xref: /openbsd-src/sys/kern/subr_pool.c (revision c21a182b7e1e047eddfa58a31dd2d4cc04770ade)
1 /*	$OpenBSD: subr_pool.c,v 1.96 2010/07/03 03:04:55 tedu Exp $	*/
2 /*	$NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/proc.h>
37 #include <sys/errno.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/pool.h>
41 #include <sys/syslog.h>
42 #include <sys/sysctl.h>
43 
44 #include <uvm/uvm.h>
45 
46 
47 /*
48  * Pool resource management utility.
49  *
50  * Memory is allocated in pages which are split into pieces according to
51  * the pool item size. Each page is kept on one of three lists in the
52  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
53  * for empty, full and partially-full pages respectively. The individual
54  * pool items are on a linked list headed by `ph_itemlist' in each page
55  * header. The memory for building the page list is either taken from
56  * the allocated pages themselves (for small pool items) or taken from
57  * an internal pool of page headers (`phpool').
58  */
59 
60 /* List of all pools */
61 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
62 
63 /* Private pool for page header structures */
64 struct pool phpool;
65 
66 struct pool_item_header {
67 	/* Page headers */
68 	LIST_ENTRY(pool_item_header)
69 				ph_pagelist;	/* pool page list */
70 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
71 	RB_ENTRY(pool_item_header)
72 				ph_node;	/* Off-page page headers */
73 	int			ph_nmissing;	/* # of chunks in use */
74 	caddr_t			ph_page;	/* this page's address */
75 	caddr_t			ph_colored;	/* page's colored address */
76 	int			ph_pagesize;
77 };
78 
79 struct pool_item {
80 #ifdef DIAGNOSTIC
81 	u_int32_t pi_magic;
82 #endif
83 	/* Other entries use only this list entry */
84 	TAILQ_ENTRY(pool_item)	pi_list;
85 };
86 
87 #ifdef DEADBEEF1
88 #define	PI_MAGIC DEADBEEF1
89 #else
90 #define	PI_MAGIC 0xdeafbeef
91 #endif
92 
93 #define	POOL_NEEDS_CATCHUP(pp)						\
94 	((pp)->pr_nitems < (pp)->pr_minitems)
95 
96 /*
97  * Every pool gets a unique serial number assigned to it. If this counter
98  * wraps, we're screwed, but we shouldn't create so many pools anyway.
99  */
100 unsigned int pool_serial;
101 
102 int	 pool_catchup(struct pool *);
103 void	 pool_prime_page(struct pool *, caddr_t, struct pool_item_header *);
104 void	 pool_update_curpage(struct pool *);
105 void	*pool_do_get(struct pool *, int);
106 void	 pool_do_put(struct pool *, void *);
107 void	 pr_rmpage(struct pool *, struct pool_item_header *,
108 	    struct pool_pagelist *);
109 int	pool_chk_page(struct pool *, const char *, struct pool_item_header *);
110 struct pool_item_header *pool_alloc_item_header(struct pool *, caddr_t , int);
111 
112 void	*pool_allocator_alloc(struct pool *, int, int *);
113 void	 pool_allocator_free(struct pool *, void *);
114 
115 /*
116  * XXX - quick hack. For pools with large items we want to use a special
117  *       allocator. For now, instead of having the allocator figure out
118  *       the allocation size from the pool (which can be done trivially
119  *       with round_page(pr_itemsperpage * pr_size)) which would require
120  *	 lots of changes everywhere, we just create allocators for each
121  *	 size. We limit those to 128 pages.
122  */
123 #define POOL_LARGE_MAXPAGES 128
124 struct pool_allocator pool_allocator_large[POOL_LARGE_MAXPAGES];
125 struct pool_allocator pool_allocator_large_ni[POOL_LARGE_MAXPAGES];
126 void	*pool_large_alloc(struct pool *, int, int *);
127 void	pool_large_free(struct pool *, void *);
128 void	*pool_large_alloc_ni(struct pool *, int, int *);
129 void	pool_large_free_ni(struct pool *, void *);
130 
131 
132 #ifdef DDB
133 void	 pool_print_pagelist(struct pool_pagelist *,
134 	    int (*)(const char *, ...));
135 void	 pool_print1(struct pool *, const char *, int (*)(const char *, ...));
136 #endif
137 
138 #define pool_sleep(pl) msleep(pl, &pl->pr_mtx, PSWP, pl->pr_wchan, 0)
139 
140 static __inline int
141 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
142 {
143 	long diff = (vaddr_t)a->ph_page - (vaddr_t)b->ph_page;
144 	if (diff < 0)
145 		return -(-diff >= a->ph_pagesize);
146 	else if (diff > 0)
147 		return (diff >= b->ph_pagesize);
148 	else
149 		return (0);
150 }
151 
152 RB_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
153 RB_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
154 
155 /*
156  * Return the pool page header based on page address.
157  */
158 static __inline struct pool_item_header *
159 pr_find_pagehead(struct pool *pp, void *v)
160 {
161 	struct pool_item_header *ph, tmp;
162 
163 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
164 		caddr_t page;
165 
166 		page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask);
167 
168 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
169 	}
170 
171 	/*
172 	 * The trick we're using in the tree compare function is to compare
173 	 * two elements equal when they overlap. We want to return the
174 	 * page header that belongs to the element just before this address.
175 	 * We don't want this element to compare equal to the next element,
176 	 * so the compare function takes the pagesize from the lower element.
177 	 * If this header is the lower, its pagesize is zero, so it can't
178 	 * overlap with the next header. But if the header we're looking for
179 	 * is lower, we'll use its pagesize and it will overlap and return
180 	 * equal.
181 	 */
182 	tmp.ph_page = v;
183 	tmp.ph_pagesize = 0;
184 	ph = RB_FIND(phtree, &pp->pr_phtree, &tmp);
185 
186 	if (ph) {
187 		KASSERT(ph->ph_page <= (caddr_t)v);
188 		KASSERT(ph->ph_page + ph->ph_pagesize > (caddr_t)v);
189 	}
190 	return ph;
191 }
192 
193 /*
194  * Remove a page from the pool.
195  */
196 void
197 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
198     struct pool_pagelist *pq)
199 {
200 
201 	/*
202 	 * If the page was idle, decrement the idle page count.
203 	 */
204 	if (ph->ph_nmissing == 0) {
205 #ifdef DIAGNOSTIC
206 		if (pp->pr_nidle == 0)
207 			panic("pr_rmpage: nidle inconsistent");
208 		if (pp->pr_nitems < pp->pr_itemsperpage)
209 			panic("pr_rmpage: nitems inconsistent");
210 #endif
211 		pp->pr_nidle--;
212 	}
213 
214 	pp->pr_nitems -= pp->pr_itemsperpage;
215 
216 	/*
217 	 * Unlink a page from the pool and release it (or queue it for release).
218 	 */
219 	LIST_REMOVE(ph, ph_pagelist);
220 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
221 		RB_REMOVE(phtree, &pp->pr_phtree, ph);
222 	if (pq) {
223 		LIST_INSERT_HEAD(pq, ph, ph_pagelist);
224 	} else {
225 		pool_allocator_free(pp, ph->ph_page);
226 		if ((pp->pr_roflags & PR_PHINPAGE) == 0)
227 			pool_put(&phpool, ph);
228 	}
229 	pp->pr_npages--;
230 	pp->pr_npagefree++;
231 
232 	pool_update_curpage(pp);
233 }
234 
235 /*
236  * Initialize the given pool resource structure.
237  *
238  * We export this routine to allow other kernel parts to declare
239  * static pools that must be initialized before malloc() is available.
240  */
241 void
242 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
243     const char *wchan, struct pool_allocator *palloc)
244 {
245 	int off, slack;
246 
247 #ifdef MALLOC_DEBUG
248 	if ((flags & PR_DEBUG) && (ioff != 0 || align != 0))
249 		flags &= ~PR_DEBUG;
250 #endif
251 	/*
252 	 * Check arguments and construct default values.
253 	 */
254 	if (palloc == NULL) {
255 		if (size > PAGE_SIZE) {
256 			int psize;
257 
258 			/*
259 			 * XXX - should take align into account as well.
260 			 */
261 			if (size == round_page(size))
262 				psize = size / PAGE_SIZE;
263 			else
264 				psize = PAGE_SIZE / roundup(size % PAGE_SIZE,
265 				    1024);
266 			if (psize > POOL_LARGE_MAXPAGES)
267 				psize = POOL_LARGE_MAXPAGES;
268 			if (flags & PR_WAITOK)
269 				palloc = &pool_allocator_large_ni[psize-1];
270 			else
271 				palloc = &pool_allocator_large[psize-1];
272 			if (palloc->pa_pagesz == 0) {
273 				palloc->pa_pagesz = psize * PAGE_SIZE;
274 				if (flags & PR_WAITOK) {
275 					palloc->pa_alloc = pool_large_alloc_ni;
276 					palloc->pa_free = pool_large_free_ni;
277 				} else {
278 					palloc->pa_alloc = pool_large_alloc;
279 					palloc->pa_free = pool_large_free;
280 				}
281 			}
282 		} else {
283 			palloc = &pool_allocator_nointr;
284 		}
285 	}
286 	if (palloc->pa_pagesz == 0) {
287 		palloc->pa_pagesz = PAGE_SIZE;
288 	}
289 	if (palloc->pa_pagemask == 0) {
290 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
291 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
292 	}
293 
294 	if (align == 0)
295 		align = ALIGN(1);
296 
297 	if (size < sizeof(struct pool_item))
298 		size = sizeof(struct pool_item);
299 
300 	size = roundup(size, align);
301 #ifdef DIAGNOSTIC
302 	if (size > palloc->pa_pagesz)
303 		panic("pool_init: pool item size (%lu) too large",
304 		    (u_long)size);
305 #endif
306 
307 	/*
308 	 * Initialize the pool structure.
309 	 */
310 	LIST_INIT(&pp->pr_emptypages);
311 	LIST_INIT(&pp->pr_fullpages);
312 	LIST_INIT(&pp->pr_partpages);
313 	pp->pr_curpage = NULL;
314 	pp->pr_npages = 0;
315 	pp->pr_minitems = 0;
316 	pp->pr_minpages = 0;
317 	pp->pr_maxpages = 8;
318 	pp->pr_roflags = flags;
319 	pp->pr_flags = 0;
320 	pp->pr_size = size;
321 	pp->pr_align = align;
322 	pp->pr_wchan = wchan;
323 	pp->pr_alloc = palloc;
324 	pp->pr_nitems = 0;
325 	pp->pr_nout = 0;
326 	pp->pr_hardlimit = UINT_MAX;
327 	pp->pr_hardlimit_warning = NULL;
328 	pp->pr_hardlimit_ratecap.tv_sec = 0;
329 	pp->pr_hardlimit_ratecap.tv_usec = 0;
330 	pp->pr_hardlimit_warning_last.tv_sec = 0;
331 	pp->pr_hardlimit_warning_last.tv_usec = 0;
332 	pp->pr_serial = ++pool_serial;
333 	if (pool_serial == 0)
334 		panic("pool_init: too much uptime");
335 
336         /* constructor, destructor, and arg */
337 	pp->pr_ctor = NULL;
338 	pp->pr_dtor = NULL;
339 	pp->pr_arg = NULL;
340 
341 	/*
342 	 * Decide whether to put the page header off page to avoid
343 	 * wasting too large a part of the page. Off-page page headers
344 	 * go into an RB tree, so we can match a returned item with
345 	 * its header based on the page address.
346 	 * We use 1/16 of the page size as the threshold (XXX: tune)
347 	 */
348 	if (pp->pr_size < palloc->pa_pagesz/16 && pp->pr_size < PAGE_SIZE) {
349 		/* Use the end of the page for the page header */
350 		pp->pr_roflags |= PR_PHINPAGE;
351 		pp->pr_phoffset = off = palloc->pa_pagesz -
352 		    ALIGN(sizeof(struct pool_item_header));
353 	} else {
354 		/* The page header will be taken from our page header pool */
355 		pp->pr_phoffset = 0;
356 		off = palloc->pa_pagesz;
357 		RB_INIT(&pp->pr_phtree);
358 	}
359 
360 	/*
361 	 * Alignment is to take place at `ioff' within the item. This means
362 	 * we must reserve up to `align - 1' bytes on the page to allow
363 	 * appropriate positioning of each item.
364 	 *
365 	 * Silently enforce `0 <= ioff < align'.
366 	 */
367 	pp->pr_itemoffset = ioff = ioff % align;
368 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
369 	KASSERT(pp->pr_itemsperpage != 0);
370 
371 	/*
372 	 * Use the slack between the chunks and the page header
373 	 * for "cache coloring".
374 	 */
375 	slack = off - pp->pr_itemsperpage * pp->pr_size;
376 	pp->pr_maxcolor = (slack / align) * align;
377 	pp->pr_curcolor = 0;
378 
379 	pp->pr_nget = 0;
380 	pp->pr_nfail = 0;
381 	pp->pr_nput = 0;
382 	pp->pr_npagealloc = 0;
383 	pp->pr_npagefree = 0;
384 	pp->pr_hiwat = 0;
385 	pp->pr_nidle = 0;
386 
387 	pp->pr_ipl = -1;
388 	mtx_init(&pp->pr_mtx, IPL_NONE);
389 
390 	if (phpool.pr_size == 0) {
391 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
392 		    0, "phpool", NULL);
393 		pool_setipl(&phpool, IPL_HIGH);
394 	}
395 
396 	/* pglistalloc/constraint parameters */
397 	pp->pr_crange = &no_constraint;
398 	pp->pr_pa_nsegs = 0;
399 
400 	/* Insert this into the list of all pools. */
401 	TAILQ_INSERT_HEAD(&pool_head, pp, pr_poollist);
402 }
403 
404 void
405 pool_setipl(struct pool *pp, int ipl)
406 {
407 	pp->pr_ipl = ipl;
408 	mtx_init(&pp->pr_mtx, ipl);
409 }
410 
411 /*
412  * Decommission a pool resource.
413  */
414 void
415 pool_destroy(struct pool *pp)
416 {
417 	struct pool_item_header *ph;
418 
419 #ifdef DIAGNOSTIC
420 	if (pp->pr_nout != 0)
421 		panic("pool_destroy: pool busy: still out: %u", pp->pr_nout);
422 #endif
423 
424 	/* Remove all pages */
425 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
426 		pr_rmpage(pp, ph, NULL);
427 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
428 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
429 
430 	/* Remove from global pool list */
431 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
432 }
433 
434 struct pool_item_header *
435 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
436 {
437 	struct pool_item_header *ph;
438 
439 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
440 		ph = (struct pool_item_header *)(storage + pp->pr_phoffset);
441 	else
442 		ph = pool_get(&phpool, (flags & ~(PR_WAITOK | PR_ZERO)) |
443 		    PR_NOWAIT);
444 
445 	return (ph);
446 }
447 
448 /*
449  * Grab an item from the pool; must be called at appropriate spl level
450  */
451 void *
452 pool_get(struct pool *pp, int flags)
453 {
454 	void *v;
455 
456 #ifdef DIAGNOSTIC
457 	if ((flags & PR_WAITOK) != 0)
458 		splassert(IPL_NONE);
459 #endif /* DIAGNOSTIC */
460 
461 	mtx_enter(&pp->pr_mtx);
462 	v = pool_do_get(pp, flags);
463 	mtx_leave(&pp->pr_mtx);
464 	if (v == NULL)
465 		return (v);
466 
467 	if (pp->pr_ctor) {
468 		if (flags & PR_ZERO)
469 			panic("pool_get: PR_ZERO when ctor set");
470 		if (pp->pr_ctor(pp->pr_arg, v, flags)) {
471 			mtx_enter(&pp->pr_mtx);
472 			pool_do_put(pp, v);
473 			mtx_leave(&pp->pr_mtx);
474 			v = NULL;
475 		}
476 	} else {
477 		if (flags & PR_ZERO)
478 			memset(v, 0, pp->pr_size);
479 	}
480 	if (v != NULL)
481 		pp->pr_nget++;
482 	return (v);
483 }
484 
485 void *
486 pool_do_get(struct pool *pp, int flags)
487 {
488 	struct pool_item *pi;
489 	struct pool_item_header *ph;
490 	void *v;
491 	int slowdown = 0;
492 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
493 	int i, *ip;
494 #endif
495 
496 #ifdef MALLOC_DEBUG
497 	if (pp->pr_roflags & PR_DEBUG) {
498 		void *addr;
499 
500 		addr = NULL;
501 		debug_malloc(pp->pr_size, M_DEBUG,
502 		    (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr);
503 		return (addr);
504 	}
505 #endif
506 
507 startover:
508 	/*
509 	 * Check to see if we've reached the hard limit.  If we have,
510 	 * and we can wait, then wait until an item has been returned to
511 	 * the pool.
512 	 */
513 #ifdef DIAGNOSTIC
514 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit))
515 		panic("pool_do_get: %s: crossed hard limit", pp->pr_wchan);
516 #endif
517 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
518 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
519 			/*
520 			 * XXX: A warning isn't logged in this case.  Should
521 			 * it be?
522 			 */
523 			pp->pr_flags |= PR_WANTED;
524 			pool_sleep(pp);
525 			goto startover;
526 		}
527 
528 		/*
529 		 * Log a message that the hard limit has been hit.
530 		 */
531 		if (pp->pr_hardlimit_warning != NULL &&
532 		    ratecheck(&pp->pr_hardlimit_warning_last,
533 		    &pp->pr_hardlimit_ratecap))
534 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
535 
536 		pp->pr_nfail++;
537 		return (NULL);
538 	}
539 
540 	/*
541 	 * The convention we use is that if `curpage' is not NULL, then
542 	 * it points at a non-empty bucket. In particular, `curpage'
543 	 * never points at a page header which has PR_PHINPAGE set and
544 	 * has no items in its bucket.
545 	 */
546 	if ((ph = pp->pr_curpage) == NULL) {
547 #ifdef DIAGNOSTIC
548 		if (pp->pr_nitems != 0) {
549 			printf("pool_do_get: %s: curpage NULL, nitems %u\n",
550 			    pp->pr_wchan, pp->pr_nitems);
551 			panic("pool_do_get: nitems inconsistent");
552 		}
553 #endif
554 
555 		/*
556 		 * Call the back-end page allocator for more memory.
557 		 */
558 		v = pool_allocator_alloc(pp, flags, &slowdown);
559 		if (__predict_true(v != NULL))
560 			ph = pool_alloc_item_header(pp, v, flags);
561 
562 		if (__predict_false(v == NULL || ph == NULL)) {
563 			if (v != NULL)
564 				pool_allocator_free(pp, v);
565 
566 			if ((flags & PR_WAITOK) == 0) {
567 				pp->pr_nfail++;
568 				return (NULL);
569 			}
570 
571 			/*
572 			 * Wait for items to be returned to this pool.
573 			 *
574 			 * XXX: maybe we should wake up once a second and
575 			 * try again?
576 			 */
577 			pp->pr_flags |= PR_WANTED;
578 			pool_sleep(pp);
579 			goto startover;
580 		}
581 
582 		/* We have more memory; add it to the pool */
583 		pool_prime_page(pp, v, ph);
584 		pp->pr_npagealloc++;
585 
586 		if (slowdown && (flags & PR_WAITOK)) {
587 			mtx_leave(&pp->pr_mtx);
588 			yield();
589 			mtx_enter(&pp->pr_mtx);
590 		}
591 
592 		/* Start the allocation process over. */
593 		goto startover;
594 	}
595 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
596 		panic("pool_do_get: %s: page empty", pp->pr_wchan);
597 	}
598 #ifdef DIAGNOSTIC
599 	if (__predict_false(pp->pr_nitems == 0)) {
600 		printf("pool_do_get: %s: items on itemlist, nitems %u\n",
601 		    pp->pr_wchan, pp->pr_nitems);
602 		panic("pool_do_get: nitems inconsistent");
603 	}
604 #endif
605 
606 #ifdef DIAGNOSTIC
607 	if (__predict_false(pi->pi_magic != PI_MAGIC))
608 		panic("pool_do_get(%s): free list modified: "
609 		    "page %p; item addr %p; offset 0x%x=0x%x",
610 		    pp->pr_wchan, ph->ph_page, pi, 0, pi->pi_magic);
611 #ifdef POOL_DEBUG
612 	for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int);
613 	    i < pp->pr_size / sizeof(int); i++) {
614 		if (ip[i] != PI_MAGIC) {
615 			panic("pool_do_get(%s): free list modified: "
616 			    "page %p; item addr %p; offset 0x%x=0x%x",
617 			    pp->pr_wchan, ph->ph_page, pi,
618 			    i * sizeof(int), ip[i]);
619 		}
620 	}
621 #endif /* POOL_DEBUG */
622 #endif /* DIAGNOSTIC */
623 
624 	/*
625 	 * Remove from item list.
626 	 */
627 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
628 	pp->pr_nitems--;
629 	pp->pr_nout++;
630 	if (ph->ph_nmissing == 0) {
631 #ifdef DIAGNOSTIC
632 		if (__predict_false(pp->pr_nidle == 0))
633 			panic("pool_do_get: nidle inconsistent");
634 #endif
635 		pp->pr_nidle--;
636 
637 		/*
638 		 * This page was previously empty.  Move it to the list of
639 		 * partially-full pages.  This page is already curpage.
640 		 */
641 		LIST_REMOVE(ph, ph_pagelist);
642 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
643 	}
644 	ph->ph_nmissing++;
645 	if (TAILQ_EMPTY(&ph->ph_itemlist)) {
646 #ifdef DIAGNOSTIC
647 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
648 			panic("pool_do_get: %s: nmissing inconsistent",
649 			    pp->pr_wchan);
650 		}
651 #endif
652 		/*
653 		 * This page is now full.  Move it to the full list
654 		 * and select a new current page.
655 		 */
656 		LIST_REMOVE(ph, ph_pagelist);
657 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
658 		pool_update_curpage(pp);
659 	}
660 
661 	/*
662 	 * If we have a low water mark and we are now below that low
663 	 * water mark, add more items to the pool.
664 	 */
665 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
666 		/*
667 		 * XXX: Should we log a warning?  Should we set up a timeout
668 		 * to try again in a second or so?  The latter could break
669 		 * a caller's assumptions about interrupt protection, etc.
670 		 */
671 	}
672 	return (v);
673 }
674 
675 /*
676  * Return resource to the pool; must be called at appropriate spl level
677  */
678 void
679 pool_put(struct pool *pp, void *v)
680 {
681 	if (pp->pr_dtor)
682 		pp->pr_dtor(pp->pr_arg, v);
683 	mtx_enter(&pp->pr_mtx);
684 	pool_do_put(pp, v);
685 	mtx_leave(&pp->pr_mtx);
686 	pp->pr_nput++;
687 }
688 
689 /*
690  * Internal version of pool_put().
691  */
692 void
693 pool_do_put(struct pool *pp, void *v)
694 {
695 	struct pool_item *pi = v;
696 	struct pool_item_header *ph;
697 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
698 	int i, *ip;
699 #endif
700 
701 	if (v == NULL)
702 		panic("pool_put of NULL");
703 
704 #ifdef MALLOC_DEBUG
705 	if (pp->pr_roflags & PR_DEBUG) {
706 		debug_free(v, M_DEBUG);
707 		return;
708 	}
709 #endif
710 
711 #ifdef DIAGNOSTIC
712 	if (pp->pr_ipl != -1)
713 		splassert(pp->pr_ipl);
714 
715 	if (__predict_false(pp->pr_nout == 0)) {
716 		printf("pool %s: putting with none out\n",
717 		    pp->pr_wchan);
718 		panic("pool_do_put");
719 	}
720 #endif
721 
722 	if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
723 		panic("pool_do_put: %s: page header missing", pp->pr_wchan);
724 	}
725 
726 	/*
727 	 * Return to item list.
728 	 */
729 #ifdef DIAGNOSTIC
730 	pi->pi_magic = PI_MAGIC;
731 #ifdef POOL_DEBUG
732 	for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int);
733 	    i < pp->pr_size / sizeof(int); i++)
734 		ip[i] = PI_MAGIC;
735 #endif /* POOL_DEBUG */
736 #endif /* DIAGNOSTIC */
737 
738 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
739 	ph->ph_nmissing--;
740 	pp->pr_nitems++;
741 	pp->pr_nout--;
742 
743 	/* Cancel "pool empty" condition if it exists */
744 	if (pp->pr_curpage == NULL)
745 		pp->pr_curpage = ph;
746 
747 	if (pp->pr_flags & PR_WANTED) {
748 		pp->pr_flags &= ~PR_WANTED;
749 		if (ph->ph_nmissing == 0)
750 			pp->pr_nidle++;
751 		wakeup(pp);
752 		return;
753 	}
754 
755 	/*
756 	 * If this page is now empty, do one of two things:
757 	 *
758 	 *	(1) If we have more pages than the page high water mark,
759 	 *	    free the page back to the system.
760 	 *
761 	 *	(2) Otherwise, move the page to the empty page list.
762 	 *
763 	 * Either way, select a new current page (so we use a partially-full
764 	 * page if one is available).
765 	 */
766 	if (ph->ph_nmissing == 0) {
767 		pp->pr_nidle++;
768 		if (pp->pr_nidle > pp->pr_maxpages) {
769 			pr_rmpage(pp, ph, NULL);
770 		} else {
771 			LIST_REMOVE(ph, ph_pagelist);
772 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
773 		}
774 		pool_update_curpage(pp);
775 	}
776 
777 	/*
778 	 * If the page was previously completely full, move it to the
779 	 * partially-full list and make it the current page.  The next
780 	 * allocation will get the item from this page, instead of
781 	 * further fragmenting the pool.
782 	 */
783 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
784 		LIST_REMOVE(ph, ph_pagelist);
785 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
786 		pp->pr_curpage = ph;
787 	}
788 }
789 
790 /*
791  * Add N items to the pool.
792  */
793 int
794 pool_prime(struct pool *pp, int n)
795 {
796 	struct pool_item_header *ph;
797 	caddr_t cp;
798 	int newpages;
799 	int slowdown;
800 
801 	mtx_enter(&pp->pr_mtx);
802 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
803 
804 	while (newpages-- > 0) {
805 		cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown);
806 		if (__predict_true(cp != NULL))
807 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
808 		if (__predict_false(cp == NULL || ph == NULL)) {
809 			if (cp != NULL)
810 				pool_allocator_free(pp, cp);
811 			break;
812 		}
813 
814 		pool_prime_page(pp, cp, ph);
815 		pp->pr_npagealloc++;
816 		pp->pr_minpages++;
817 	}
818 
819 	if (pp->pr_minpages >= pp->pr_maxpages)
820 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
821 
822 	mtx_leave(&pp->pr_mtx);
823 	return (0);
824 }
825 
826 /*
827  * Add a page worth of items to the pool.
828  *
829  * Note, we must be called with the pool descriptor LOCKED.
830  */
831 void
832 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
833 {
834 	struct pool_item *pi;
835 	caddr_t cp = storage;
836 	unsigned int align = pp->pr_align;
837 	unsigned int ioff = pp->pr_itemoffset;
838 	int n;
839 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
840 	int i, *ip;
841 #endif
842 
843 	/*
844 	 * Insert page header.
845 	 */
846 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
847 	TAILQ_INIT(&ph->ph_itemlist);
848 	ph->ph_page = storage;
849 	ph->ph_pagesize = pp->pr_alloc->pa_pagesz;
850 	ph->ph_nmissing = 0;
851 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
852 		RB_INSERT(phtree, &pp->pr_phtree, ph);
853 
854 	pp->pr_nidle++;
855 
856 	/*
857 	 * Color this page.
858 	 */
859 	cp = (caddr_t)(cp + pp->pr_curcolor);
860 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
861 		pp->pr_curcolor = 0;
862 
863 	/*
864 	 * Adjust storage to apply alignment to `pr_itemoffset' in each item.
865 	 */
866 	if (ioff != 0)
867 		cp = (caddr_t)(cp + (align - ioff));
868 	ph->ph_colored = cp;
869 
870 	/*
871 	 * Insert remaining chunks on the bucket list.
872 	 */
873 	n = pp->pr_itemsperpage;
874 	pp->pr_nitems += n;
875 
876 	while (n--) {
877 		pi = (struct pool_item *)cp;
878 
879 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
880 
881 		/* Insert on page list */
882 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
883 
884 #ifdef DIAGNOSTIC
885 		pi->pi_magic = PI_MAGIC;
886 #ifdef POOL_DEBUG
887 		for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int);
888 		    i < pp->pr_size / sizeof(int); i++)
889 			ip[i] = PI_MAGIC;
890 #endif /* POOL_DEBUG */
891 #endif /* DIAGNOSTIC */
892 		cp = (caddr_t)(cp + pp->pr_size);
893 	}
894 
895 	/*
896 	 * If the pool was depleted, point at the new page.
897 	 */
898 	if (pp->pr_curpage == NULL)
899 		pp->pr_curpage = ph;
900 
901 	if (++pp->pr_npages > pp->pr_hiwat)
902 		pp->pr_hiwat = pp->pr_npages;
903 }
904 
905 /*
906  * Used by pool_get() when nitems drops below the low water mark.  This
907  * is used to catch up pr_nitems with the low water mark.
908  *
909  * Note we never wait for memory here, we let the caller decide what to do.
910  */
911 int
912 pool_catchup(struct pool *pp)
913 {
914 	struct pool_item_header *ph;
915 	caddr_t cp;
916 	int error = 0;
917 	int slowdown;
918 
919 	while (POOL_NEEDS_CATCHUP(pp)) {
920 		/*
921 		 * Call the page back-end allocator for more memory.
922 		 */
923 		cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown);
924 		if (__predict_true(cp != NULL))
925 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
926 		if (__predict_false(cp == NULL || ph == NULL)) {
927 			if (cp != NULL)
928 				pool_allocator_free(pp, cp);
929 			error = ENOMEM;
930 			break;
931 		}
932 		pool_prime_page(pp, cp, ph);
933 		pp->pr_npagealloc++;
934 	}
935 
936 	return (error);
937 }
938 
939 void
940 pool_update_curpage(struct pool *pp)
941 {
942 
943 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
944 	if (pp->pr_curpage == NULL) {
945 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
946 	}
947 }
948 
949 void
950 pool_setlowat(struct pool *pp, int n)
951 {
952 
953 	pp->pr_minitems = n;
954 	pp->pr_minpages = (n == 0)
955 		? 0
956 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
957 
958 	mtx_enter(&pp->pr_mtx);
959 	/* Make sure we're caught up with the newly-set low water mark. */
960 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
961 		/*
962 		 * XXX: Should we log a warning?  Should we set up a timeout
963 		 * to try again in a second or so?  The latter could break
964 		 * a caller's assumptions about interrupt protection, etc.
965 		 */
966 	}
967 	mtx_leave(&pp->pr_mtx);
968 }
969 
970 void
971 pool_sethiwat(struct pool *pp, int n)
972 {
973 
974 	pp->pr_maxpages = (n == 0)
975 		? 0
976 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
977 }
978 
979 int
980 pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap)
981 {
982 	int error = 0;
983 
984 	if (n < pp->pr_nout) {
985 		error = EINVAL;
986 		goto done;
987 	}
988 
989 	pp->pr_hardlimit = n;
990 	pp->pr_hardlimit_warning = warnmsg;
991 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
992 	pp->pr_hardlimit_warning_last.tv_sec = 0;
993 	pp->pr_hardlimit_warning_last.tv_usec = 0;
994 
995 	/*
996 	 * In-line version of pool_sethiwat().
997 	 */
998 	pp->pr_maxpages = (n == 0 || n == UINT_MAX)
999 		? n
1000 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1001 
1002 done:
1003 	return (error);
1004 }
1005 
1006 void
1007 pool_set_constraints(struct pool *pp, struct uvm_constraint_range *range,
1008     int nsegs)
1009 {
1010 	/*
1011 	 * Subsequent changes to the constrictions are only
1012 	 * allowed to make them _more_ strict.
1013 	 */
1014 	KASSERT(pp->pr_crange->ucr_high >= range->ucr_high &&
1015 	    pp->pr_crange->ucr_low <= range->ucr_low);
1016 
1017 	pp->pr_crange = range;
1018 	pp->pr_pa_nsegs = nsegs;
1019 }
1020 
1021 void
1022 pool_set_ctordtor(struct pool *pp, int (*ctor)(void *, void *, int),
1023     void (*dtor)(void *, void *), void *arg)
1024 {
1025 	pp->pr_ctor = ctor;
1026 	pp->pr_dtor = dtor;
1027 	pp->pr_arg = arg;
1028 }
1029 /*
1030  * Release all complete pages that have not been used recently.
1031  *
1032  * Returns non-zero if any pages have been reclaimed.
1033  */
1034 int
1035 pool_reclaim(struct pool *pp)
1036 {
1037 	struct pool_item_header *ph, *phnext;
1038 	struct pool_pagelist pq;
1039 
1040 	LIST_INIT(&pq);
1041 
1042 	mtx_enter(&pp->pr_mtx);
1043 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1044 		phnext = LIST_NEXT(ph, ph_pagelist);
1045 
1046 		/* Check our minimum page claim */
1047 		if (pp->pr_npages <= pp->pr_minpages)
1048 			break;
1049 
1050 		KASSERT(ph->ph_nmissing == 0);
1051 
1052 		/*
1053 		 * If freeing this page would put us below
1054 		 * the low water mark, stop now.
1055 		 */
1056 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1057 		    pp->pr_minitems)
1058 			break;
1059 
1060 		pr_rmpage(pp, ph, &pq);
1061 	}
1062 	mtx_leave(&pp->pr_mtx);
1063 
1064 	if (LIST_EMPTY(&pq))
1065 		return (0);
1066 	while ((ph = LIST_FIRST(&pq)) != NULL) {
1067 		LIST_REMOVE(ph, ph_pagelist);
1068 		pool_allocator_free(pp, ph->ph_page);
1069 		if (pp->pr_roflags & PR_PHINPAGE)
1070 			continue;
1071 		pool_put(&phpool, ph);
1072 	}
1073 
1074 	return (1);
1075 }
1076 
1077 #ifdef DDB
1078 #include <machine/db_machdep.h>
1079 #include <ddb/db_interface.h>
1080 #include <ddb/db_output.h>
1081 
1082 /*
1083  * Diagnostic helpers.
1084  */
1085 void
1086 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1087 {
1088 	pool_print1(pp, modif, pr);
1089 }
1090 
1091 void
1092 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...))
1093 {
1094 	struct pool_item_header *ph;
1095 #ifdef DIAGNOSTIC
1096 	struct pool_item *pi;
1097 #endif
1098 
1099 	LIST_FOREACH(ph, pl, ph_pagelist) {
1100 		(*pr)("\t\tpage %p, nmissing %d\n",
1101 		    ph->ph_page, ph->ph_nmissing);
1102 #ifdef DIAGNOSTIC
1103 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1104 			if (pi->pi_magic != PI_MAGIC) {
1105 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1106 				    pi, pi->pi_magic);
1107 			}
1108 		}
1109 #endif
1110 	}
1111 }
1112 
1113 void
1114 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1115 {
1116 	struct pool_item_header *ph;
1117 	int print_pagelist = 0;
1118 	char c;
1119 
1120 	while ((c = *modif++) != '\0') {
1121 		if (c == 'p')
1122 			print_pagelist = 1;
1123 		modif++;
1124 	}
1125 
1126 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1127 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1128 	    pp->pr_roflags);
1129 	(*pr)("\talloc %p\n", pp->pr_alloc);
1130 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1131 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1132 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1133 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1134 
1135 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1136 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1137 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1138 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1139 
1140 	if (print_pagelist == 0)
1141 		return;
1142 
1143 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1144 		(*pr)("\n\tempty page list:\n");
1145 	pool_print_pagelist(&pp->pr_emptypages, pr);
1146 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1147 		(*pr)("\n\tfull page list:\n");
1148 	pool_print_pagelist(&pp->pr_fullpages, pr);
1149 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1150 		(*pr)("\n\tpartial-page list:\n");
1151 	pool_print_pagelist(&pp->pr_partpages, pr);
1152 
1153 	if (pp->pr_curpage == NULL)
1154 		(*pr)("\tno current page\n");
1155 	else
1156 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1157 }
1158 
1159 void
1160 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif)
1161 {
1162 	struct pool *pp;
1163 	char maxp[16];
1164 	int ovflw;
1165 	char mode;
1166 
1167 	mode = modif[0];
1168 	if (mode != '\0' && mode != 'a') {
1169 		db_printf("usage: show all pools [/a]\n");
1170 		return;
1171 	}
1172 
1173 	if (mode == '\0')
1174 		db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n",
1175 		    "Name",
1176 		    "Size",
1177 		    "Requests",
1178 		    "Fail",
1179 		    "Releases",
1180 		    "Pgreq",
1181 		    "Pgrel",
1182 		    "Npage",
1183 		    "Hiwat",
1184 		    "Minpg",
1185 		    "Maxpg",
1186 		    "Idle");
1187 	else
1188 		db_printf("%-10s %18s %18s\n",
1189 		    "Name", "Address", "Allocator");
1190 
1191 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1192 		if (mode == 'a') {
1193 			db_printf("%-10s %18p %18p\n", pp->pr_wchan, pp,
1194 			    pp->pr_alloc);
1195 			continue;
1196 		}
1197 
1198 		if (!pp->pr_nget)
1199 			continue;
1200 
1201 		if (pp->pr_maxpages == UINT_MAX)
1202 			snprintf(maxp, sizeof maxp, "inf");
1203 		else
1204 			snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages);
1205 
1206 #define PRWORD(ovflw, fmt, width, fixed, val) do {	\
1207 	(ovflw) += db_printf((fmt),			\
1208 	    (width) - (fixed) - (ovflw) > 0 ?		\
1209 	    (width) - (fixed) - (ovflw) : 0,		\
1210 	    (val)) - (width);				\
1211 	if ((ovflw) < 0)				\
1212 		(ovflw) = 0;				\
1213 } while (/* CONSTCOND */0)
1214 
1215 		ovflw = 0;
1216 		PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan);
1217 		PRWORD(ovflw, " %*u", 4, 1, pp->pr_size);
1218 		PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget);
1219 		PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail);
1220 		PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput);
1221 		PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc);
1222 		PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree);
1223 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages);
1224 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat);
1225 		PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages);
1226 		PRWORD(ovflw, " %*s", 6, 1, maxp);
1227 		PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle);
1228 
1229 		pool_chk(pp, pp->pr_wchan);
1230 	}
1231 }
1232 
1233 int
1234 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1235 {
1236 	struct pool_item *pi;
1237 	caddr_t page;
1238 	int n;
1239 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG)
1240 	int i, *ip;
1241 #endif
1242 
1243 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1244 	if (page != ph->ph_page &&
1245 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1246 		if (label != NULL)
1247 			printf("%s: ", label);
1248 		printf("pool(%p:%s): page inconsistency: page %p; "
1249 		    "at page head addr %p (p %p)\n",
1250 		    pp, pp->pr_wchan, ph->ph_page, ph, page);
1251 		return 1;
1252 	}
1253 
1254 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1255 	     pi != NULL;
1256 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
1257 
1258 #ifdef DIAGNOSTIC
1259 		if (pi->pi_magic != PI_MAGIC) {
1260 			if (label != NULL)
1261 				printf("%s: ", label);
1262 			printf("pool(%s): free list modified: "
1263 			    "page %p; item ordinal %d; addr %p "
1264 			    "(p %p); offset 0x%x=0x%x\n",
1265 			    pp->pr_wchan, ph->ph_page, n, pi, page,
1266 			    0, pi->pi_magic);
1267 		}
1268 #ifdef POOL_DEBUG
1269 		for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int);
1270 		    i < pp->pr_size / sizeof(int); i++) {
1271 			if (ip[i] != PI_MAGIC) {
1272 				printf("pool(%s): free list modified: "
1273 				    "page %p; item ordinal %d; addr %p "
1274 				    "(p %p); offset 0x%x=0x%x\n",
1275 				    pp->pr_wchan, ph->ph_page, n, pi,
1276 				    page, i * sizeof(int), ip[i]);
1277 			}
1278 		}
1279 
1280 #endif /* POOL_DEBUG */
1281 #endif /* DIAGNOSTIC */
1282 		page =
1283 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1284 		if (page == ph->ph_page)
1285 			continue;
1286 
1287 		if (label != NULL)
1288 			printf("%s: ", label);
1289 		printf("pool(%p:%s): page inconsistency: page %p;"
1290 		    " item ordinal %d; addr %p (p %p)\n", pp,
1291 		    pp->pr_wchan, ph->ph_page, n, pi, page);
1292 		return 1;
1293 	}
1294 	return 0;
1295 }
1296 
1297 int
1298 pool_chk(struct pool *pp, const char *label)
1299 {
1300 	struct pool_item_header *ph;
1301 	int r = 0;
1302 
1303 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist)
1304 		r += pool_chk_page(pp, label, ph);
1305 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist)
1306 		r += pool_chk_page(pp, label, ph);
1307 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist)
1308 		r += pool_chk_page(pp, label, ph);
1309 
1310 	return (r);
1311 }
1312 
1313 void
1314 pool_walk(struct pool *pp, int full, int (*pr)(const char *, ...),
1315     void (*func)(void *, int, int (*)(const char *, ...)))
1316 {
1317 	struct pool_item_header *ph;
1318 	struct pool_item *pi;
1319 	caddr_t cp;
1320 	int n;
1321 
1322 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1323 		cp = ph->ph_colored;
1324 		n = ph->ph_nmissing;
1325 
1326 		while (n--) {
1327 			func(cp, full, pr);
1328 			cp += pp->pr_size;
1329 		}
1330 	}
1331 
1332 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1333 		cp = ph->ph_colored;
1334 		n = ph->ph_nmissing;
1335 
1336 		do {
1337 			TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1338 				if (cp == (caddr_t)pi)
1339 					break;
1340 			}
1341 			if (cp != (caddr_t)pi) {
1342 				func(cp, full, pr);
1343 				n--;
1344 			}
1345 
1346 			cp += pp->pr_size;
1347 		} while (n > 0);
1348 	}
1349 }
1350 #endif
1351 
1352 /*
1353  * We have three different sysctls.
1354  * kern.pool.npools - the number of pools.
1355  * kern.pool.pool.<pool#> - the pool struct for the pool#.
1356  * kern.pool.name.<pool#> - the name for pool#.
1357  */
1358 int
1359 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep)
1360 {
1361 	struct pool *pp, *foundpool = NULL;
1362 	size_t buflen = where != NULL ? *sizep : 0;
1363 	int npools = 0, s;
1364 	unsigned int lookfor;
1365 	size_t len;
1366 
1367 	switch (*name) {
1368 	case KERN_POOL_NPOOLS:
1369 		if (namelen != 1 || buflen != sizeof(int))
1370 			return (EINVAL);
1371 		lookfor = 0;
1372 		break;
1373 	case KERN_POOL_NAME:
1374 		if (namelen != 2 || buflen < 1)
1375 			return (EINVAL);
1376 		lookfor = name[1];
1377 		break;
1378 	case KERN_POOL_POOL:
1379 		if (namelen != 2 || buflen != sizeof(struct pool))
1380 			return (EINVAL);
1381 		lookfor = name[1];
1382 		break;
1383 	default:
1384 		return (EINVAL);
1385 	}
1386 
1387 	s = splvm();
1388 
1389 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1390 		npools++;
1391 		if (lookfor == pp->pr_serial) {
1392 			foundpool = pp;
1393 			break;
1394 		}
1395 	}
1396 
1397 	splx(s);
1398 
1399 	if (*name != KERN_POOL_NPOOLS && foundpool == NULL)
1400 		return (ENOENT);
1401 
1402 	switch (*name) {
1403 	case KERN_POOL_NPOOLS:
1404 		return copyout(&npools, where, buflen);
1405 	case KERN_POOL_NAME:
1406 		len = strlen(foundpool->pr_wchan) + 1;
1407 		if (*sizep < len)
1408 			return (ENOMEM);
1409 		*sizep = len;
1410 		return copyout(foundpool->pr_wchan, where, len);
1411 	case KERN_POOL_POOL:
1412 		return copyout(foundpool, where, buflen);
1413 	}
1414 	/* NOTREACHED */
1415 	return (0); /* XXX - Stupid gcc */
1416 }
1417 
1418 /*
1419  * Pool backend allocators.
1420  *
1421  * Each pool has a backend allocator that handles allocation, deallocation
1422  */
1423 void	*pool_page_alloc(struct pool *, int, int *);
1424 void	pool_page_free(struct pool *, void *);
1425 
1426 /*
1427  * safe for interrupts, name preserved for compat this is the default
1428  * allocator
1429  */
1430 struct pool_allocator pool_allocator_nointr = {
1431 	pool_page_alloc, pool_page_free, 0,
1432 };
1433 
1434 /*
1435  * XXX - we have at least three different resources for the same allocation
1436  *  and each resource can be depleted. First we have the ready elements in
1437  *  the pool. Then we have the resource (typically a vm_map) for this
1438  *  allocator, then we have physical memory. Waiting for any of these can
1439  *  be unnecessary when any other is freed, but the kernel doesn't support
1440  *  sleeping on multiple addresses, so we have to fake. The caller sleeps on
1441  *  the pool (so that we can be awakened when an item is returned to the pool),
1442  *  but we set PA_WANT on the allocator. When a page is returned to
1443  *  the allocator and PA_WANT is set pool_allocator_free will wakeup all
1444  *  sleeping pools belonging to this allocator. (XXX - thundering herd).
1445  *  We also wake up the allocator in case someone without a pool (malloc)
1446  *  is sleeping waiting for this allocator.
1447  */
1448 
1449 void *
1450 pool_allocator_alloc(struct pool *pp, int flags, int *slowdown)
1451 {
1452 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1453 	void *v;
1454 
1455 	if (waitok)
1456 		mtx_leave(&pp->pr_mtx);
1457 	v = pp->pr_alloc->pa_alloc(pp, flags, slowdown);
1458 	if (waitok)
1459 		mtx_enter(&pp->pr_mtx);
1460 
1461 	return (v);
1462 }
1463 
1464 void
1465 pool_allocator_free(struct pool *pp, void *v)
1466 {
1467 	struct pool_allocator *pa = pp->pr_alloc;
1468 
1469 	(*pa->pa_free)(pp, v);
1470 }
1471 
1472 void *
1473 pool_page_alloc(struct pool *pp, int flags, int *slowdown)
1474 {
1475 	int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT;
1476 
1477 	return (uvm_km_getpage_pla(kfl, slowdown, pp->pr_crange->ucr_low,
1478 	    pp->pr_crange->ucr_high, 0, 0));
1479 }
1480 
1481 void
1482 pool_page_free(struct pool *pp, void *v)
1483 {
1484 	uvm_km_putpage(v);
1485 }
1486 
1487 void *
1488 pool_large_alloc(struct pool *pp, int flags, int *slowdown)
1489 {
1490 	int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT;
1491 	vaddr_t va;
1492 	int s;
1493 
1494 	s = splvm();
1495 	va = uvm_km_kmemalloc_pla(kmem_map, NULL, pp->pr_alloc->pa_pagesz, 0,
1496 	    kfl, pp->pr_crange->ucr_low, pp->pr_crange->ucr_high,
1497 	    0, 0, pp->pr_pa_nsegs);
1498 	splx(s);
1499 
1500 	return ((void *)va);
1501 }
1502 
1503 void
1504 pool_large_free(struct pool *pp, void *v)
1505 {
1506 	int s;
1507 
1508 	s = splvm();
1509 	uvm_km_free(kmem_map, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
1510 	splx(s);
1511 }
1512 
1513 void *
1514 pool_large_alloc_ni(struct pool *pp, int flags, int *slowdown)
1515 {
1516 	int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT;
1517 
1518 	return ((void *)uvm_km_kmemalloc_pla(kernel_map, uvm.kernel_object,
1519 	    pp->pr_alloc->pa_pagesz, 0, kfl,
1520 	    pp->pr_crange->ucr_low, pp->pr_crange->ucr_high,
1521 	    0, 0, pp->pr_pa_nsegs));
1522 }
1523 
1524 void
1525 pool_large_free_ni(struct pool *pp, void *v)
1526 {
1527 	uvm_km_free(kernel_map, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
1528 }
1529