvm();
1411 
1412 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1413 		npools++;
1414 		if (lookfor == pp->pr_serial) {
1415 			foundpool = pp;
1416 			break;
1417 		}
1418 	}
1419 
1420 	splx(s);
1421 
1422 	if (*name != KERN_POOL_NPOOLS && foundpool == NULL)
1423 		return (ENOENT);
1424 
1425 	switch (*name) {
1426 	case KERN_POOL_NPOOLS:
1427 		return copyout(&npools, where, buflen);
1428 	case KERN_POOL_NAME:
1429 		len = strlen(foundpool->pr_wchan) + 1;
1430 		if (*sizep < len)
1431 			return (ENOMEM);
1432 		*sizep = len;
1433 		return copyout(foundpool->pr_wchan, where, len);
1434 	case KERN_POOL_POOL:
1435 		return copyout(foundpool, where, buflen);
1436 	}
1437 	/* NOTREACHED */
1438 	return (0); /* XXX - Stupid gcc */
1439 }
1440 
1441 /*
1442  * Pool backend allocators.
1443  *
1444  * Each pool has a backend allocator that handles allocation, deallocation
1445  */
1446 void	*pool_page_alloc(struct pool *, int, int *);
1447 void	pool_page_free(struct pool *, void *);
1448 
1449 /*
1450  * safe for interrupts, name preserved for compat this is the default
1451  * allocator
1452  */
1453 struct pool_allocator pool_allocator_nointr = {
1454 	pool_page_alloc, pool_page_free, 0,
1455 };
1456 
1457 /*
1458  * XXX - we have at least three different resources for the same allocation
1459  *  and each resource can be depleted. First we have the ready elements in
1460  *  the pool. Then we have the resource (typically a vm_map) for this
1461  *  allocator, then we have physical memory. Waiting for any of these can
1462  *  be unnecessary when any other is freed, but the kernel doesn't support
1463  *  sleeping on multiple addresses, so we have to fake. The caller sleeps on
1464  *  the pool (so that we can be awakened when an item is returned to the pool),
1465  *  but we set PA_WANT on the allocator. When a page is returned to
1466  *  the allocator and PA_WANT is set pool_allocator_free will wakeup all
1467  *  sleeping pools belonging to this allocator. (XXX - thundering herd).
1468  *  We also wake up the allocator in case someone without a pool (malloc)
1469  *  is sleeping waiting for this allocator.
1470  */
1471 
1472 void *
1473 pool_allocator_alloc(struct pool *pp, int flags, int *slowdown)
1474 {
1475 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1476 	void *v;
1477 
1478 	if (waitok)
1479 		mtx_leave(&pp->pr_mtx);
1480 	v = pp->pr_alloc->pa_alloc(pp, flags, slowdown);
1481 	if (waitok)
1482 		mtx_enter(&pp->pr_mtx);
1483 
1484 	return (v);
1485 }
1486 
1487 void
1488 pool_allocator_free(struct pool *pp, void *v)
1489 {
1490 	struct pool_allocator *pa = pp->pr_alloc;
1491 
1492 	(*pa->pa_free)(pp, v);
1493 }
1494 
1495 void *
1496 pool_page_alloc(struct pool *pp, int flags, int *slowdown)
1497 {
1498 	int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT;
1499 
1500 	return (uvm_km_getpage_pla(kfl, slowdown, pp->pr_crange->ucr_low,
1501 	    pp->pr_crange->ucr_high, 0, 0));
1502 }
1503 
1504 void
1505 pool_page_free(struct pool *pp, void *v)
1506 {
1507 	uvm_km_putpage(v);
1508 }
1509 
1510 void *
1511 pool_large_alloc(struct pool *pp, int flags, int *slowdown)
1512 {
1513 	int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT;
1514 	vaddr_t va;
1515 	int s;
1516 
1517 	s = splvm();
1518 	va = uvm_km_kmemalloc_pla(kmem_map, NULL, pp->pr_alloc->pa_pagesz, 0,
1519 	    kfl, pp->pr_crange->ucr_low, pp->pr_crange->ucr_high,
1520 	    0, 0, pp->pr_pa_nsegs);
1521 	splx(s);
1522 
1523 	return ((void *)va);
1524 }
1525 
1526 void
1527 pool_large_free(struct pool *pp, void *v)
1528 {
1529 	int s;
1530 
1531 	s = splvm();
1532 	uvm_km_free(kmem_map, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
1533 	splx(s);
1534 }
1535 
1536 void *
1537 pool_large_alloc_ni(struct pool *pp, int flags, int *slowdown)
1538 {
1539 	int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT;
1540 
1541 	return ((void *)uvm_km_kmemalloc_pla(kernel_map, uvm.kernel_object,
1542 	    pp->pr_alloc->pa_pagesz, 0, kfl,
1543 	    pp->pr_crange->ucr_low, pp->pr_crange->ucr_high,
1544 	    0, 0, pp->pr_pa_nsegs));
1545 }
1546 
1547 void
1548 pool_large_free_ni(struct pool *pp, void *v)
1549 {
1550 	uvm_km_free(kernel_map, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
1551 }
1552