1 /* $OpenBSD: subr_pool.c,v 1.230 2020/01/24 06:31:17 cheloha Exp $ */ 2 /* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */ 3 4 /*- 5 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/errno.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/pool.h> 40 #include <sys/proc.h> 41 #include <sys/syslog.h> 42 #include <sys/sysctl.h> 43 #include <sys/task.h> 44 #include <sys/timeout.h> 45 #include <sys/percpu.h> 46 47 #include <uvm/uvm_extern.h> 48 49 /* 50 * Pool resource management utility. 51 * 52 * Memory is allocated in pages which are split into pieces according to 53 * the pool item size. Each page is kept on one of three lists in the 54 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 55 * for empty, full and partially-full pages respectively. The individual 56 * pool items are on a linked list headed by `ph_items' in each page 57 * header. The memory for building the page list is either taken from 58 * the allocated pages themselves (for small pool items) or taken from 59 * an internal pool of page headers (`phpool'). 60 */ 61 62 /* List of all pools */ 63 SIMPLEQ_HEAD(,pool) pool_head = SIMPLEQ_HEAD_INITIALIZER(pool_head); 64 65 /* 66 * Every pool gets a unique serial number assigned to it. If this counter 67 * wraps, we're screwed, but we shouldn't create so many pools anyway. 68 */ 69 unsigned int pool_serial; 70 unsigned int pool_count; 71 72 /* Lock the previous variables making up the global pool state */ 73 struct rwlock pool_lock = RWLOCK_INITIALIZER("pools"); 74 75 /* Private pool for page header structures */ 76 struct pool phpool; 77 78 struct pool_lock_ops { 79 void (*pl_init)(struct pool *, union pool_lock *, 80 const struct lock_type *); 81 void (*pl_enter)(union pool_lock *); 82 int (*pl_enter_try)(union pool_lock *); 83 void (*pl_leave)(union pool_lock *); 84 void (*pl_assert_locked)(union pool_lock *); 85 void (*pl_assert_unlocked)(union pool_lock *); 86 int (*pl_sleep)(void *, union pool_lock *, int, const char *); 87 }; 88 89 static const struct pool_lock_ops pool_lock_ops_mtx; 90 static const struct pool_lock_ops pool_lock_ops_rw; 91 92 #ifdef WITNESS 93 #define pl_init(pp, pl) do { \ 94 static const struct lock_type __lock_type = { .lt_name = #pl }; \ 95 (pp)->pr_lock_ops->pl_init(pp, pl, &__lock_type); \ 96 } while (0) 97 #else /* WITNESS */ 98 #define pl_init(pp, pl) (pp)->pr_lock_ops->pl_init(pp, pl, NULL) 99 #endif /* WITNESS */ 100 101 static inline void 102 pl_enter(struct pool *pp, union pool_lock *pl) 103 { 104 pp->pr_lock_ops->pl_enter(pl); 105 } 106 static inline int 107 pl_enter_try(struct pool *pp, union pool_lock *pl) 108 { 109 return pp->pr_lock_ops->pl_enter_try(pl); 110 } 111 static inline void 112 pl_leave(struct pool *pp, union pool_lock *pl) 113 { 114 pp->pr_lock_ops->pl_leave(pl); 115 } 116 static inline void 117 pl_assert_locked(struct pool *pp, union pool_lock *pl) 118 { 119 pp->pr_lock_ops->pl_assert_locked(pl); 120 } 121 static inline void 122 pl_assert_unlocked(struct pool *pp, union pool_lock *pl) 123 { 124 pp->pr_lock_ops->pl_assert_unlocked(pl); 125 } 126 static inline int 127 pl_sleep(struct pool *pp, void *ident, union pool_lock *lock, int priority, 128 const char *wmesg) 129 { 130 return pp->pr_lock_ops->pl_sleep(ident, lock, priority, wmesg); 131 } 132 133 struct pool_item { 134 u_long pi_magic; 135 XSIMPLEQ_ENTRY(pool_item) pi_list; 136 }; 137 #define POOL_IMAGIC(ph, pi) ((u_long)(pi) ^ (ph)->ph_magic) 138 139 struct pool_page_header { 140 /* Page headers */ 141 TAILQ_ENTRY(pool_page_header) 142 ph_entry; /* pool page list */ 143 XSIMPLEQ_HEAD(, pool_item) 144 ph_items; /* free items on the page */ 145 RBT_ENTRY(pool_page_header) 146 ph_node; /* off-page page headers */ 147 unsigned int ph_nmissing; /* # of chunks in use */ 148 caddr_t ph_page; /* this page's address */ 149 caddr_t ph_colored; /* page's colored address */ 150 unsigned long ph_magic; 151 int ph_tick; 152 }; 153 #define POOL_MAGICBIT (1 << 3) /* keep away from perturbed low bits */ 154 #define POOL_PHPOISON(ph) ISSET((ph)->ph_magic, POOL_MAGICBIT) 155 156 #ifdef MULTIPROCESSOR 157 struct pool_cache_item { 158 struct pool_cache_item *ci_next; /* next item in list */ 159 unsigned long ci_nitems; /* number of items in list */ 160 TAILQ_ENTRY(pool_cache_item) 161 ci_nextl; /* entry in list of lists */ 162 }; 163 164 /* we store whether the cached item is poisoned in the high bit of nitems */ 165 #define POOL_CACHE_ITEM_NITEMS_MASK 0x7ffffffUL 166 #define POOL_CACHE_ITEM_NITEMS_POISON 0x8000000UL 167 168 #define POOL_CACHE_ITEM_NITEMS(_ci) \ 169 ((_ci)->ci_nitems & POOL_CACHE_ITEM_NITEMS_MASK) 170 171 #define POOL_CACHE_ITEM_POISONED(_ci) \ 172 ISSET((_ci)->ci_nitems, POOL_CACHE_ITEM_NITEMS_POISON) 173 174 struct pool_cache { 175 struct pool_cache_item *pc_actv; /* active list of items */ 176 unsigned long pc_nactv; /* actv head nitems cache */ 177 struct pool_cache_item *pc_prev; /* previous list of items */ 178 179 uint64_t pc_gen; /* generation number */ 180 uint64_t pc_nget; /* # of successful requests */ 181 uint64_t pc_nfail; /* # of unsuccessful reqs */ 182 uint64_t pc_nput; /* # of releases */ 183 uint64_t pc_nlget; /* # of list requests */ 184 uint64_t pc_nlfail; /* # of fails getting a list */ 185 uint64_t pc_nlput; /* # of list releases */ 186 187 int pc_nout; 188 }; 189 190 void *pool_cache_get(struct pool *); 191 void pool_cache_put(struct pool *, void *); 192 void pool_cache_destroy(struct pool *); 193 void pool_cache_gc(struct pool *); 194 #endif 195 void pool_cache_pool_info(struct pool *, struct kinfo_pool *); 196 int pool_cache_info(struct pool *, void *, size_t *); 197 int pool_cache_cpus_info(struct pool *, void *, size_t *); 198 199 #ifdef POOL_DEBUG 200 int pool_debug = 1; 201 #else 202 int pool_debug = 0; 203 #endif 204 205 #define POOL_INPGHDR(pp) ((pp)->pr_phoffset != 0) 206 207 struct pool_page_header * 208 pool_p_alloc(struct pool *, int, int *); 209 void pool_p_insert(struct pool *, struct pool_page_header *); 210 void pool_p_remove(struct pool *, struct pool_page_header *); 211 void pool_p_free(struct pool *, struct pool_page_header *); 212 213 void pool_update_curpage(struct pool *); 214 void *pool_do_get(struct pool *, int, int *); 215 void pool_do_put(struct pool *, void *); 216 int pool_chk_page(struct pool *, struct pool_page_header *, int); 217 int pool_chk(struct pool *); 218 void pool_get_done(struct pool *, void *, void *); 219 void pool_runqueue(struct pool *, int); 220 221 void *pool_allocator_alloc(struct pool *, int, int *); 222 void pool_allocator_free(struct pool *, void *); 223 224 /* 225 * The default pool allocator. 226 */ 227 void *pool_page_alloc(struct pool *, int, int *); 228 void pool_page_free(struct pool *, void *); 229 230 /* 231 * safe for interrupts; this is the default allocator 232 */ 233 struct pool_allocator pool_allocator_single = { 234 pool_page_alloc, 235 pool_page_free, 236 POOL_ALLOC_SIZE(PAGE_SIZE, POOL_ALLOC_ALIGNED) 237 }; 238 239 void *pool_multi_alloc(struct pool *, int, int *); 240 void pool_multi_free(struct pool *, void *); 241 242 struct pool_allocator pool_allocator_multi = { 243 pool_multi_alloc, 244 pool_multi_free, 245 POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED) 246 }; 247 248 void *pool_multi_alloc_ni(struct pool *, int, int *); 249 void pool_multi_free_ni(struct pool *, void *); 250 251 struct pool_allocator pool_allocator_multi_ni = { 252 pool_multi_alloc_ni, 253 pool_multi_free_ni, 254 POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED) 255 }; 256 257 #ifdef DDB 258 void pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...) 259 __attribute__((__format__(__kprintf__,1,2)))); 260 void pool_print1(struct pool *, const char *, int (*)(const char *, ...) 261 __attribute__((__format__(__kprintf__,1,2)))); 262 #endif 263 264 /* stale page garbage collectors */ 265 void pool_gc_sched(void *); 266 struct timeout pool_gc_tick = TIMEOUT_INITIALIZER(pool_gc_sched, NULL); 267 void pool_gc_pages(void *); 268 struct task pool_gc_task = TASK_INITIALIZER(pool_gc_pages, NULL); 269 int pool_wait_free = 1; 270 int pool_wait_gc = 8; 271 272 RBT_PROTOTYPE(phtree, pool_page_header, ph_node, phtree_compare); 273 274 static inline int 275 phtree_compare(const struct pool_page_header *a, 276 const struct pool_page_header *b) 277 { 278 vaddr_t va = (vaddr_t)a->ph_page; 279 vaddr_t vb = (vaddr_t)b->ph_page; 280 281 /* the compares in this order are important for the NFIND to work */ 282 if (vb < va) 283 return (-1); 284 if (vb > va) 285 return (1); 286 287 return (0); 288 } 289 290 RBT_GENERATE(phtree, pool_page_header, ph_node, phtree_compare); 291 292 /* 293 * Return the pool page header based on page address. 294 */ 295 static inline struct pool_page_header * 296 pr_find_pagehead(struct pool *pp, void *v) 297 { 298 struct pool_page_header *ph, key; 299 300 if (POOL_INPGHDR(pp)) { 301 caddr_t page; 302 303 page = (caddr_t)((vaddr_t)v & pp->pr_pgmask); 304 305 return ((struct pool_page_header *)(page + pp->pr_phoffset)); 306 } 307 308 key.ph_page = v; 309 ph = RBT_NFIND(phtree, &pp->pr_phtree, &key); 310 if (ph == NULL) 311 panic("%s: %s: page header missing", __func__, pp->pr_wchan); 312 313 KASSERT(ph->ph_page <= (caddr_t)v); 314 if (ph->ph_page + pp->pr_pgsize <= (caddr_t)v) 315 panic("%s: %s: incorrect page", __func__, pp->pr_wchan); 316 317 return (ph); 318 } 319 320 /* 321 * Initialize the given pool resource structure. 322 * 323 * We export this routine to allow other kernel parts to declare 324 * static pools that must be initialized before malloc() is available. 325 */ 326 void 327 pool_init(struct pool *pp, size_t size, u_int align, int ipl, int flags, 328 const char *wchan, struct pool_allocator *palloc) 329 { 330 int off = 0, space; 331 unsigned int pgsize = PAGE_SIZE, items; 332 size_t pa_pagesz; 333 #ifdef DIAGNOSTIC 334 struct pool *iter; 335 #endif 336 337 if (align == 0) 338 align = ALIGN(1); 339 340 if (size < sizeof(struct pool_item)) 341 size = sizeof(struct pool_item); 342 343 size = roundup(size, align); 344 345 while (size * 8 > pgsize) 346 pgsize <<= 1; 347 348 if (palloc == NULL) { 349 if (pgsize > PAGE_SIZE) { 350 palloc = ISSET(flags, PR_WAITOK) ? 351 &pool_allocator_multi_ni : &pool_allocator_multi; 352 } else 353 palloc = &pool_allocator_single; 354 355 pa_pagesz = palloc->pa_pagesz; 356 } else { 357 size_t pgsizes; 358 359 pa_pagesz = palloc->pa_pagesz; 360 if (pa_pagesz == 0) 361 pa_pagesz = POOL_ALLOC_DEFAULT; 362 363 pgsizes = pa_pagesz & ~POOL_ALLOC_ALIGNED; 364 365 /* make sure the allocator can fit at least one item */ 366 if (size > pgsizes) { 367 panic("%s: pool %s item size 0x%zx > " 368 "allocator %p sizes 0x%zx", __func__, wchan, 369 size, palloc, pgsizes); 370 } 371 372 /* shrink pgsize until it fits into the range */ 373 while (!ISSET(pgsizes, pgsize)) 374 pgsize >>= 1; 375 } 376 KASSERT(ISSET(pa_pagesz, pgsize)); 377 378 items = pgsize / size; 379 380 /* 381 * Decide whether to put the page header off page to avoid 382 * wasting too large a part of the page. Off-page page headers 383 * go into an RB tree, so we can match a returned item with 384 * its header based on the page address. 385 */ 386 if (ISSET(pa_pagesz, POOL_ALLOC_ALIGNED)) { 387 if (pgsize - (size * items) > 388 sizeof(struct pool_page_header)) { 389 off = pgsize - sizeof(struct pool_page_header); 390 } else if (sizeof(struct pool_page_header) * 2 >= size) { 391 off = pgsize - sizeof(struct pool_page_header); 392 items = off / size; 393 } 394 } 395 396 KASSERT(items > 0); 397 398 /* 399 * Initialize the pool structure. 400 */ 401 memset(pp, 0, sizeof(*pp)); 402 if (ISSET(flags, PR_RWLOCK)) { 403 KASSERT(flags & PR_WAITOK); 404 pp->pr_lock_ops = &pool_lock_ops_rw; 405 } else 406 pp->pr_lock_ops = &pool_lock_ops_mtx; 407 TAILQ_INIT(&pp->pr_emptypages); 408 TAILQ_INIT(&pp->pr_fullpages); 409 TAILQ_INIT(&pp->pr_partpages); 410 pp->pr_curpage = NULL; 411 pp->pr_npages = 0; 412 pp->pr_minitems = 0; 413 pp->pr_minpages = 0; 414 pp->pr_maxpages = 8; 415 pp->pr_size = size; 416 pp->pr_pgsize = pgsize; 417 pp->pr_pgmask = ~0UL ^ (pgsize - 1); 418 pp->pr_phoffset = off; 419 pp->pr_itemsperpage = items; 420 pp->pr_wchan = wchan; 421 pp->pr_alloc = palloc; 422 pp->pr_nitems = 0; 423 pp->pr_nout = 0; 424 pp->pr_hardlimit = UINT_MAX; 425 pp->pr_hardlimit_warning = NULL; 426 pp->pr_hardlimit_ratecap.tv_sec = 0; 427 pp->pr_hardlimit_ratecap.tv_usec = 0; 428 pp->pr_hardlimit_warning_last.tv_sec = 0; 429 pp->pr_hardlimit_warning_last.tv_usec = 0; 430 RBT_INIT(phtree, &pp->pr_phtree); 431 432 /* 433 * Use the space between the chunks and the page header 434 * for cache coloring. 435 */ 436 space = POOL_INPGHDR(pp) ? pp->pr_phoffset : pp->pr_pgsize; 437 space -= pp->pr_itemsperpage * pp->pr_size; 438 pp->pr_align = align; 439 pp->pr_maxcolors = (space / align) + 1; 440 441 pp->pr_nget = 0; 442 pp->pr_nfail = 0; 443 pp->pr_nput = 0; 444 pp->pr_npagealloc = 0; 445 pp->pr_npagefree = 0; 446 pp->pr_hiwat = 0; 447 pp->pr_nidle = 0; 448 449 pp->pr_ipl = ipl; 450 pp->pr_flags = flags; 451 452 pl_init(pp, &pp->pr_lock); 453 pl_init(pp, &pp->pr_requests_lock); 454 TAILQ_INIT(&pp->pr_requests); 455 456 if (phpool.pr_size == 0) { 457 pool_init(&phpool, sizeof(struct pool_page_header), 0, 458 IPL_HIGH, 0, "phpool", NULL); 459 460 /* make sure phpool wont "recurse" */ 461 KASSERT(POOL_INPGHDR(&phpool)); 462 } 463 464 /* pglistalloc/constraint parameters */ 465 pp->pr_crange = &kp_dirty; 466 467 /* Insert this into the list of all pools. */ 468 rw_enter_write(&pool_lock); 469 #ifdef DIAGNOSTIC 470 SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) { 471 if (iter == pp) 472 panic("%s: pool %s already on list", __func__, wchan); 473 } 474 #endif 475 476 pp->pr_serial = ++pool_serial; 477 if (pool_serial == 0) 478 panic("%s: too much uptime", __func__); 479 480 SIMPLEQ_INSERT_HEAD(&pool_head, pp, pr_poollist); 481 pool_count++; 482 rw_exit_write(&pool_lock); 483 } 484 485 /* 486 * Decommission a pool resource. 487 */ 488 void 489 pool_destroy(struct pool *pp) 490 { 491 struct pool_page_header *ph; 492 struct pool *prev, *iter; 493 494 #ifdef MULTIPROCESSOR 495 if (pp->pr_cache != NULL) 496 pool_cache_destroy(pp); 497 #endif 498 499 #ifdef DIAGNOSTIC 500 if (pp->pr_nout != 0) 501 panic("%s: pool busy: still out: %u", __func__, pp->pr_nout); 502 #endif 503 504 /* Remove from global pool list */ 505 rw_enter_write(&pool_lock); 506 pool_count--; 507 if (pp == SIMPLEQ_FIRST(&pool_head)) 508 SIMPLEQ_REMOVE_HEAD(&pool_head, pr_poollist); 509 else { 510 prev = SIMPLEQ_FIRST(&pool_head); 511 SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) { 512 if (iter == pp) { 513 SIMPLEQ_REMOVE_AFTER(&pool_head, prev, 514 pr_poollist); 515 break; 516 } 517 prev = iter; 518 } 519 } 520 rw_exit_write(&pool_lock); 521 522 /* Remove all pages */ 523 while ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL) { 524 pl_enter(pp, &pp->pr_lock); 525 pool_p_remove(pp, ph); 526 pl_leave(pp, &pp->pr_lock); 527 pool_p_free(pp, ph); 528 } 529 KASSERT(TAILQ_EMPTY(&pp->pr_fullpages)); 530 KASSERT(TAILQ_EMPTY(&pp->pr_partpages)); 531 } 532 533 void 534 pool_request_init(struct pool_request *pr, 535 void (*handler)(struct pool *, void *, void *), void *cookie) 536 { 537 pr->pr_handler = handler; 538 pr->pr_cookie = cookie; 539 pr->pr_item = NULL; 540 } 541 542 void 543 pool_request(struct pool *pp, struct pool_request *pr) 544 { 545 pl_enter(pp, &pp->pr_requests_lock); 546 TAILQ_INSERT_TAIL(&pp->pr_requests, pr, pr_entry); 547 pool_runqueue(pp, PR_NOWAIT); 548 pl_leave(pp, &pp->pr_requests_lock); 549 } 550 551 struct pool_get_memory { 552 union pool_lock lock; 553 void * volatile v; 554 }; 555 556 /* 557 * Grab an item from the pool. 558 */ 559 void * 560 pool_get(struct pool *pp, int flags) 561 { 562 void *v = NULL; 563 int slowdown = 0; 564 565 KASSERT(flags & (PR_WAITOK | PR_NOWAIT)); 566 if (pp->pr_flags & PR_RWLOCK) 567 KASSERT(flags & PR_WAITOK); 568 569 #ifdef MULTIPROCESSOR 570 if (pp->pr_cache != NULL) { 571 v = pool_cache_get(pp); 572 if (v != NULL) 573 goto good; 574 } 575 #endif 576 577 pl_enter(pp, &pp->pr_lock); 578 if (pp->pr_nout >= pp->pr_hardlimit) { 579 if (ISSET(flags, PR_NOWAIT|PR_LIMITFAIL)) 580 goto fail; 581 } else if ((v = pool_do_get(pp, flags, &slowdown)) == NULL) { 582 if (ISSET(flags, PR_NOWAIT)) 583 goto fail; 584 } 585 pl_leave(pp, &pp->pr_lock); 586 587 if ((slowdown || pool_debug == 2) && ISSET(flags, PR_WAITOK)) 588 yield(); 589 590 if (v == NULL) { 591 struct pool_get_memory mem = { .v = NULL }; 592 struct pool_request pr; 593 594 #ifdef DIAGNOSTIC 595 if (ISSET(flags, PR_WAITOK) && curproc == &proc0) 596 panic("%s: cannot sleep for memory during boot", 597 __func__); 598 #endif 599 pl_init(pp, &mem.lock); 600 pool_request_init(&pr, pool_get_done, &mem); 601 pool_request(pp, &pr); 602 603 pl_enter(pp, &mem.lock); 604 while (mem.v == NULL) 605 pl_sleep(pp, &mem, &mem.lock, PSWP, pp->pr_wchan); 606 pl_leave(pp, &mem.lock); 607 608 v = mem.v; 609 } 610 611 #ifdef MULTIPROCESSOR 612 good: 613 #endif 614 if (ISSET(flags, PR_ZERO)) 615 memset(v, 0, pp->pr_size); 616 617 return (v); 618 619 fail: 620 pp->pr_nfail++; 621 pl_leave(pp, &pp->pr_lock); 622 return (NULL); 623 } 624 625 void 626 pool_get_done(struct pool *pp, void *xmem, void *v) 627 { 628 struct pool_get_memory *mem = xmem; 629 630 pl_enter(pp, &mem->lock); 631 mem->v = v; 632 pl_leave(pp, &mem->lock); 633 634 wakeup_one(mem); 635 } 636 637 void 638 pool_runqueue(struct pool *pp, int flags) 639 { 640 struct pool_requests prl = TAILQ_HEAD_INITIALIZER(prl); 641 struct pool_request *pr; 642 643 pl_assert_unlocked(pp, &pp->pr_lock); 644 pl_assert_locked(pp, &pp->pr_requests_lock); 645 646 if (pp->pr_requesting++) 647 return; 648 649 do { 650 pp->pr_requesting = 1; 651 652 TAILQ_CONCAT(&prl, &pp->pr_requests, pr_entry); 653 if (TAILQ_EMPTY(&prl)) 654 continue; 655 656 pl_leave(pp, &pp->pr_requests_lock); 657 658 pl_enter(pp, &pp->pr_lock); 659 pr = TAILQ_FIRST(&prl); 660 while (pr != NULL) { 661 int slowdown = 0; 662 663 if (pp->pr_nout >= pp->pr_hardlimit) 664 break; 665 666 pr->pr_item = pool_do_get(pp, flags, &slowdown); 667 if (pr->pr_item == NULL) /* || slowdown ? */ 668 break; 669 670 pr = TAILQ_NEXT(pr, pr_entry); 671 } 672 pl_leave(pp, &pp->pr_lock); 673 674 while ((pr = TAILQ_FIRST(&prl)) != NULL && 675 pr->pr_item != NULL) { 676 TAILQ_REMOVE(&prl, pr, pr_entry); 677 (*pr->pr_handler)(pp, pr->pr_cookie, pr->pr_item); 678 } 679 680 pl_enter(pp, &pp->pr_requests_lock); 681 } while (--pp->pr_requesting); 682 683 TAILQ_CONCAT(&pp->pr_requests, &prl, pr_entry); 684 } 685 686 void * 687 pool_do_get(struct pool *pp, int flags, int *slowdown) 688 { 689 struct pool_item *pi; 690 struct pool_page_header *ph; 691 692 pl_assert_locked(pp, &pp->pr_lock); 693 694 splassert(pp->pr_ipl); 695 696 /* 697 * Account for this item now to avoid races if we need to give up 698 * pr_lock to allocate a page. 699 */ 700 pp->pr_nout++; 701 702 if (pp->pr_curpage == NULL) { 703 pl_leave(pp, &pp->pr_lock); 704 ph = pool_p_alloc(pp, flags, slowdown); 705 pl_enter(pp, &pp->pr_lock); 706 707 if (ph == NULL) { 708 pp->pr_nout--; 709 return (NULL); 710 } 711 712 pool_p_insert(pp, ph); 713 } 714 715 ph = pp->pr_curpage; 716 pi = XSIMPLEQ_FIRST(&ph->ph_items); 717 if (__predict_false(pi == NULL)) 718 panic("%s: %s: page empty", __func__, pp->pr_wchan); 719 720 if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) { 721 panic("%s: %s free list modified: " 722 "page %p; item addr %p; offset 0x%x=0x%lx != 0x%lx", 723 __func__, pp->pr_wchan, ph->ph_page, pi, 724 0, pi->pi_magic, POOL_IMAGIC(ph, pi)); 725 } 726 727 XSIMPLEQ_REMOVE_HEAD(&ph->ph_items, pi_list); 728 729 #ifdef DIAGNOSTIC 730 if (pool_debug && POOL_PHPOISON(ph)) { 731 size_t pidx; 732 uint32_t pval; 733 if (poison_check(pi + 1, pp->pr_size - sizeof(*pi), 734 &pidx, &pval)) { 735 int *ip = (int *)(pi + 1); 736 panic("%s: %s free list modified: " 737 "page %p; item addr %p; offset 0x%zx=0x%x", 738 __func__, pp->pr_wchan, ph->ph_page, pi, 739 (pidx * sizeof(int)) + sizeof(*pi), ip[pidx]); 740 } 741 } 742 #endif /* DIAGNOSTIC */ 743 744 if (ph->ph_nmissing++ == 0) { 745 /* 746 * This page was previously empty. Move it to the list of 747 * partially-full pages. This page is already curpage. 748 */ 749 TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry); 750 TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry); 751 752 pp->pr_nidle--; 753 } 754 755 if (ph->ph_nmissing == pp->pr_itemsperpage) { 756 /* 757 * This page is now full. Move it to the full list 758 * and select a new current page. 759 */ 760 TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry); 761 TAILQ_INSERT_TAIL(&pp->pr_fullpages, ph, ph_entry); 762 pool_update_curpage(pp); 763 } 764 765 pp->pr_nget++; 766 767 return (pi); 768 } 769 770 /* 771 * Return resource to the pool. 772 */ 773 void 774 pool_put(struct pool *pp, void *v) 775 { 776 struct pool_page_header *ph, *freeph = NULL; 777 778 #ifdef DIAGNOSTIC 779 if (v == NULL) 780 panic("%s: NULL item", __func__); 781 #endif 782 783 #ifdef MULTIPROCESSOR 784 if (pp->pr_cache != NULL && TAILQ_EMPTY(&pp->pr_requests)) { 785 pool_cache_put(pp, v); 786 return; 787 } 788 #endif 789 790 pl_enter(pp, &pp->pr_lock); 791 792 pool_do_put(pp, v); 793 794 pp->pr_nout--; 795 pp->pr_nput++; 796 797 /* is it time to free a page? */ 798 if (pp->pr_nidle > pp->pr_maxpages && 799 (ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL && 800 (ticks - ph->ph_tick) > (hz * pool_wait_free)) { 801 freeph = ph; 802 pool_p_remove(pp, freeph); 803 } 804 805 pl_leave(pp, &pp->pr_lock); 806 807 if (freeph != NULL) 808 pool_p_free(pp, freeph); 809 810 pool_wakeup(pp); 811 } 812 813 void 814 pool_wakeup(struct pool *pp) 815 { 816 if (!TAILQ_EMPTY(&pp->pr_requests)) { 817 pl_enter(pp, &pp->pr_requests_lock); 818 pool_runqueue(pp, PR_NOWAIT); 819 pl_leave(pp, &pp->pr_requests_lock); 820 } 821 } 822 823 void 824 pool_do_put(struct pool *pp, void *v) 825 { 826 struct pool_item *pi = v; 827 struct pool_page_header *ph; 828 829 splassert(pp->pr_ipl); 830 831 ph = pr_find_pagehead(pp, v); 832 833 #ifdef DIAGNOSTIC 834 if (pool_debug) { 835 struct pool_item *qi; 836 XSIMPLEQ_FOREACH(qi, &ph->ph_items, pi_list) { 837 if (pi == qi) { 838 panic("%s: %s: double pool_put: %p", __func__, 839 pp->pr_wchan, pi); 840 } 841 } 842 } 843 #endif /* DIAGNOSTIC */ 844 845 pi->pi_magic = POOL_IMAGIC(ph, pi); 846 XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list); 847 #ifdef DIAGNOSTIC 848 if (POOL_PHPOISON(ph)) 849 poison_mem(pi + 1, pp->pr_size - sizeof(*pi)); 850 #endif /* DIAGNOSTIC */ 851 852 if (ph->ph_nmissing-- == pp->pr_itemsperpage) { 853 /* 854 * The page was previously completely full, move it to the 855 * partially-full list. 856 */ 857 TAILQ_REMOVE(&pp->pr_fullpages, ph, ph_entry); 858 TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry); 859 } 860 861 if (ph->ph_nmissing == 0) { 862 /* 863 * The page is now empty, so move it to the empty page list. 864 */ 865 pp->pr_nidle++; 866 867 ph->ph_tick = ticks; 868 TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry); 869 TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry); 870 pool_update_curpage(pp); 871 } 872 } 873 874 /* 875 * Add N items to the pool. 876 */ 877 int 878 pool_prime(struct pool *pp, int n) 879 { 880 struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl); 881 struct pool_page_header *ph; 882 int newpages; 883 884 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 885 886 while (newpages-- > 0) { 887 int slowdown = 0; 888 889 ph = pool_p_alloc(pp, PR_NOWAIT, &slowdown); 890 if (ph == NULL) /* or slowdown? */ 891 break; 892 893 TAILQ_INSERT_TAIL(&pl, ph, ph_entry); 894 } 895 896 pl_enter(pp, &pp->pr_lock); 897 while ((ph = TAILQ_FIRST(&pl)) != NULL) { 898 TAILQ_REMOVE(&pl, ph, ph_entry); 899 pool_p_insert(pp, ph); 900 } 901 pl_leave(pp, &pp->pr_lock); 902 903 return (0); 904 } 905 906 struct pool_page_header * 907 pool_p_alloc(struct pool *pp, int flags, int *slowdown) 908 { 909 struct pool_page_header *ph; 910 struct pool_item *pi; 911 caddr_t addr; 912 unsigned int order; 913 int o; 914 int n; 915 916 pl_assert_unlocked(pp, &pp->pr_lock); 917 KASSERT(pp->pr_size >= sizeof(*pi)); 918 919 addr = pool_allocator_alloc(pp, flags, slowdown); 920 if (addr == NULL) 921 return (NULL); 922 923 if (POOL_INPGHDR(pp)) 924 ph = (struct pool_page_header *)(addr + pp->pr_phoffset); 925 else { 926 ph = pool_get(&phpool, flags); 927 if (ph == NULL) { 928 pool_allocator_free(pp, addr); 929 return (NULL); 930 } 931 } 932 933 XSIMPLEQ_INIT(&ph->ph_items); 934 ph->ph_page = addr; 935 addr += pp->pr_align * (pp->pr_npagealloc % pp->pr_maxcolors); 936 ph->ph_colored = addr; 937 ph->ph_nmissing = 0; 938 arc4random_buf(&ph->ph_magic, sizeof(ph->ph_magic)); 939 #ifdef DIAGNOSTIC 940 /* use a bit in ph_magic to record if we poison page items */ 941 if (pool_debug) 942 SET(ph->ph_magic, POOL_MAGICBIT); 943 else 944 CLR(ph->ph_magic, POOL_MAGICBIT); 945 #endif /* DIAGNOSTIC */ 946 947 n = pp->pr_itemsperpage; 948 o = 32; 949 while (n--) { 950 pi = (struct pool_item *)addr; 951 pi->pi_magic = POOL_IMAGIC(ph, pi); 952 953 if (o == 32) { 954 order = arc4random(); 955 o = 0; 956 } 957 if (ISSET(order, 1 << o++)) 958 XSIMPLEQ_INSERT_TAIL(&ph->ph_items, pi, pi_list); 959 else 960 XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list); 961 962 #ifdef DIAGNOSTIC 963 if (POOL_PHPOISON(ph)) 964 poison_mem(pi + 1, pp->pr_size - sizeof(*pi)); 965 #endif /* DIAGNOSTIC */ 966 967 addr += pp->pr_size; 968 } 969 970 return (ph); 971 } 972 973 void 974 pool_p_free(struct pool *pp, struct pool_page_header *ph) 975 { 976 struct pool_item *pi; 977 978 pl_assert_unlocked(pp, &pp->pr_lock); 979 KASSERT(ph->ph_nmissing == 0); 980 981 XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) { 982 if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) { 983 panic("%s: %s free list modified: " 984 "page %p; item addr %p; offset 0x%x=0x%lx", 985 __func__, pp->pr_wchan, ph->ph_page, pi, 986 0, pi->pi_magic); 987 } 988 989 #ifdef DIAGNOSTIC 990 if (POOL_PHPOISON(ph)) { 991 size_t pidx; 992 uint32_t pval; 993 if (poison_check(pi + 1, pp->pr_size - sizeof(*pi), 994 &pidx, &pval)) { 995 int *ip = (int *)(pi + 1); 996 panic("%s: %s free list modified: " 997 "page %p; item addr %p; offset 0x%zx=0x%x", 998 __func__, pp->pr_wchan, ph->ph_page, pi, 999 pidx * sizeof(int), ip[pidx]); 1000 } 1001 } 1002 #endif 1003 } 1004 1005 pool_allocator_free(pp, ph->ph_page); 1006 1007 if (!POOL_INPGHDR(pp)) 1008 pool_put(&phpool, ph); 1009 } 1010 1011 void 1012 pool_p_insert(struct pool *pp, struct pool_page_header *ph) 1013 { 1014 pl_assert_locked(pp, &pp->pr_lock); 1015 1016 /* If the pool was depleted, point at the new page */ 1017 if (pp->pr_curpage == NULL) 1018 pp->pr_curpage = ph; 1019 1020 TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry); 1021 if (!POOL_INPGHDR(pp)) 1022 RBT_INSERT(phtree, &pp->pr_phtree, ph); 1023 1024 pp->pr_nitems += pp->pr_itemsperpage; 1025 pp->pr_nidle++; 1026 1027 pp->pr_npagealloc++; 1028 if (++pp->pr_npages > pp->pr_hiwat) 1029 pp->pr_hiwat = pp->pr_npages; 1030 } 1031 1032 void 1033 pool_p_remove(struct pool *pp, struct pool_page_header *ph) 1034 { 1035 pl_assert_locked(pp, &pp->pr_lock); 1036 1037 pp->pr_npagefree++; 1038 pp->pr_npages--; 1039 pp->pr_nidle--; 1040 pp->pr_nitems -= pp->pr_itemsperpage; 1041 1042 if (!POOL_INPGHDR(pp)) 1043 RBT_REMOVE(phtree, &pp->pr_phtree, ph); 1044 TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry); 1045 1046 pool_update_curpage(pp); 1047 } 1048 1049 void 1050 pool_update_curpage(struct pool *pp) 1051 { 1052 pp->pr_curpage = TAILQ_LAST(&pp->pr_partpages, pool_pagelist); 1053 if (pp->pr_curpage == NULL) { 1054 pp->pr_curpage = TAILQ_LAST(&pp->pr_emptypages, pool_pagelist); 1055 } 1056 } 1057 1058 void 1059 pool_setlowat(struct pool *pp, int n) 1060 { 1061 int prime = 0; 1062 1063 pl_enter(pp, &pp->pr_lock); 1064 pp->pr_minitems = n; 1065 pp->pr_minpages = (n == 0) 1066 ? 0 1067 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1068 1069 if (pp->pr_nitems < n) 1070 prime = n - pp->pr_nitems; 1071 pl_leave(pp, &pp->pr_lock); 1072 1073 if (prime > 0) 1074 pool_prime(pp, prime); 1075 } 1076 1077 void 1078 pool_sethiwat(struct pool *pp, int n) 1079 { 1080 pp->pr_maxpages = (n == 0) 1081 ? 0 1082 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1083 } 1084 1085 int 1086 pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap) 1087 { 1088 int error = 0; 1089 1090 if (n < pp->pr_nout) { 1091 error = EINVAL; 1092 goto done; 1093 } 1094 1095 pp->pr_hardlimit = n; 1096 pp->pr_hardlimit_warning = warnmsg; 1097 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1098 pp->pr_hardlimit_warning_last.tv_sec = 0; 1099 pp->pr_hardlimit_warning_last.tv_usec = 0; 1100 1101 done: 1102 return (error); 1103 } 1104 1105 void 1106 pool_set_constraints(struct pool *pp, const struct kmem_pa_mode *mode) 1107 { 1108 pp->pr_crange = mode; 1109 } 1110 1111 /* 1112 * Release all complete pages that have not been used recently. 1113 * 1114 * Returns non-zero if any pages have been reclaimed. 1115 */ 1116 int 1117 pool_reclaim(struct pool *pp) 1118 { 1119 struct pool_page_header *ph, *phnext; 1120 struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl); 1121 1122 pl_enter(pp, &pp->pr_lock); 1123 for (ph = TAILQ_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1124 phnext = TAILQ_NEXT(ph, ph_entry); 1125 1126 /* Check our minimum page claim */ 1127 if (pp->pr_npages <= pp->pr_minpages) 1128 break; 1129 1130 /* 1131 * If freeing this page would put us below 1132 * the low water mark, stop now. 1133 */ 1134 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1135 pp->pr_minitems) 1136 break; 1137 1138 pool_p_remove(pp, ph); 1139 TAILQ_INSERT_TAIL(&pl, ph, ph_entry); 1140 } 1141 pl_leave(pp, &pp->pr_lock); 1142 1143 if (TAILQ_EMPTY(&pl)) 1144 return (0); 1145 1146 while ((ph = TAILQ_FIRST(&pl)) != NULL) { 1147 TAILQ_REMOVE(&pl, ph, ph_entry); 1148 pool_p_free(pp, ph); 1149 } 1150 1151 return (1); 1152 } 1153 1154 /* 1155 * Release all complete pages that have not been used recently 1156 * from all pools. 1157 */ 1158 void 1159 pool_reclaim_all(void) 1160 { 1161 struct pool *pp; 1162 1163 rw_enter_read(&pool_lock); 1164 SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) 1165 pool_reclaim(pp); 1166 rw_exit_read(&pool_lock); 1167 } 1168 1169 #ifdef DDB 1170 #include <machine/db_machdep.h> 1171 #include <ddb/db_output.h> 1172 1173 /* 1174 * Diagnostic helpers. 1175 */ 1176 void 1177 pool_printit(struct pool *pp, const char *modif, 1178 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1179 { 1180 pool_print1(pp, modif, pr); 1181 } 1182 1183 void 1184 pool_print_pagelist(struct pool_pagelist *pl, 1185 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1186 { 1187 struct pool_page_header *ph; 1188 struct pool_item *pi; 1189 1190 TAILQ_FOREACH(ph, pl, ph_entry) { 1191 (*pr)("\t\tpage %p, color %p, nmissing %d\n", 1192 ph->ph_page, ph->ph_colored, ph->ph_nmissing); 1193 XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) { 1194 if (pi->pi_magic != POOL_IMAGIC(ph, pi)) { 1195 (*pr)("\t\t\titem %p, magic 0x%lx\n", 1196 pi, pi->pi_magic); 1197 } 1198 } 1199 } 1200 } 1201 1202 void 1203 pool_print1(struct pool *pp, const char *modif, 1204 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 1205 { 1206 struct pool_page_header *ph; 1207 int print_pagelist = 0; 1208 char c; 1209 1210 while ((c = *modif++) != '\0') { 1211 if (c == 'p') 1212 print_pagelist = 1; 1213 modif++; 1214 } 1215 1216 (*pr)("POOL %s: size %u maxcolors %u\n", pp->pr_wchan, pp->pr_size, 1217 pp->pr_maxcolors); 1218 (*pr)("\talloc %p\n", pp->pr_alloc); 1219 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1220 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1221 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1222 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1223 1224 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1225 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1226 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1227 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1228 1229 if (print_pagelist == 0) 1230 return; 1231 1232 if ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL) 1233 (*pr)("\n\tempty page list:\n"); 1234 pool_print_pagelist(&pp->pr_emptypages, pr); 1235 if ((ph = TAILQ_FIRST(&pp->pr_fullpages)) != NULL) 1236 (*pr)("\n\tfull page list:\n"); 1237 pool_print_pagelist(&pp->pr_fullpages, pr); 1238 if ((ph = TAILQ_FIRST(&pp->pr_partpages)) != NULL) 1239 (*pr)("\n\tpartial-page list:\n"); 1240 pool_print_pagelist(&pp->pr_partpages, pr); 1241 1242 if (pp->pr_curpage == NULL) 1243 (*pr)("\tno current page\n"); 1244 else 1245 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1246 } 1247 1248 void 1249 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif) 1250 { 1251 struct pool *pp; 1252 char maxp[16]; 1253 int ovflw; 1254 char mode; 1255 1256 mode = modif[0]; 1257 if (mode != '\0' && mode != 'a') { 1258 db_printf("usage: show all pools [/a]\n"); 1259 return; 1260 } 1261 1262 if (mode == '\0') 1263 db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n", 1264 "Name", 1265 "Size", 1266 "Requests", 1267 "Fail", 1268 "Releases", 1269 "Pgreq", 1270 "Pgrel", 1271 "Npage", 1272 "Hiwat", 1273 "Minpg", 1274 "Maxpg", 1275 "Idle"); 1276 else 1277 db_printf("%-12s %18s %18s\n", 1278 "Name", "Address", "Allocator"); 1279 1280 SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) { 1281 if (mode == 'a') { 1282 db_printf("%-12s %18p %18p\n", pp->pr_wchan, pp, 1283 pp->pr_alloc); 1284 continue; 1285 } 1286 1287 if (!pp->pr_nget) 1288 continue; 1289 1290 if (pp->pr_maxpages == UINT_MAX) 1291 snprintf(maxp, sizeof maxp, "inf"); 1292 else 1293 snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages); 1294 1295 #define PRWORD(ovflw, fmt, width, fixed, val) do { \ 1296 (ovflw) += db_printf((fmt), \ 1297 (width) - (fixed) - (ovflw) > 0 ? \ 1298 (width) - (fixed) - (ovflw) : 0, \ 1299 (val)) - (width); \ 1300 if ((ovflw) < 0) \ 1301 (ovflw) = 0; \ 1302 } while (/* CONSTCOND */0) 1303 1304 ovflw = 0; 1305 PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan); 1306 PRWORD(ovflw, " %*u", 4, 1, pp->pr_size); 1307 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget); 1308 PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail); 1309 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput); 1310 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc); 1311 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree); 1312 PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages); 1313 PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat); 1314 PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages); 1315 PRWORD(ovflw, " %*s", 6, 1, maxp); 1316 PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle); 1317 1318 pool_chk(pp); 1319 } 1320 } 1321 #endif /* DDB */ 1322 1323 #if defined(POOL_DEBUG) || defined(DDB) 1324 int 1325 pool_chk_page(struct pool *pp, struct pool_page_header *ph, int expected) 1326 { 1327 struct pool_item *pi; 1328 caddr_t page; 1329 int n; 1330 const char *label = pp->pr_wchan; 1331 1332 page = (caddr_t)((u_long)ph & pp->pr_pgmask); 1333 if (page != ph->ph_page && POOL_INPGHDR(pp)) { 1334 printf("%s: ", label); 1335 printf("pool(%p:%s): page inconsistency: page %p; " 1336 "at page head addr %p (p %p)\n", 1337 pp, pp->pr_wchan, ph->ph_page, ph, page); 1338 return 1; 1339 } 1340 1341 for (pi = XSIMPLEQ_FIRST(&ph->ph_items), n = 0; 1342 pi != NULL; 1343 pi = XSIMPLEQ_NEXT(&ph->ph_items, pi, pi_list), n++) { 1344 if ((caddr_t)pi < ph->ph_page || 1345 (caddr_t)pi >= ph->ph_page + pp->pr_pgsize) { 1346 printf("%s: ", label); 1347 printf("pool(%p:%s): page inconsistency: page %p;" 1348 " item ordinal %d; addr %p\n", pp, 1349 pp->pr_wchan, ph->ph_page, n, pi); 1350 return (1); 1351 } 1352 1353 if (pi->pi_magic != POOL_IMAGIC(ph, pi)) { 1354 printf("%s: ", label); 1355 printf("pool(%p:%s): free list modified: " 1356 "page %p; item ordinal %d; addr %p " 1357 "(p %p); offset 0x%x=0x%lx\n", 1358 pp, pp->pr_wchan, ph->ph_page, n, pi, page, 1359 0, pi->pi_magic); 1360 } 1361 1362 #ifdef DIAGNOSTIC 1363 if (POOL_PHPOISON(ph)) { 1364 size_t pidx; 1365 uint32_t pval; 1366 if (poison_check(pi + 1, pp->pr_size - sizeof(*pi), 1367 &pidx, &pval)) { 1368 int *ip = (int *)(pi + 1); 1369 printf("pool(%s): free list modified: " 1370 "page %p; item ordinal %d; addr %p " 1371 "(p %p); offset 0x%zx=0x%x\n", 1372 pp->pr_wchan, ph->ph_page, n, pi, 1373 page, pidx * sizeof(int), ip[pidx]); 1374 } 1375 } 1376 #endif /* DIAGNOSTIC */ 1377 } 1378 if (n + ph->ph_nmissing != pp->pr_itemsperpage) { 1379 printf("pool(%p:%s): page inconsistency: page %p;" 1380 " %d on list, %d missing, %d items per page\n", pp, 1381 pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing, 1382 pp->pr_itemsperpage); 1383 return 1; 1384 } 1385 if (expected >= 0 && n != expected) { 1386 printf("pool(%p:%s): page inconsistency: page %p;" 1387 " %d on list, %d missing, %d expected\n", pp, 1388 pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing, 1389 expected); 1390 return 1; 1391 } 1392 return 0; 1393 } 1394 1395 int 1396 pool_chk(struct pool *pp) 1397 { 1398 struct pool_page_header *ph; 1399 int r = 0; 1400 1401 TAILQ_FOREACH(ph, &pp->pr_emptypages, ph_entry) 1402 r += pool_chk_page(pp, ph, pp->pr_itemsperpage); 1403 TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry) 1404 r += pool_chk_page(pp, ph, 0); 1405 TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry) 1406 r += pool_chk_page(pp, ph, -1); 1407 1408 return (r); 1409 } 1410 #endif /* defined(POOL_DEBUG) || defined(DDB) */ 1411 1412 #ifdef DDB 1413 void 1414 pool_walk(struct pool *pp, int full, 1415 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))), 1416 void (*func)(void *, int, int (*)(const char *, ...) 1417 __attribute__((__format__(__kprintf__,1,2))))) 1418 { 1419 struct pool_page_header *ph; 1420 struct pool_item *pi; 1421 caddr_t cp; 1422 int n; 1423 1424 TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry) { 1425 cp = ph->ph_colored; 1426 n = ph->ph_nmissing; 1427 1428 while (n--) { 1429 func(cp, full, pr); 1430 cp += pp->pr_size; 1431 } 1432 } 1433 1434 TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry) { 1435 cp = ph->ph_colored; 1436 n = ph->ph_nmissing; 1437 1438 do { 1439 XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) { 1440 if (cp == (caddr_t)pi) 1441 break; 1442 } 1443 if (cp != (caddr_t)pi) { 1444 func(cp, full, pr); 1445 n--; 1446 } 1447 1448 cp += pp->pr_size; 1449 } while (n > 0); 1450 } 1451 } 1452 #endif 1453 1454 /* 1455 * We have three different sysctls. 1456 * kern.pool.npools - the number of pools. 1457 * kern.pool.pool.<pool#> - the pool struct for the pool#. 1458 * kern.pool.name.<pool#> - the name for pool#. 1459 */ 1460 int 1461 sysctl_dopool(int *name, u_int namelen, char *oldp, size_t *oldlenp) 1462 { 1463 struct kinfo_pool pi; 1464 struct pool *pp; 1465 int rv = ENOENT; 1466 1467 switch (name[0]) { 1468 case KERN_POOL_NPOOLS: 1469 if (namelen != 1) 1470 return (ENOTDIR); 1471 return (sysctl_rdint(oldp, oldlenp, NULL, pool_count)); 1472 1473 case KERN_POOL_NAME: 1474 case KERN_POOL_POOL: 1475 case KERN_POOL_CACHE: 1476 case KERN_POOL_CACHE_CPUS: 1477 break; 1478 default: 1479 return (EOPNOTSUPP); 1480 } 1481 1482 if (namelen != 2) 1483 return (ENOTDIR); 1484 1485 rw_enter_read(&pool_lock); 1486 1487 SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) { 1488 if (name[1] == pp->pr_serial) 1489 break; 1490 } 1491 1492 if (pp == NULL) 1493 goto done; 1494 1495 switch (name[0]) { 1496 case KERN_POOL_NAME: 1497 rv = sysctl_rdstring(oldp, oldlenp, NULL, pp->pr_wchan); 1498 break; 1499 case KERN_POOL_POOL: 1500 memset(&pi, 0, sizeof(pi)); 1501 1502 pl_enter(pp, &pp->pr_lock); 1503 pi.pr_size = pp->pr_size; 1504 pi.pr_pgsize = pp->pr_pgsize; 1505 pi.pr_itemsperpage = pp->pr_itemsperpage; 1506 pi.pr_npages = pp->pr_npages; 1507 pi.pr_minpages = pp->pr_minpages; 1508 pi.pr_maxpages = pp->pr_maxpages; 1509 pi.pr_hardlimit = pp->pr_hardlimit; 1510 pi.pr_nout = pp->pr_nout; 1511 pi.pr_nitems = pp->pr_nitems; 1512 pi.pr_nget = pp->pr_nget; 1513 pi.pr_nput = pp->pr_nput; 1514 pi.pr_nfail = pp->pr_nfail; 1515 pi.pr_npagealloc = pp->pr_npagealloc; 1516 pi.pr_npagefree = pp->pr_npagefree; 1517 pi.pr_hiwat = pp->pr_hiwat; 1518 pi.pr_nidle = pp->pr_nidle; 1519 pl_leave(pp, &pp->pr_lock); 1520 1521 pool_cache_pool_info(pp, &pi); 1522 1523 rv = sysctl_rdstruct(oldp, oldlenp, NULL, &pi, sizeof(pi)); 1524 break; 1525 1526 case KERN_POOL_CACHE: 1527 rv = pool_cache_info(pp, oldp, oldlenp); 1528 break; 1529 1530 case KERN_POOL_CACHE_CPUS: 1531 rv = pool_cache_cpus_info(pp, oldp, oldlenp); 1532 break; 1533 } 1534 1535 done: 1536 rw_exit_read(&pool_lock); 1537 1538 return (rv); 1539 } 1540 1541 void 1542 pool_gc_sched(void *null) 1543 { 1544 task_add(systqmp, &pool_gc_task); 1545 } 1546 1547 void 1548 pool_gc_pages(void *null) 1549 { 1550 struct pool *pp; 1551 struct pool_page_header *ph, *freeph; 1552 int s; 1553 1554 rw_enter_read(&pool_lock); 1555 s = splvm(); /* XXX go to splvm until all pools _setipl properly */ 1556 SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) { 1557 #ifdef MULTIPROCESSOR 1558 if (pp->pr_cache != NULL) 1559 pool_cache_gc(pp); 1560 #endif 1561 1562 if (pp->pr_nidle <= pp->pr_minpages || /* guess */ 1563 !pl_enter_try(pp, &pp->pr_lock)) /* try */ 1564 continue; 1565 1566 /* is it time to free a page? */ 1567 if (pp->pr_nidle > pp->pr_minpages && 1568 (ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL && 1569 (ticks - ph->ph_tick) > (hz * pool_wait_gc)) { 1570 freeph = ph; 1571 pool_p_remove(pp, freeph); 1572 } else 1573 freeph = NULL; 1574 1575 pl_leave(pp, &pp->pr_lock); 1576 1577 if (freeph != NULL) 1578 pool_p_free(pp, freeph); 1579 } 1580 splx(s); 1581 rw_exit_read(&pool_lock); 1582 1583 timeout_add_sec(&pool_gc_tick, 1); 1584 } 1585 1586 /* 1587 * Pool backend allocators. 1588 */ 1589 1590 void * 1591 pool_allocator_alloc(struct pool *pp, int flags, int *slowdown) 1592 { 1593 void *v; 1594 1595 v = (*pp->pr_alloc->pa_alloc)(pp, flags, slowdown); 1596 1597 #ifdef DIAGNOSTIC 1598 if (v != NULL && POOL_INPGHDR(pp)) { 1599 vaddr_t addr = (vaddr_t)v; 1600 if ((addr & pp->pr_pgmask) != addr) { 1601 panic("%s: %s page address %p isnt aligned to %u", 1602 __func__, pp->pr_wchan, v, pp->pr_pgsize); 1603 } 1604 } 1605 #endif 1606 1607 return (v); 1608 } 1609 1610 void 1611 pool_allocator_free(struct pool *pp, void *v) 1612 { 1613 struct pool_allocator *pa = pp->pr_alloc; 1614 1615 (*pa->pa_free)(pp, v); 1616 } 1617 1618 void * 1619 pool_page_alloc(struct pool *pp, int flags, int *slowdown) 1620 { 1621 struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; 1622 1623 kd.kd_waitok = ISSET(flags, PR_WAITOK); 1624 kd.kd_slowdown = slowdown; 1625 1626 return (km_alloc(pp->pr_pgsize, &kv_page, pp->pr_crange, &kd)); 1627 } 1628 1629 void 1630 pool_page_free(struct pool *pp, void *v) 1631 { 1632 km_free(v, pp->pr_pgsize, &kv_page, pp->pr_crange); 1633 } 1634 1635 void * 1636 pool_multi_alloc(struct pool *pp, int flags, int *slowdown) 1637 { 1638 struct kmem_va_mode kv = kv_intrsafe; 1639 struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; 1640 void *v; 1641 int s; 1642 1643 if (POOL_INPGHDR(pp)) 1644 kv.kv_align = pp->pr_pgsize; 1645 1646 kd.kd_waitok = ISSET(flags, PR_WAITOK); 1647 kd.kd_slowdown = slowdown; 1648 1649 s = splvm(); 1650 v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd); 1651 splx(s); 1652 1653 return (v); 1654 } 1655 1656 void 1657 pool_multi_free(struct pool *pp, void *v) 1658 { 1659 struct kmem_va_mode kv = kv_intrsafe; 1660 int s; 1661 1662 if (POOL_INPGHDR(pp)) 1663 kv.kv_align = pp->pr_pgsize; 1664 1665 s = splvm(); 1666 km_free(v, pp->pr_pgsize, &kv, pp->pr_crange); 1667 splx(s); 1668 } 1669 1670 void * 1671 pool_multi_alloc_ni(struct pool *pp, int flags, int *slowdown) 1672 { 1673 struct kmem_va_mode kv = kv_any; 1674 struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; 1675 void *v; 1676 1677 if (POOL_INPGHDR(pp)) 1678 kv.kv_align = pp->pr_pgsize; 1679 1680 kd.kd_waitok = ISSET(flags, PR_WAITOK); 1681 kd.kd_slowdown = slowdown; 1682 1683 KERNEL_LOCK(); 1684 v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd); 1685 KERNEL_UNLOCK(); 1686 1687 return (v); 1688 } 1689 1690 void 1691 pool_multi_free_ni(struct pool *pp, void *v) 1692 { 1693 struct kmem_va_mode kv = kv_any; 1694 1695 if (POOL_INPGHDR(pp)) 1696 kv.kv_align = pp->pr_pgsize; 1697 1698 KERNEL_LOCK(); 1699 km_free(v, pp->pr_pgsize, &kv, pp->pr_crange); 1700 KERNEL_UNLOCK(); 1701 } 1702 1703 #ifdef MULTIPROCESSOR 1704 1705 struct pool pool_caches; /* per cpu cache entries */ 1706 1707 void 1708 pool_cache_init(struct pool *pp) 1709 { 1710 struct cpumem *cm; 1711 struct pool_cache *pc; 1712 struct cpumem_iter i; 1713 1714 if (pool_caches.pr_size == 0) { 1715 pool_init(&pool_caches, sizeof(struct pool_cache), 1716 CACHELINESIZE, IPL_NONE, PR_WAITOK | PR_RWLOCK, 1717 "plcache", NULL); 1718 } 1719 1720 /* must be able to use the pool items as cache list items */ 1721 KASSERT(pp->pr_size >= sizeof(struct pool_cache_item)); 1722 1723 cm = cpumem_get(&pool_caches); 1724 1725 pl_init(pp, &pp->pr_cache_lock); 1726 arc4random_buf(pp->pr_cache_magic, sizeof(pp->pr_cache_magic)); 1727 TAILQ_INIT(&pp->pr_cache_lists); 1728 pp->pr_cache_nitems = 0; 1729 pp->pr_cache_tick = ticks; 1730 pp->pr_cache_items = 8; 1731 pp->pr_cache_contention = 0; 1732 pp->pr_cache_ngc = 0; 1733 1734 CPUMEM_FOREACH(pc, &i, cm) { 1735 pc->pc_actv = NULL; 1736 pc->pc_nactv = 0; 1737 pc->pc_prev = NULL; 1738 1739 pc->pc_nget = 0; 1740 pc->pc_nfail = 0; 1741 pc->pc_nput = 0; 1742 pc->pc_nlget = 0; 1743 pc->pc_nlfail = 0; 1744 pc->pc_nlput = 0; 1745 pc->pc_nout = 0; 1746 } 1747 1748 membar_producer(); 1749 1750 pp->pr_cache = cm; 1751 } 1752 1753 static inline void 1754 pool_cache_item_magic(struct pool *pp, struct pool_cache_item *ci) 1755 { 1756 unsigned long *entry = (unsigned long *)&ci->ci_nextl; 1757 1758 entry[0] = pp->pr_cache_magic[0] ^ (u_long)ci; 1759 entry[1] = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next; 1760 } 1761 1762 static inline void 1763 pool_cache_item_magic_check(struct pool *pp, struct pool_cache_item *ci) 1764 { 1765 unsigned long *entry; 1766 unsigned long val; 1767 1768 entry = (unsigned long *)&ci->ci_nextl; 1769 val = pp->pr_cache_magic[0] ^ (u_long)ci; 1770 if (*entry != val) 1771 goto fail; 1772 1773 entry++; 1774 val = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next; 1775 if (*entry != val) 1776 goto fail; 1777 1778 return; 1779 1780 fail: 1781 panic("%s: %s cpu free list modified: item addr %p+%zu 0x%lx!=0x%lx", 1782 __func__, pp->pr_wchan, ci, (caddr_t)entry - (caddr_t)ci, 1783 *entry, val); 1784 } 1785 1786 static inline void 1787 pool_list_enter(struct pool *pp) 1788 { 1789 if (pl_enter_try(pp, &pp->pr_cache_lock) == 0) { 1790 pl_enter(pp, &pp->pr_cache_lock); 1791 pp->pr_cache_contention++; 1792 } 1793 } 1794 1795 static inline void 1796 pool_list_leave(struct pool *pp) 1797 { 1798 pl_leave(pp, &pp->pr_cache_lock); 1799 } 1800 1801 static inline struct pool_cache_item * 1802 pool_cache_list_alloc(struct pool *pp, struct pool_cache *pc) 1803 { 1804 struct pool_cache_item *pl; 1805 1806 pool_list_enter(pp); 1807 pl = TAILQ_FIRST(&pp->pr_cache_lists); 1808 if (pl != NULL) { 1809 TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl); 1810 pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl); 1811 1812 pool_cache_item_magic(pp, pl); 1813 1814 pc->pc_nlget++; 1815 } else 1816 pc->pc_nlfail++; 1817 1818 /* fold this cpus nout into the global while we have the lock */ 1819 pp->pr_cache_nout += pc->pc_nout; 1820 pc->pc_nout = 0; 1821 pool_list_leave(pp); 1822 1823 return (pl); 1824 } 1825 1826 static inline void 1827 pool_cache_list_free(struct pool *pp, struct pool_cache *pc, 1828 struct pool_cache_item *ci) 1829 { 1830 pool_list_enter(pp); 1831 if (TAILQ_EMPTY(&pp->pr_cache_lists)) 1832 pp->pr_cache_tick = ticks; 1833 1834 pp->pr_cache_nitems += POOL_CACHE_ITEM_NITEMS(ci); 1835 TAILQ_INSERT_TAIL(&pp->pr_cache_lists, ci, ci_nextl); 1836 1837 pc->pc_nlput++; 1838 1839 /* fold this cpus nout into the global while we have the lock */ 1840 pp->pr_cache_nout += pc->pc_nout; 1841 pc->pc_nout = 0; 1842 pool_list_leave(pp); 1843 } 1844 1845 static inline struct pool_cache * 1846 pool_cache_enter(struct pool *pp, int *s) 1847 { 1848 struct pool_cache *pc; 1849 1850 pc = cpumem_enter(pp->pr_cache); 1851 *s = splraise(pp->pr_ipl); 1852 pc->pc_gen++; 1853 1854 return (pc); 1855 } 1856 1857 static inline void 1858 pool_cache_leave(struct pool *pp, struct pool_cache *pc, int s) 1859 { 1860 pc->pc_gen++; 1861 splx(s); 1862 cpumem_leave(pp->pr_cache, pc); 1863 } 1864 1865 void * 1866 pool_cache_get(struct pool *pp) 1867 { 1868 struct pool_cache *pc; 1869 struct pool_cache_item *ci; 1870 int s; 1871 1872 pc = pool_cache_enter(pp, &s); 1873 1874 if (pc->pc_actv != NULL) { 1875 ci = pc->pc_actv; 1876 } else if (pc->pc_prev != NULL) { 1877 ci = pc->pc_prev; 1878 pc->pc_prev = NULL; 1879 } else if ((ci = pool_cache_list_alloc(pp, pc)) == NULL) { 1880 pc->pc_nfail++; 1881 goto done; 1882 } 1883 1884 pool_cache_item_magic_check(pp, ci); 1885 #ifdef DIAGNOSTIC 1886 if (pool_debug && POOL_CACHE_ITEM_POISONED(ci)) { 1887 size_t pidx; 1888 uint32_t pval; 1889 1890 if (poison_check(ci + 1, pp->pr_size - sizeof(*ci), 1891 &pidx, &pval)) { 1892 int *ip = (int *)(ci + 1); 1893 ip += pidx; 1894 1895 panic("%s: %s cpu free list modified: " 1896 "item addr %p+%zu 0x%x!=0x%x", 1897 __func__, pp->pr_wchan, ci, 1898 (caddr_t)ip - (caddr_t)ci, *ip, pval); 1899 } 1900 } 1901 #endif 1902 1903 pc->pc_actv = ci->ci_next; 1904 pc->pc_nactv = POOL_CACHE_ITEM_NITEMS(ci) - 1; 1905 pc->pc_nget++; 1906 pc->pc_nout++; 1907 1908 done: 1909 pool_cache_leave(pp, pc, s); 1910 1911 return (ci); 1912 } 1913 1914 void 1915 pool_cache_put(struct pool *pp, void *v) 1916 { 1917 struct pool_cache *pc; 1918 struct pool_cache_item *ci = v; 1919 unsigned long nitems; 1920 int s; 1921 #ifdef DIAGNOSTIC 1922 int poison = pool_debug && pp->pr_size > sizeof(*ci); 1923 1924 if (poison) 1925 poison_mem(ci + 1, pp->pr_size - sizeof(*ci)); 1926 #endif 1927 1928 pc = pool_cache_enter(pp, &s); 1929 1930 nitems = pc->pc_nactv; 1931 if (nitems >= pp->pr_cache_items) { 1932 if (pc->pc_prev != NULL) 1933 pool_cache_list_free(pp, pc, pc->pc_prev); 1934 1935 pc->pc_prev = pc->pc_actv; 1936 1937 pc->pc_actv = NULL; 1938 pc->pc_nactv = 0; 1939 nitems = 0; 1940 } 1941 1942 ci->ci_next = pc->pc_actv; 1943 ci->ci_nitems = ++nitems; 1944 #ifdef DIAGNOSTIC 1945 ci->ci_nitems |= poison ? POOL_CACHE_ITEM_NITEMS_POISON : 0; 1946 #endif 1947 pool_cache_item_magic(pp, ci); 1948 1949 pc->pc_actv = ci; 1950 pc->pc_nactv = nitems; 1951 1952 pc->pc_nput++; 1953 pc->pc_nout--; 1954 1955 pool_cache_leave(pp, pc, s); 1956 } 1957 1958 struct pool_cache_item * 1959 pool_cache_list_put(struct pool *pp, struct pool_cache_item *pl) 1960 { 1961 struct pool_cache_item *rpl, *next; 1962 1963 if (pl == NULL) 1964 return (NULL); 1965 1966 rpl = TAILQ_NEXT(pl, ci_nextl); 1967 1968 pl_enter(pp, &pp->pr_lock); 1969 do { 1970 next = pl->ci_next; 1971 pool_do_put(pp, pl); 1972 pl = next; 1973 } while (pl != NULL); 1974 pl_leave(pp, &pp->pr_lock); 1975 1976 return (rpl); 1977 } 1978 1979 void 1980 pool_cache_destroy(struct pool *pp) 1981 { 1982 struct pool_cache *pc; 1983 struct pool_cache_item *pl; 1984 struct cpumem_iter i; 1985 struct cpumem *cm; 1986 1987 rw_enter_write(&pool_lock); /* serialise with the gc */ 1988 cm = pp->pr_cache; 1989 pp->pr_cache = NULL; /* make pool_put avoid the cache */ 1990 rw_exit_write(&pool_lock); 1991 1992 CPUMEM_FOREACH(pc, &i, cm) { 1993 pool_cache_list_put(pp, pc->pc_actv); 1994 pool_cache_list_put(pp, pc->pc_prev); 1995 } 1996 1997 cpumem_put(&pool_caches, cm); 1998 1999 pl = TAILQ_FIRST(&pp->pr_cache_lists); 2000 while (pl != NULL) 2001 pl = pool_cache_list_put(pp, pl); 2002 } 2003 2004 void 2005 pool_cache_gc(struct pool *pp) 2006 { 2007 unsigned int contention, delta; 2008 2009 if ((ticks - pp->pr_cache_tick) > (hz * pool_wait_gc) && 2010 !TAILQ_EMPTY(&pp->pr_cache_lists) && 2011 pl_enter_try(pp, &pp->pr_cache_lock)) { 2012 struct pool_cache_item *pl = NULL; 2013 2014 pl = TAILQ_FIRST(&pp->pr_cache_lists); 2015 if (pl != NULL) { 2016 TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl); 2017 pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl); 2018 pp->pr_cache_tick = ticks; 2019 2020 pp->pr_cache_ngc++; 2021 } 2022 2023 pl_leave(pp, &pp->pr_cache_lock); 2024 2025 pool_cache_list_put(pp, pl); 2026 } 2027 2028 /* 2029 * if there's a lot of contention on the pr_cache_mtx then consider 2030 * growing the length of the list to reduce the need to access the 2031 * global pool. 2032 */ 2033 2034 contention = pp->pr_cache_contention; 2035 delta = contention - pp->pr_cache_contention_prev; 2036 if (delta > 8 /* magic */) { 2037 if ((ncpusfound * 8 * 2) <= pp->pr_cache_nitems) 2038 pp->pr_cache_items += 8; 2039 } else if (delta == 0) { 2040 if (pp->pr_cache_items > 8) 2041 pp->pr_cache_items--; 2042 } 2043 pp->pr_cache_contention_prev = contention; 2044 } 2045 2046 void 2047 pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi) 2048 { 2049 struct pool_cache *pc; 2050 struct cpumem_iter i; 2051 2052 if (pp->pr_cache == NULL) 2053 return; 2054 2055 /* loop through the caches twice to collect stats */ 2056 2057 /* once without the lock so we can yield while reading nget/nput */ 2058 CPUMEM_FOREACH(pc, &i, pp->pr_cache) { 2059 uint64_t gen, nget, nput; 2060 2061 do { 2062 while ((gen = pc->pc_gen) & 1) 2063 yield(); 2064 2065 nget = pc->pc_nget; 2066 nput = pc->pc_nput; 2067 } while (gen != pc->pc_gen); 2068 2069 pi->pr_nget += nget; 2070 pi->pr_nput += nput; 2071 } 2072 2073 /* and once with the mtx so we can get consistent nout values */ 2074 pl_enter(pp, &pp->pr_cache_lock); 2075 CPUMEM_FOREACH(pc, &i, pp->pr_cache) 2076 pi->pr_nout += pc->pc_nout; 2077 2078 pi->pr_nout += pp->pr_cache_nout; 2079 pl_leave(pp, &pp->pr_cache_lock); 2080 } 2081 2082 int 2083 pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp) 2084 { 2085 struct kinfo_pool_cache kpc; 2086 2087 if (pp->pr_cache == NULL) 2088 return (EOPNOTSUPP); 2089 2090 memset(&kpc, 0, sizeof(kpc)); /* don't leak padding */ 2091 2092 pl_enter(pp, &pp->pr_cache_lock); 2093 kpc.pr_ngc = pp->pr_cache_ngc; 2094 kpc.pr_len = pp->pr_cache_items; 2095 kpc.pr_nitems = pp->pr_cache_nitems; 2096 kpc.pr_contention = pp->pr_cache_contention; 2097 pl_leave(pp, &pp->pr_cache_lock); 2098 2099 return (sysctl_rdstruct(oldp, oldlenp, NULL, &kpc, sizeof(kpc))); 2100 } 2101 2102 int 2103 pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp) 2104 { 2105 struct pool_cache *pc; 2106 struct kinfo_pool_cache_cpu *kpcc, *info; 2107 unsigned int cpu = 0; 2108 struct cpumem_iter i; 2109 int error = 0; 2110 size_t len; 2111 2112 if (pp->pr_cache == NULL) 2113 return (EOPNOTSUPP); 2114 if (*oldlenp % sizeof(*kpcc)) 2115 return (EINVAL); 2116 2117 kpcc = mallocarray(ncpusfound, sizeof(*kpcc), M_TEMP, 2118 M_WAITOK|M_CANFAIL|M_ZERO); 2119 if (kpcc == NULL) 2120 return (EIO); 2121 2122 len = ncpusfound * sizeof(*kpcc); 2123 2124 CPUMEM_FOREACH(pc, &i, pp->pr_cache) { 2125 uint64_t gen; 2126 2127 if (cpu >= ncpusfound) { 2128 error = EIO; 2129 goto err; 2130 } 2131 2132 info = &kpcc[cpu]; 2133 info->pr_cpu = cpu; 2134 2135 do { 2136 while ((gen = pc->pc_gen) & 1) 2137 yield(); 2138 2139 info->pr_nget = pc->pc_nget; 2140 info->pr_nfail = pc->pc_nfail; 2141 info->pr_nput = pc->pc_nput; 2142 info->pr_nlget = pc->pc_nlget; 2143 info->pr_nlfail = pc->pc_nlfail; 2144 info->pr_nlput = pc->pc_nlput; 2145 } while (gen != pc->pc_gen); 2146 2147 cpu++; 2148 } 2149 2150 error = sysctl_rdstruct(oldp, oldlenp, NULL, kpcc, len); 2151 err: 2152 free(kpcc, M_TEMP, len); 2153 2154 return (error); 2155 } 2156 #else /* MULTIPROCESSOR */ 2157 void 2158 pool_cache_init(struct pool *pp) 2159 { 2160 /* nop */ 2161 } 2162 2163 void 2164 pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi) 2165 { 2166 /* nop */ 2167 } 2168 2169 int 2170 pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp) 2171 { 2172 return (EOPNOTSUPP); 2173 } 2174 2175 int 2176 pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp) 2177 { 2178 return (EOPNOTSUPP); 2179 } 2180 #endif /* MULTIPROCESSOR */ 2181 2182 2183 void 2184 pool_lock_mtx_init(struct pool *pp, union pool_lock *lock, 2185 const struct lock_type *type) 2186 { 2187 _mtx_init_flags(&lock->prl_mtx, pp->pr_ipl, pp->pr_wchan, 0, type); 2188 } 2189 2190 void 2191 pool_lock_mtx_enter(union pool_lock *lock) 2192 { 2193 mtx_enter(&lock->prl_mtx); 2194 } 2195 2196 int 2197 pool_lock_mtx_enter_try(union pool_lock *lock) 2198 { 2199 return (mtx_enter_try(&lock->prl_mtx)); 2200 } 2201 2202 void 2203 pool_lock_mtx_leave(union pool_lock *lock) 2204 { 2205 mtx_leave(&lock->prl_mtx); 2206 } 2207 2208 void 2209 pool_lock_mtx_assert_locked(union pool_lock *lock) 2210 { 2211 MUTEX_ASSERT_LOCKED(&lock->prl_mtx); 2212 } 2213 2214 void 2215 pool_lock_mtx_assert_unlocked(union pool_lock *lock) 2216 { 2217 MUTEX_ASSERT_UNLOCKED(&lock->prl_mtx); 2218 } 2219 2220 int 2221 pool_lock_mtx_sleep(void *ident, union pool_lock *lock, int priority, 2222 const char *wmesg) 2223 { 2224 return msleep_nsec(ident, &lock->prl_mtx, priority, wmesg, INFSLP); 2225 } 2226 2227 static const struct pool_lock_ops pool_lock_ops_mtx = { 2228 pool_lock_mtx_init, 2229 pool_lock_mtx_enter, 2230 pool_lock_mtx_enter_try, 2231 pool_lock_mtx_leave, 2232 pool_lock_mtx_assert_locked, 2233 pool_lock_mtx_assert_unlocked, 2234 pool_lock_mtx_sleep, 2235 }; 2236 2237 void 2238 pool_lock_rw_init(struct pool *pp, union pool_lock *lock, 2239 const struct lock_type *type) 2240 { 2241 _rw_init_flags(&lock->prl_rwlock, pp->pr_wchan, 0, type); 2242 } 2243 2244 void 2245 pool_lock_rw_enter(union pool_lock *lock) 2246 { 2247 rw_enter_write(&lock->prl_rwlock); 2248 } 2249 2250 int 2251 pool_lock_rw_enter_try(union pool_lock *lock) 2252 { 2253 return (rw_enter(&lock->prl_rwlock, RW_WRITE | RW_NOSLEEP) == 0); 2254 } 2255 2256 void 2257 pool_lock_rw_leave(union pool_lock *lock) 2258 { 2259 rw_exit_write(&lock->prl_rwlock); 2260 } 2261 2262 void 2263 pool_lock_rw_assert_locked(union pool_lock *lock) 2264 { 2265 rw_assert_wrlock(&lock->prl_rwlock); 2266 } 2267 2268 void 2269 pool_lock_rw_assert_unlocked(union pool_lock *lock) 2270 { 2271 KASSERT(rw_status(&lock->prl_rwlock) != RW_WRITE); 2272 } 2273 2274 int 2275 pool_lock_rw_sleep(void *ident, union pool_lock *lock, int priority, 2276 const char *wmesg) 2277 { 2278 return rwsleep_nsec(ident, &lock->prl_rwlock, priority, wmesg, INFSLP); 2279 } 2280 2281 static const struct pool_lock_ops pool_lock_ops_rw = { 2282 pool_lock_rw_init, 2283 pool_lock_rw_enter, 2284 pool_lock_rw_enter_try, 2285 pool_lock_rw_leave, 2286 pool_lock_rw_assert_locked, 2287 pool_lock_rw_assert_unlocked, 2288 pool_lock_rw_sleep, 2289 }; 2290