xref: /openbsd-src/sys/kern/subr_pool.c (revision b725ae7711052a2233e31a66fefb8a752c388d7a)
1 /*	$OpenBSD: subr_pool.c,v 1.39 2003/11/18 06:08:18 tedu Exp $	*/
2 /*	$NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the NetBSD
23  *	Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/lock.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/sysctl.h>
51 
52 #include <uvm/uvm.h>
53 
54 /*
55  * XXX - for now.
56  */
57 #define SIMPLELOCK_INITIALIZER { SLOCK_UNLOCKED }
58 #ifdef LOCKDEBUG
59 #define simple_lock_freecheck(a, s) do { /* nothing */ } while (0)
60 #define simple_lock_only_held(lkp, str) do { /* nothing */ } while (0)
61 #endif
62 
63 /*
64  * Pool resource management utility.
65  *
66  * Memory is allocated in pages which are split into pieces according to
67  * the pool item size. Each page is kept on one of three lists in the
68  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
69  * for empty, full and partially-full pages respectively. The individual
70  * pool items are on a linked list headed by `ph_itemlist' in each page
71  * header. The memory for building the page list is either taken from
72  * the allocated pages themselves (for small pool items) or taken from
73  * an internal pool of page headers (`phpool').
74  */
75 
76 /* List of all pools */
77 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
78 
79 /* Private pool for page header structures */
80 static struct pool phpool;
81 
82 /* # of seconds to retain page after last use */
83 int pool_inactive_time = 10;
84 
85 /* Next candidate for drainage (see pool_drain()) */
86 static struct pool	*drainpp;
87 
88 /* This spin lock protects both pool_head and drainpp. */
89 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
90 
91 struct pool_item_header {
92 	/* Page headers */
93 	LIST_ENTRY(pool_item_header)
94 				ph_pagelist;	/* pool page list */
95 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
96 	SPLAY_ENTRY(pool_item_header)
97 				ph_node;	/* Off-page page headers */
98 	int			ph_nmissing;	/* # of chunks in use */
99 	caddr_t			ph_page;	/* this page's address */
100 	struct timeval		ph_time;	/* last referenced */
101 };
102 
103 struct pool_item {
104 #ifdef DIAGNOSTIC
105 	int pi_magic;
106 #endif
107 #define	PI_MAGIC 0xdeafbeef
108 	/* Other entries use only this list entry */
109 	TAILQ_ENTRY(pool_item)	pi_list;
110 };
111 
112 #define	POOL_NEEDS_CATCHUP(pp)						\
113 	((pp)->pr_nitems < (pp)->pr_minitems)
114 
115 /*
116  * Every pool get a unique serial number assigned to it. If this counter
117  * wraps, we're screwed, but we shouldn't create so many pools anyway.
118  */
119 unsigned int pool_serial;
120 
121 /*
122  * Pool cache management.
123  *
124  * Pool caches provide a way for constructed objects to be cached by the
125  * pool subsystem.  This can lead to performance improvements by avoiding
126  * needless object construction/destruction; it is deferred until absolutely
127  * necessary.
128  *
129  * Caches are grouped into cache groups.  Each cache group references
130  * up to 16 constructed objects.  When a cache allocates an object
131  * from the pool, it calls the object's constructor and places it into
132  * a cache group.  When a cache group frees an object back to the pool,
133  * it first calls the object's destructor.  This allows the object to
134  * persist in constructed form while freed to the cache.
135  *
136  * Multiple caches may exist for each pool.  This allows a single
137  * object type to have multiple constructed forms.  The pool references
138  * each cache, so that when a pool is drained by the pagedaemon, it can
139  * drain each individual cache as well.  Each time a cache is drained,
140  * the most idle cache group is freed to the pool in its entirety.
141  *
142  * Pool caches are layed on top of pools.  By layering them, we can avoid
143  * the complexity of cache management for pools which would not benefit
144  * from it.
145  */
146 
147 /* The cache group pool. */
148 static struct pool pcgpool;
149 
150 /* The pool cache group. */
151 #define	PCG_NOBJECTS		16
152 struct pool_cache_group {
153 	TAILQ_ENTRY(pool_cache_group)
154 		pcg_list;	/* link in the pool cache's group list */
155 	u_int	pcg_avail;	/* # available objects */
156 				/* pointers to the objects */
157 	void	*pcg_objects[PCG_NOBJECTS];
158 };
159 
160 void	pool_cache_reclaim(struct pool_cache *);
161 void	pool_cache_do_invalidate(struct pool_cache *, int,
162     void (*)(struct pool *, void *));
163 
164 int	pool_catchup(struct pool *);
165 void	pool_prime_page(struct pool *, caddr_t, struct pool_item_header *);
166 void	pool_update_curpage(struct pool *);
167 void	pool_do_put(struct pool *, void *);
168 void	pr_rmpage(struct pool *, struct pool_item_header *,
169     struct pool_pagelist *);
170 int	pool_chk_page(struct pool *, const char *, struct pool_item_header *);
171 
172 void	*pool_allocator_alloc(struct pool *, int);
173 void	pool_allocator_free(struct pool *, void *);
174 
175 void pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...));
176 void pool_print1(struct pool *, const char *, int (*)(const char *, ...));
177 
178 
179 /*
180  * Pool log entry. An array of these is allocated in pool_init().
181  */
182 struct pool_log {
183 	const char	*pl_file;
184 	long		pl_line;
185 	int		pl_action;
186 #define	PRLOG_GET	1
187 #define	PRLOG_PUT	2
188 	void		*pl_addr;
189 };
190 
191 /* Number of entries in pool log buffers */
192 #ifndef POOL_LOGSIZE
193 #define	POOL_LOGSIZE	10
194 #endif
195 
196 int pool_logsize = POOL_LOGSIZE;
197 
198 #ifdef POOL_DIAGNOSTIC
199 static __inline void
200 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
201 {
202 	int n = pp->pr_curlogentry;
203 	struct pool_log *pl;
204 
205 	if ((pp->pr_roflags & PR_LOGGING) == 0)
206 		return;
207 
208 	/*
209 	 * Fill in the current entry. Wrap around and overwrite
210 	 * the oldest entry if necessary.
211 	 */
212 	pl = &pp->pr_log[n];
213 	pl->pl_file = file;
214 	pl->pl_line = line;
215 	pl->pl_action = action;
216 	pl->pl_addr = v;
217 	if (++n >= pp->pr_logsize)
218 		n = 0;
219 	pp->pr_curlogentry = n;
220 }
221 
222 static void
223 pr_printlog(struct pool *pp, struct pool_item *pi,
224     int (*pr)(const char *, ...))
225 {
226 	int i = pp->pr_logsize;
227 	int n = pp->pr_curlogentry;
228 
229 	if ((pp->pr_roflags & PR_LOGGING) == 0)
230 		return;
231 
232 	/*
233 	 * Print all entries in this pool's log.
234 	 */
235 	while (i-- > 0) {
236 		struct pool_log *pl = &pp->pr_log[n];
237 		if (pl->pl_action != 0) {
238 			if (pi == NULL || pi == pl->pl_addr) {
239 				(*pr)("\tlog entry %d:\n", i);
240 				(*pr)("\t\taction = %s, addr = %p\n",
241 				    pl->pl_action == PRLOG_GET ? "get" : "put",
242 				    pl->pl_addr);
243 				(*pr)("\t\tfile: %s at line %lu\n",
244 				    pl->pl_file, pl->pl_line);
245 			}
246 		}
247 		if (++n >= pp->pr_logsize)
248 			n = 0;
249 	}
250 }
251 
252 static __inline void
253 pr_enter(struct pool *pp, const char *file, long line)
254 {
255 
256 	if (__predict_false(pp->pr_entered_file != NULL)) {
257 		printf("pool %s: reentrancy at file %s line %ld\n",
258 		    pp->pr_wchan, file, line);
259 		printf("         previous entry at file %s line %ld\n",
260 		    pp->pr_entered_file, pp->pr_entered_line);
261 		panic("pr_enter");
262 	}
263 
264 	pp->pr_entered_file = file;
265 	pp->pr_entered_line = line;
266 }
267 
268 static __inline void
269 pr_leave(struct pool *pp)
270 {
271 
272 	if (__predict_false(pp->pr_entered_file == NULL)) {
273 		printf("pool %s not entered?\n", pp->pr_wchan);
274 		panic("pr_leave");
275 	}
276 
277 	pp->pr_entered_file = NULL;
278 	pp->pr_entered_line = 0;
279 }
280 
281 static __inline void
282 pr_enter_check(struct pool *pp, int (*pr)(const char *, ...))
283 {
284 
285 	if (pp->pr_entered_file != NULL)
286 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
287 		    pp->pr_entered_file, pp->pr_entered_line);
288 }
289 #else
290 #define	pr_log(pp, v, action, file, line)
291 #define	pr_printlog(pp, pi, pr)
292 #define	pr_enter(pp, file, line)
293 #define	pr_leave(pp)
294 #define	pr_enter_check(pp, pr)
295 #endif /* POOL_DIAGNOSTIC */
296 
297 static __inline int
298 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
299 {
300 	if (a->ph_page < b->ph_page)
301 		return (-1);
302 	else if (a->ph_page > b->ph_page)
303 		return (1);
304 	else
305 		return (0);
306 }
307 
308 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
309 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
310 
311 /*
312  * Return the pool page header based on page address.
313  */
314 static __inline struct pool_item_header *
315 pr_find_pagehead(struct pool *pp, caddr_t page)
316 {
317 	struct pool_item_header *ph, tmp;
318 
319 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
320 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
321 
322 	tmp.ph_page = page;
323 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
324 	return ph;
325 }
326 
327 /*
328  * Remove a page from the pool.
329  */
330 void
331 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
332      struct pool_pagelist *pq)
333 {
334 	int s;
335 
336 	/*
337 	 * If the page was idle, decrement the idle page count.
338 	 */
339 	if (ph->ph_nmissing == 0) {
340 #ifdef DIAGNOSTIC
341 		if (pp->pr_nidle == 0)
342 			panic("pr_rmpage: nidle inconsistent");
343 		if (pp->pr_nitems < pp->pr_itemsperpage)
344 			panic("pr_rmpage: nitems inconsistent");
345 #endif
346 		pp->pr_nidle--;
347 	}
348 
349 	pp->pr_nitems -= pp->pr_itemsperpage;
350 
351 	/*
352 	 * Unlink a page from the pool and release it (or queue it for release).
353 	 */
354 	LIST_REMOVE(ph, ph_pagelist);
355 	if (pq) {
356 		LIST_INSERT_HEAD(pq, ph, ph_pagelist);
357 	} else {
358 		pool_allocator_free(pp, ph->ph_page);
359 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
360 			SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
361 			s = splhigh();
362 			pool_put(&phpool, ph);
363 			splx(s);
364 		}
365 	}
366 	pp->pr_npages--;
367 	pp->pr_npagefree++;
368 
369 	pool_update_curpage(pp);
370 }
371 
372 /*
373  * Initialize the given pool resource structure.
374  *
375  * We export this routine to allow other kernel parts to declare
376  * static pools that must be initialized before malloc() is available.
377  */
378 void
379 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
380     const char *wchan, struct pool_allocator *palloc)
381 {
382 	int off, slack;
383 
384 #ifdef POOL_DIAGNOSTIC
385 	/*
386 	 * Always log if POOL_DIAGNOSTIC is defined.
387 	 */
388 	if (pool_logsize != 0)
389 		flags |= PR_LOGGING;
390 #endif
391 
392 #ifdef MALLOC_DEBUG
393 	if ((flags & PR_DEBUG) && (ioff != 0 || align != 0))
394 		flags &= ~PR_DEBUG;
395 #endif
396 	/*
397 	 * Check arguments and construct default values.
398 	 */
399 	if (palloc == NULL)
400 		palloc = &pool_allocator_kmem;
401 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
402 		if (palloc->pa_pagesz == 0)
403 			palloc->pa_pagesz = PAGE_SIZE;
404 
405 		TAILQ_INIT(&palloc->pa_list);
406 
407 		simple_lock_init(&palloc->pa_slock);
408 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
409 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
410 		palloc->pa_flags |= PA_INITIALIZED;
411 	}
412 
413 	if (align == 0)
414 		align = ALIGN(1);
415 
416 	if (size < sizeof(struct pool_item))
417 		size = sizeof(struct pool_item);
418 
419 	size = roundup(size, align);
420 #ifdef DIAGNOSTIC
421 	if (size > palloc->pa_pagesz)
422 		panic("pool_init: pool item size (%lu) too large",
423 		      (u_long)size);
424 #endif
425 
426 	/*
427 	 * Initialize the pool structure.
428 	 */
429 	LIST_INIT(&pp->pr_emptypages);
430 	LIST_INIT(&pp->pr_fullpages);
431 	LIST_INIT(&pp->pr_partpages);
432 	TAILQ_INIT(&pp->pr_cachelist);
433 	pp->pr_curpage = NULL;
434 	pp->pr_npages = 0;
435 	pp->pr_minitems = 0;
436 	pp->pr_minpages = 0;
437 	pp->pr_maxpages = UINT_MAX;
438 	pp->pr_roflags = flags;
439 	pp->pr_flags = 0;
440 	pp->pr_size = size;
441 	pp->pr_align = align;
442 	pp->pr_wchan = wchan;
443 	pp->pr_alloc = palloc;
444 	pp->pr_nitems = 0;
445 	pp->pr_nout = 0;
446 	pp->pr_hardlimit = UINT_MAX;
447 	pp->pr_hardlimit_warning = NULL;
448 	pp->pr_hardlimit_ratecap.tv_sec = 0;
449 	pp->pr_hardlimit_ratecap.tv_usec = 0;
450 	pp->pr_hardlimit_warning_last.tv_sec = 0;
451 	pp->pr_hardlimit_warning_last.tv_usec = 0;
452 	pp->pr_drain_hook = NULL;
453 	pp->pr_drain_hook_arg = NULL;
454 	pp->pr_serial = ++pool_serial;
455 	if (pool_serial == 0)
456 		panic("pool_init: too much uptime");
457 
458 	/*
459 	 * Decide whether to put the page header off page to avoid
460 	 * wasting too large a part of the page. Off-page page headers
461 	 * go on a hash table, so we can match a returned item
462 	 * with its header based on the page address.
463 	 * We use 1/16 of the page size as the threshold (XXX: tune)
464 	 */
465 	if (pp->pr_size < palloc->pa_pagesz/16) {
466 		/* Use the end of the page for the page header */
467 		pp->pr_roflags |= PR_PHINPAGE;
468 		pp->pr_phoffset = off = palloc->pa_pagesz -
469 		    ALIGN(sizeof(struct pool_item_header));
470 	} else {
471 		/* The page header will be taken from our page header pool */
472 		pp->pr_phoffset = 0;
473 		off = palloc->pa_pagesz;
474 		SPLAY_INIT(&pp->pr_phtree);
475 	}
476 
477 	/*
478 	 * Alignment is to take place at `ioff' within the item. This means
479 	 * we must reserve up to `align - 1' bytes on the page to allow
480 	 * appropriate positioning of each item.
481 	 *
482 	 * Silently enforce `0 <= ioff < align'.
483 	 */
484 	pp->pr_itemoffset = ioff = ioff % align;
485 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
486 	KASSERT(pp->pr_itemsperpage != 0);
487 
488 	/*
489 	 * Use the slack between the chunks and the page header
490 	 * for "cache coloring".
491 	 */
492 	slack = off - pp->pr_itemsperpage * pp->pr_size;
493 	pp->pr_maxcolor = (slack / align) * align;
494 	pp->pr_curcolor = 0;
495 
496 	pp->pr_nget = 0;
497 	pp->pr_nfail = 0;
498 	pp->pr_nput = 0;
499 	pp->pr_npagealloc = 0;
500 	pp->pr_npagefree = 0;
501 	pp->pr_hiwat = 0;
502 	pp->pr_nidle = 0;
503 
504 #ifdef POOL_DIAGNOSTIC
505 	if (flags & PR_LOGGING) {
506 		if (kmem_map == NULL ||
507 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
508 		     M_TEMP, M_NOWAIT)) == NULL)
509 			pp->pr_roflags &= ~PR_LOGGING;
510 		pp->pr_curlogentry = 0;
511 		pp->pr_logsize = pool_logsize;
512 	}
513 #endif
514 
515 	pp->pr_entered_file = NULL;
516 	pp->pr_entered_line = 0;
517 
518 	simple_lock_init(&pp->pr_slock);
519 
520 	/*
521 	 * Initialize private page header pool and cache magazine pool if we
522 	 * haven't done so yet.
523 	 * XXX LOCKING.
524 	 */
525 	if (phpool.pr_size == 0) {
526 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
527 		    0, "phpool", NULL);
528 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
529 		    0, "pcgpool", NULL);
530 	}
531 
532 	/* Insert this into the list of all pools. */
533 	simple_lock(&pool_head_slock);
534 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
535 	simple_unlock(&pool_head_slock);
536 
537 	/* Insert into the list of pools using this allocator. */
538 	simple_lock(&palloc->pa_slock);
539 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
540 	simple_unlock(&palloc->pa_slock);
541 }
542 
543 /*
544  * De-commision a pool resource.
545  */
546 void
547 pool_destroy(struct pool *pp)
548 {
549 	struct pool_item_header *ph;
550 	struct pool_cache *pc;
551 
552 	/* Locking order: pool_allocator -> pool */
553 	simple_lock(&pp->pr_alloc->pa_slock);
554 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
555 	simple_unlock(&pp->pr_alloc->pa_slock);
556 
557 	/* Destroy all caches for this pool. */
558 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
559 		pool_cache_destroy(pc);
560 
561 #ifdef DIAGNOSTIC
562 	if (pp->pr_nout != 0) {
563 		pr_printlog(pp, NULL, printf);
564 		panic("pool_destroy: pool busy: still out: %u",
565 		    pp->pr_nout);
566 	}
567 #endif
568 
569 	/* Remove all pages */
570 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
571 		pr_rmpage(pp, ph, NULL);
572 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
573 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
574 
575 	/* Remove from global pool list */
576 	simple_lock(&pool_head_slock);
577 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
578 	if (drainpp == pp) {
579 		drainpp = NULL;
580 	}
581 	simple_unlock(&pool_head_slock);
582 
583 #ifdef POOL_DIAGNOSTIC
584 	if ((pp->pr_roflags & PR_LOGGING) != 0)
585 		free(pp->pr_log, M_TEMP);
586 #endif
587 }
588 
589 void
590 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
591 {
592 	/* XXX no locking -- must be used just after pool_init() */
593 #ifdef DIAGNOSTIC
594 	if (pp->pr_drain_hook != NULL)
595 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
596 #endif
597 	pp->pr_drain_hook = fn;
598 	pp->pr_drain_hook_arg = arg;
599 }
600 
601 static struct pool_item_header *
602 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
603 {
604 	struct pool_item_header *ph;
605 	int s;
606 
607 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
608 
609 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
610 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
611 	else {
612 		s = splhigh();
613 		ph = pool_get(&phpool, flags);
614 		splx(s);
615 	}
616 
617 	return (ph);
618 }
619 
620 /*
621  * Grab an item from the pool; must be called at appropriate spl level
622  */
623 void *
624 #ifdef POOL_DIAGNOSTIC
625 _pool_get(struct pool *pp, int flags, const char *file, long line)
626 #else
627 pool_get(struct pool *pp, int flags)
628 #endif
629 {
630 	struct pool_item *pi;
631 	struct pool_item_header *ph;
632 	void *v;
633 
634 #ifdef DIAGNOSTIC
635 	if ((flags & PR_WAITOK) != 0)
636 		splassert(IPL_NONE);
637 	if (__predict_false(curproc == NULL && /* doing_shutdown == 0 && XXX*/
638 			    (flags & PR_WAITOK) != 0))
639 		panic("pool_get: %s:must have NOWAIT", pp->pr_wchan);
640 
641 #ifdef LOCKDEBUG
642 	if (flags & PR_WAITOK)
643 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
644 #endif
645 #endif /* DIAGNOSTIC */
646 
647 #ifdef MALLOC_DEBUG
648 	if (pp->pr_roflags & PR_DEBUG) {
649 		void *addr;
650 
651 		addr = NULL;
652 		debug_malloc(pp->pr_size, M_DEBUG,
653 		    (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr);
654 		return (addr);
655 	}
656 #endif
657 
658 	simple_lock(&pp->pr_slock);
659 	pr_enter(pp, file, line);
660 
661  startover:
662 	/*
663 	 * Check to see if we've reached the hard limit.  If we have,
664 	 * and we can wait, then wait until an item has been returned to
665 	 * the pool.
666 	 */
667 #ifdef DIAGNOSTIC
668 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
669 		pr_leave(pp);
670 		simple_unlock(&pp->pr_slock);
671 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
672 	}
673 #endif
674 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
675 		if (pp->pr_drain_hook != NULL) {
676 			/*
677 			 * Since the drain hook is going to free things
678 			 * back to the pool, unlock, call hook, re-lock
679 			 * and check hardlimit condition again.
680 			 */
681 			pr_leave(pp);
682 			simple_unlock(&pp->pr_slock);
683 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
684 			simple_lock(&pp->pr_slock);
685 			pr_enter(pp, file, line);
686 			if (pp->pr_nout < pp->pr_hardlimit)
687 				goto startover;
688 		}
689 
690 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
691 			/*
692 			 * XXX: A warning isn't logged in this case.  Should
693 			 * it be?
694 			 */
695 			pp->pr_flags |= PR_WANTED;
696 			pr_leave(pp);
697 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
698 			pr_enter(pp, file, line);
699 			goto startover;
700 		}
701 
702 		/*
703 		 * Log a message that the hard limit has been hit.
704 		 */
705 		if (pp->pr_hardlimit_warning != NULL &&
706 		    ratecheck(&pp->pr_hardlimit_warning_last,
707 			      &pp->pr_hardlimit_ratecap))
708 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
709 
710 		pp->pr_nfail++;
711 
712 		pr_leave(pp);
713 		simple_unlock(&pp->pr_slock);
714 		return (NULL);
715 	}
716 
717 	/*
718 	 * The convention we use is that if `curpage' is not NULL, then
719 	 * it points at a non-empty bucket. In particular, `curpage'
720 	 * never points at a page header which has PR_PHINPAGE set and
721 	 * has no items in its bucket.
722 	 */
723 	if ((ph = pp->pr_curpage) == NULL) {
724 #ifdef DIAGNOSTIC
725 		if (pp->pr_nitems != 0) {
726 			simple_unlock(&pp->pr_slock);
727 			printf("pool_get: %s: curpage NULL, nitems %u\n",
728 			    pp->pr_wchan, pp->pr_nitems);
729 			panic("pool_get: nitems inconsistent");
730 		}
731 #endif
732 
733 		/*
734 		 * Call the back-end page allocator for more memory.
735 		 * Release the pool lock, as the back-end page allocator
736 		 * may block.
737 		 */
738 		pr_leave(pp);
739 		simple_unlock(&pp->pr_slock);
740 		v = pool_allocator_alloc(pp, flags);
741 		if (__predict_true(v != NULL))
742 			ph = pool_alloc_item_header(pp, v, flags);
743 		simple_lock(&pp->pr_slock);
744 		pr_enter(pp, file, line);
745 
746 		if (__predict_false(v == NULL || ph == NULL)) {
747 			if (v != NULL)
748 				pool_allocator_free(pp, v);
749 
750 			/*
751 			 * We were unable to allocate a page or item
752 			 * header, but we released the lock during
753 			 * allocation, so perhaps items were freed
754 			 * back to the pool.  Check for this case.
755 			 */
756 			if (pp->pr_curpage != NULL)
757 				goto startover;
758 
759 			if ((flags & PR_WAITOK) == 0) {
760 				pp->pr_nfail++;
761 				pr_leave(pp);
762 				simple_unlock(&pp->pr_slock);
763 				return (NULL);
764 			}
765 
766 			/*
767 			 * Wait for items to be returned to this pool.
768 			 *
769 			 * XXX: maybe we should wake up once a second and
770 			 * try again?
771 			 */
772 			pp->pr_flags |= PR_WANTED;
773 			/* PA_WANTED is already set on the allocator. */
774 			pr_leave(pp);
775 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
776 			pr_enter(pp, file, line);
777 			goto startover;
778 		}
779 
780 		/* We have more memory; add it to the pool */
781 		pool_prime_page(pp, v, ph);
782 		pp->pr_npagealloc++;
783 
784 		/* Start the allocation process over. */
785 		goto startover;
786 	}
787 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
788 		pr_leave(pp);
789 		simple_unlock(&pp->pr_slock);
790 		panic("pool_get: %s: page empty", pp->pr_wchan);
791 	}
792 #ifdef DIAGNOSTIC
793 	if (__predict_false(pp->pr_nitems == 0)) {
794 		pr_leave(pp);
795 		simple_unlock(&pp->pr_slock);
796 		printf("pool_get: %s: items on itemlist, nitems %u\n",
797 		    pp->pr_wchan, pp->pr_nitems);
798 		panic("pool_get: nitems inconsistent");
799 	}
800 #endif
801 
802 #ifdef POOL_DIAGNOSTIC
803 	pr_log(pp, v, PRLOG_GET, file, line);
804 #endif
805 
806 #ifdef DIAGNOSTIC
807 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
808 		pr_printlog(pp, pi, printf);
809 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
810 		       " item addr %p",
811 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
812 	}
813 #endif
814 
815 	/*
816 	 * Remove from item list.
817 	 */
818 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
819 	pp->pr_nitems--;
820 	pp->pr_nout++;
821 	if (ph->ph_nmissing == 0) {
822 #ifdef DIAGNOSTIC
823 		if (__predict_false(pp->pr_nidle == 0))
824 			panic("pool_get: nidle inconsistent");
825 #endif
826 		pp->pr_nidle--;
827 
828 		/*
829 		 * This page was previously empty.  Move it to the list of
830 		 * partially-full pages.  This page is already curpage.
831 		 */
832 		LIST_REMOVE(ph, ph_pagelist);
833 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
834 	}
835 	ph->ph_nmissing++;
836 	if (TAILQ_EMPTY(&ph->ph_itemlist)) {
837 #ifdef DIAGNOSTIC
838 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
839 			pr_leave(pp);
840 			simple_unlock(&pp->pr_slock);
841 			panic("pool_get: %s: nmissing inconsistent",
842 			    pp->pr_wchan);
843 		}
844 #endif
845 		/*
846 		 * This page is now full.  Move it to the full list
847 		 * and select a new current page.
848 		 */
849 		LIST_REMOVE(ph, ph_pagelist);
850 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
851 		pool_update_curpage(pp);
852 	}
853 
854 	pp->pr_nget++;
855 
856 	/*
857 	 * If we have a low water mark and we are now below that low
858 	 * water mark, add more items to the pool.
859 	 */
860 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
861 		/*
862 		 * XXX: Should we log a warning?  Should we set up a timeout
863 		 * to try again in a second or so?  The latter could break
864 		 * a caller's assumptions about interrupt protection, etc.
865 		 */
866 	}
867 
868 	pr_leave(pp);
869 	simple_unlock(&pp->pr_slock);
870 	return (v);
871 }
872 
873 /*
874  * Internal version of pool_put().  Pool is already locked/entered.
875  */
876 void
877 pool_do_put(struct pool *pp, void *v)
878 {
879 	struct pool_item *pi = v;
880 	struct pool_item_header *ph;
881 	caddr_t page;
882 	int s;
883 
884 #ifdef MALLOC_DEBUG
885 	if (pp->pr_roflags & PR_DEBUG) {
886 		debug_free(v, M_DEBUG);
887 		return;
888 	}
889 #endif
890 
891 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
892 
893 	page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask);
894 
895 #ifdef DIAGNOSTIC
896 	if (__predict_false(pp->pr_nout == 0)) {
897 		printf("pool %s: putting with none out\n",
898 		    pp->pr_wchan);
899 		panic("pool_put");
900 	}
901 #endif
902 
903 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
904 		pr_printlog(pp, NULL, printf);
905 		panic("pool_put: %s: page header missing", pp->pr_wchan);
906 	}
907 
908 #ifdef LOCKDEBUG
909 	/*
910 	 * Check if we're freeing a locked simple lock.
911 	 */
912 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
913 #endif
914 
915 	/*
916 	 * Return to item list.
917 	 */
918 #ifdef DIAGNOSTIC
919 	pi->pi_magic = PI_MAGIC;
920 #endif
921 #ifdef DEBUG
922 	{
923 		int i, *ip = v;
924 
925 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
926 			*ip++ = PI_MAGIC;
927 		}
928 	}
929 #endif
930 
931 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
932 	ph->ph_nmissing--;
933 	pp->pr_nput++;
934 	pp->pr_nitems++;
935 	pp->pr_nout--;
936 
937 	/* Cancel "pool empty" condition if it exists */
938 	if (pp->pr_curpage == NULL)
939 		pp->pr_curpage = ph;
940 
941 	if (pp->pr_flags & PR_WANTED) {
942 		pp->pr_flags &= ~PR_WANTED;
943 		if (ph->ph_nmissing == 0)
944 			pp->pr_nidle++;
945 		wakeup((caddr_t)pp);
946 		return;
947 	}
948 
949 	/*
950 	 * If this page is now empty, do one of two things:
951 	 *
952 	 *	(1) If we have more pages than the page high water mark,
953 	 *	    free the page back to the system.
954 	 *
955 	 *	(2) Otherwise, move the page to the empty page list.
956 	 *
957 	 * Either way, select a new current page (so we use a partially-full
958 	 * page if one is available).
959 	 */
960 	if (ph->ph_nmissing == 0) {
961 		pp->pr_nidle++;
962 		if (pp->pr_npages > pp->pr_maxpages ||
963 		    (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
964 			pr_rmpage(pp, ph, NULL);
965 		} else {
966 			LIST_REMOVE(ph, ph_pagelist);
967 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
968 
969 			/*
970 			 * Update the timestamp on the page.  A page must
971 			 * be idle for some period of time before it can
972 			 * be reclaimed by the pagedaemon.  This minimizes
973 			 * ping-pong'ing for memory.
974 			 */
975 			s = splclock();
976 			ph->ph_time = mono_time;
977 			splx(s);
978 		}
979 		pool_update_curpage(pp);
980 	}
981 
982 	/*
983 	 * If the page was previously completely full, move it to the
984 	 * partially-full list and make it the current page.  The next
985 	 * allocation will get the item from this page, instead of
986 	 * further fragmenting the pool.
987 	 */
988 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
989 		LIST_REMOVE(ph, ph_pagelist);
990 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
991 		pp->pr_curpage = ph;
992 	}
993 }
994 
995 /*
996  * Return resource to the pool; must be called at appropriate spl level
997  */
998 #ifdef POOL_DIAGNOSTIC
999 void
1000 _pool_put(struct pool *pp, void *v, const char *file, long line)
1001 {
1002 
1003 	simple_lock(&pp->pr_slock);
1004 	pr_enter(pp, file, line);
1005 
1006 	pr_log(pp, v, PRLOG_PUT, file, line);
1007 
1008 	pool_do_put(pp, v);
1009 
1010 	pr_leave(pp);
1011 	simple_unlock(&pp->pr_slock);
1012 }
1013 #undef pool_put
1014 #endif /* POOL_DIAGNOSTIC */
1015 
1016 void
1017 pool_put(struct pool *pp, void *v)
1018 {
1019 
1020 	simple_lock(&pp->pr_slock);
1021 
1022 	pool_do_put(pp, v);
1023 
1024 	simple_unlock(&pp->pr_slock);
1025 }
1026 
1027 #ifdef POOL_DIAGNOSTIC
1028 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1029 #endif
1030 
1031 /*
1032  * Add N items to the pool.
1033  */
1034 int
1035 pool_prime(struct pool *pp, int n)
1036 {
1037 	struct pool_item_header *ph;
1038 	caddr_t cp;
1039 	int newpages;
1040 
1041 	simple_lock(&pp->pr_slock);
1042 
1043 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1044 
1045 	while (newpages-- > 0) {
1046 		simple_unlock(&pp->pr_slock);
1047 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1048 		if (__predict_true(cp != NULL))
1049 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1050 		simple_lock(&pp->pr_slock);
1051 
1052 		if (__predict_false(cp == NULL || ph == NULL)) {
1053 			if (cp != NULL)
1054 				pool_allocator_free(pp, cp);
1055 			break;
1056 		}
1057 
1058 		pool_prime_page(pp, cp, ph);
1059 		pp->pr_npagealloc++;
1060 		pp->pr_minpages++;
1061 	}
1062 
1063 	if (pp->pr_minpages >= pp->pr_maxpages)
1064 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1065 
1066 	simple_unlock(&pp->pr_slock);
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Add a page worth of items to the pool.
1072  *
1073  * Note, we must be called with the pool descriptor LOCKED.
1074  */
1075 void
1076 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1077 {
1078 	struct pool_item *pi;
1079 	caddr_t cp = storage;
1080 	unsigned int align = pp->pr_align;
1081 	unsigned int ioff = pp->pr_itemoffset;
1082 	int n;
1083 
1084 #ifdef DIAGNOSTIC
1085 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1086 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1087 #endif
1088 
1089 	/*
1090 	 * Insert page header.
1091 	 */
1092 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1093 	TAILQ_INIT(&ph->ph_itemlist);
1094 	ph->ph_page = storage;
1095 	ph->ph_nmissing = 0;
1096 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1097 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1098 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1099 
1100 	pp->pr_nidle++;
1101 
1102 	/*
1103 	 * Color this page.
1104 	 */
1105 	cp = (caddr_t)(cp + pp->pr_curcolor);
1106 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1107 		pp->pr_curcolor = 0;
1108 
1109 	/*
1110 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1111 	 */
1112 	if (ioff != 0)
1113 		cp = (caddr_t)(cp + (align - ioff));
1114 
1115 	/*
1116 	 * Insert remaining chunks on the bucket list.
1117 	 */
1118 	n = pp->pr_itemsperpage;
1119 	pp->pr_nitems += n;
1120 
1121 	while (n--) {
1122 		pi = (struct pool_item *)cp;
1123 
1124 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1125 
1126 		/* Insert on page list */
1127 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1128 #ifdef DIAGNOSTIC
1129 		pi->pi_magic = PI_MAGIC;
1130 #endif
1131 		cp = (caddr_t)(cp + pp->pr_size);
1132 	}
1133 
1134 	/*
1135 	 * If the pool was depleted, point at the new page.
1136 	 */
1137 	if (pp->pr_curpage == NULL)
1138 		pp->pr_curpage = ph;
1139 
1140 	if (++pp->pr_npages > pp->pr_hiwat)
1141 		pp->pr_hiwat = pp->pr_npages;
1142 }
1143 
1144 /*
1145  * Used by pool_get() when nitems drops below the low water mark.  This
1146  * is used to catch up pr_nitems with the low water mark.
1147  *
1148  * Note 1, we never wait for memory here, we let the caller decide what to do.
1149  *
1150  * Note 2, we must be called with the pool already locked, and we return
1151  * with it locked.
1152  */
1153 int
1154 pool_catchup(struct pool *pp)
1155 {
1156 	struct pool_item_header *ph;
1157 	caddr_t cp;
1158 	int error = 0;
1159 
1160 	while (POOL_NEEDS_CATCHUP(pp)) {
1161 		/*
1162 		 * Call the page back-end allocator for more memory.
1163 		 *
1164 		 * XXX: We never wait, so should we bother unlocking
1165 		 * the pool descriptor?
1166 		 */
1167 		simple_unlock(&pp->pr_slock);
1168 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1169 		if (__predict_true(cp != NULL))
1170 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1171 		simple_lock(&pp->pr_slock);
1172 		if (__predict_false(cp == NULL || ph == NULL)) {
1173 			if (cp != NULL)
1174 				pool_allocator_free(pp, cp);
1175 			error = ENOMEM;
1176 			break;
1177 		}
1178 		pool_prime_page(pp, cp, ph);
1179 		pp->pr_npagealloc++;
1180 	}
1181 
1182 	return (error);
1183 }
1184 
1185 void
1186 pool_update_curpage(struct pool *pp)
1187 {
1188 
1189 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1190 	if (pp->pr_curpage == NULL) {
1191 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1192 	}
1193 }
1194 
1195 void
1196 pool_setlowat(struct pool *pp, int n)
1197 {
1198 
1199 	simple_lock(&pp->pr_slock);
1200 
1201 	pp->pr_minitems = n;
1202 	pp->pr_minpages = (n == 0)
1203 		? 0
1204 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1205 
1206 	/* Make sure we're caught up with the newly-set low water mark. */
1207 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1208 		/*
1209 		 * XXX: Should we log a warning?  Should we set up a timeout
1210 		 * to try again in a second or so?  The latter could break
1211 		 * a caller's assumptions about interrupt protection, etc.
1212 		 */
1213 	}
1214 
1215 	simple_unlock(&pp->pr_slock);
1216 }
1217 
1218 void
1219 pool_sethiwat(struct pool *pp, int n)
1220 {
1221 
1222 	simple_lock(&pp->pr_slock);
1223 
1224 	pp->pr_maxpages = (n == 0)
1225 		? 0
1226 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1227 
1228 	simple_unlock(&pp->pr_slock);
1229 }
1230 
1231 int
1232 pool_sethardlimit(struct pool *pp, unsigned n, const char *warnmess, int ratecap)
1233 {
1234 	int error = 0;
1235 
1236 	simple_lock(&pp->pr_slock);
1237 
1238 	if (n < pp->pr_nout) {
1239 		error = EINVAL;
1240 		goto done;
1241 	}
1242 
1243 	pp->pr_hardlimit = n;
1244 	pp->pr_hardlimit_warning = warnmess;
1245 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1246 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1247 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1248 
1249 	/*
1250 	 * In-line version of pool_sethiwat(), because we don't want to
1251 	 * release the lock.
1252 	 */
1253 	pp->pr_maxpages = (n == 0 || n == UINT_MAX)
1254 		? n
1255 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1256 
1257  done:
1258 	simple_unlock(&pp->pr_slock);
1259 
1260 	return (error);
1261 }
1262 
1263 /*
1264  * Release all complete pages that have not been used recently.
1265  *
1266  * Returns non-zero if any pages have been reclaimed.
1267  */
1268 int
1269 #ifdef POOL_DIAGNOSTIC
1270 _pool_reclaim(struct pool *pp, const char *file, long line)
1271 #else
1272 pool_reclaim(struct pool *pp)
1273 #endif
1274 {
1275 	struct pool_item_header *ph, *phnext;
1276 	struct pool_cache *pc;
1277 	struct timeval curtime;
1278 	struct pool_pagelist pq;
1279 	struct timeval diff;
1280 	int s;
1281 
1282 	if (pp->pr_drain_hook != NULL) {
1283 		/*
1284 		 * The drain hook must be called with the pool unlocked.
1285 		 */
1286 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1287 	}
1288 
1289 	if (simple_lock_try(&pp->pr_slock) == 0)
1290 		return (0);
1291 	pr_enter(pp, file, line);
1292 
1293 	LIST_INIT(&pq);
1294 
1295 	/*
1296 	 * Reclaim items from the pool's caches.
1297 	 */
1298 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1299 		pool_cache_reclaim(pc);
1300 
1301 	s = splclock();
1302 	curtime = mono_time;
1303 	splx(s);
1304 
1305 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1306 		phnext = LIST_NEXT(ph, ph_pagelist);
1307 
1308 		/* Check our minimum page claim */
1309 		if (pp->pr_npages <= pp->pr_minpages)
1310 			break;
1311 
1312 		KASSERT(ph->ph_nmissing == 0);
1313 		timersub(&curtime, &ph->ph_time, &diff);
1314 		if (diff.tv_sec < pool_inactive_time)
1315 			continue;
1316 
1317 		/*
1318 		 * If freeing this page would put us below
1319 		 * the low water mark, stop now.
1320 		 */
1321 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1322 		    pp->pr_minitems)
1323 			break;
1324 
1325 		pr_rmpage(pp, ph, &pq);
1326 	}
1327 
1328 	pr_leave(pp);
1329 	simple_unlock(&pp->pr_slock);
1330 	if (LIST_EMPTY(&pq))
1331 		return (0);
1332 	while ((ph = LIST_FIRST(&pq)) != NULL) {
1333 		LIST_REMOVE(ph, ph_pagelist);
1334 		pool_allocator_free(pp, ph->ph_page);
1335 		if (pp->pr_roflags & PR_PHINPAGE) {
1336 			continue;
1337 		}
1338 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
1339 		s = splhigh();
1340 		pool_put(&phpool, ph);
1341 		splx(s);
1342 	}
1343 
1344 	return (1);
1345 }
1346 
1347 
1348 /*
1349  * Drain pools, one at a time.
1350  *
1351  * Note, we must never be called from an interrupt context.
1352  */
1353 void
1354 pool_drain(void *arg)
1355 {
1356 	struct pool *pp;
1357 	int s;
1358 
1359 	pp = NULL;
1360 	s = splvm();
1361 	simple_lock(&pool_head_slock);
1362 	if (drainpp == NULL) {
1363 		drainpp = TAILQ_FIRST(&pool_head);
1364 	}
1365 	if (drainpp) {
1366 		pp = drainpp;
1367 		drainpp = TAILQ_NEXT(pp, pr_poollist);
1368 	}
1369 	simple_unlock(&pool_head_slock);
1370 	pool_reclaim(pp);
1371 	splx(s);
1372 }
1373 
1374 /*
1375  * Diagnostic helpers.
1376  */
1377 void
1378 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1379 {
1380 	int s;
1381 
1382 	s = splvm();
1383 	if (simple_lock_try(&pp->pr_slock) == 0) {
1384 		pr("pool %s is locked; try again later\n",
1385 		    pp->pr_wchan);
1386 		splx(s);
1387 		return;
1388 	}
1389 	pool_print1(pp, modif, pr);
1390 	simple_unlock(&pp->pr_slock);
1391 	splx(s);
1392 }
1393 
1394 void
1395 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...))
1396 {
1397 	struct pool_item_header *ph;
1398 #ifdef DIAGNOSTIC
1399 	struct pool_item *pi;
1400 #endif
1401 
1402 	LIST_FOREACH(ph, pl, ph_pagelist) {
1403 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1404 		    ph->ph_page, ph->ph_nmissing,
1405 		    (u_long)ph->ph_time.tv_sec,
1406 		    (u_long)ph->ph_time.tv_usec);
1407 #ifdef DIAGNOSTIC
1408 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1409 			if (pi->pi_magic != PI_MAGIC) {
1410 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1411 				    pi, pi->pi_magic);
1412 			}
1413 		}
1414 #endif
1415 	}
1416 }
1417 
1418 void
1419 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1420 {
1421 	struct pool_item_header *ph;
1422 	struct pool_cache *pc;
1423 	struct pool_cache_group *pcg;
1424 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1425 	char c;
1426 
1427 	while ((c = *modif++) != '\0') {
1428 		if (c == 'l')
1429 			print_log = 1;
1430 		if (c == 'p')
1431 			print_pagelist = 1;
1432 		if (c == 'c')
1433 			print_cache = 1;
1434 		modif++;
1435 	}
1436 
1437 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1438 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1439 	    pp->pr_roflags);
1440 	(*pr)("\talloc %p\n", pp->pr_alloc);
1441 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1442 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1443 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1444 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1445 
1446 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1447 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1448 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1449 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1450 
1451 	if (print_pagelist == 0)
1452 		goto skip_pagelist;
1453 
1454 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1455 		(*pr)("\n\tempty page list:\n");
1456 	pool_print_pagelist(&pp->pr_emptypages, pr);
1457 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1458 		(*pr)("\n\tfull page list:\n");
1459 	pool_print_pagelist(&pp->pr_fullpages, pr);
1460 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1461 		(*pr)("\n\tpartial-page list:\n");
1462 	pool_print_pagelist(&pp->pr_partpages, pr);
1463 
1464 	if (pp->pr_curpage == NULL)
1465 		(*pr)("\tno current page\n");
1466 	else
1467 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1468 
1469 skip_pagelist:
1470 	if (print_log == 0)
1471 		goto skip_log;
1472 
1473 	(*pr)("\n");
1474 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1475 		(*pr)("\tno log\n");
1476 	else
1477 		pr_printlog(pp, NULL, pr);
1478 
1479 skip_log:
1480 	if (print_cache == 0)
1481 		goto skip_cache;
1482 
1483 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1484 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1485 		    pc->pc_allocfrom, pc->pc_freeto);
1486 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1487 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1488 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1489 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1490 			for (i = 0; i < PCG_NOBJECTS; i++)
1491 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1492 		}
1493 	}
1494 
1495 skip_cache:
1496 	pr_enter_check(pp, pr);
1497 }
1498 
1499 int
1500 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1501 {
1502 	struct pool_item *pi;
1503 	caddr_t page;
1504 	int n;
1505 
1506 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1507 	if (page != ph->ph_page &&
1508 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1509 		if (label != NULL)
1510 			printf("%s: ", label);
1511 		printf("pool(%p:%s): page inconsistency: page %p;"
1512 		       " at page head addr %p (p %p)\n", pp,
1513 			pp->pr_wchan, ph->ph_page,
1514 			ph, page);
1515 		return 1;
1516 	}
1517 
1518 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1519 	     pi != NULL;
1520 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
1521 
1522 #ifdef DIAGNOSTIC
1523 		if (pi->pi_magic != PI_MAGIC) {
1524 			if (label != NULL)
1525 				printf("%s: ", label);
1526 			printf("pool(%s): free list modified: magic=%x;"
1527 			       " page %p; item ordinal %d;"
1528 			       " addr %p (p %p)\n",
1529 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1530 				n, pi, page);
1531 			panic("pool");
1532 		}
1533 #endif
1534 		page =
1535 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1536 		if (page == ph->ph_page)
1537 			continue;
1538 
1539 		if (label != NULL)
1540 			printf("%s: ", label);
1541 		printf("pool(%p:%s): page inconsistency: page %p;"
1542 		       " item ordinal %d; addr %p (p %p)\n", pp,
1543 			pp->pr_wchan, ph->ph_page,
1544 			n, pi, page);
1545 		return 1;
1546 	}
1547 	return 0;
1548 }
1549 
1550 int
1551 pool_chk(struct pool *pp, const char *label)
1552 {
1553 	struct pool_item_header *ph;
1554 	int r = 0;
1555 
1556 	simple_lock(&pp->pr_slock);
1557 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1558 		r = pool_chk_page(pp, label, ph);
1559 		if (r) {
1560 			goto out;
1561 		}
1562 	}
1563 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1564 		r = pool_chk_page(pp, label, ph);
1565 		if (r) {
1566 			goto out;
1567 		}
1568 	}
1569 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1570 		r = pool_chk_page(pp, label, ph);
1571 		if (r) {
1572 			goto out;
1573 		}
1574 	}
1575 
1576 out:
1577 	simple_unlock(&pp->pr_slock);
1578 	return (r);
1579 }
1580 
1581 /*
1582  * pool_cache_init:
1583  *
1584  *	Initialize a pool cache.
1585  *
1586  *	NOTE: If the pool must be protected from interrupts, we expect
1587  *	to be called at the appropriate interrupt priority level.
1588  */
1589 void
1590 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1591     int (*ctor)(void *, void *, int),
1592     void (*dtor)(void *, void *),
1593     void *arg)
1594 {
1595 
1596 	TAILQ_INIT(&pc->pc_grouplist);
1597 	simple_lock_init(&pc->pc_slock);
1598 
1599 	pc->pc_allocfrom = NULL;
1600 	pc->pc_freeto = NULL;
1601 	pc->pc_pool = pp;
1602 
1603 	pc->pc_ctor = ctor;
1604 	pc->pc_dtor = dtor;
1605 	pc->pc_arg  = arg;
1606 
1607 	pc->pc_hits   = 0;
1608 	pc->pc_misses = 0;
1609 
1610 	pc->pc_ngroups = 0;
1611 
1612 	pc->pc_nitems = 0;
1613 
1614 	simple_lock(&pp->pr_slock);
1615 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1616 	simple_unlock(&pp->pr_slock);
1617 }
1618 
1619 /*
1620  * pool_cache_destroy:
1621  *
1622  *	Destroy a pool cache.
1623  */
1624 void
1625 pool_cache_destroy(struct pool_cache *pc)
1626 {
1627 	struct pool *pp = pc->pc_pool;
1628 
1629 	/* First, invalidate the entire cache. */
1630 	pool_cache_invalidate(pc);
1631 
1632 	/* ...and remove it from the pool's cache list. */
1633 	simple_lock(&pp->pr_slock);
1634 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1635 	simple_unlock(&pp->pr_slock);
1636 }
1637 
1638 static __inline void *
1639 pcg_get(struct pool_cache_group *pcg)
1640 {
1641 	void *object;
1642 	u_int idx;
1643 
1644 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1645 	KASSERT(pcg->pcg_avail != 0);
1646 	idx = --pcg->pcg_avail;
1647 
1648 	KASSERT(pcg->pcg_objects[idx] != NULL);
1649 	object = pcg->pcg_objects[idx];
1650 	pcg->pcg_objects[idx] = NULL;
1651 
1652 	return (object);
1653 }
1654 
1655 static __inline void
1656 pcg_put(struct pool_cache_group *pcg, void *object)
1657 {
1658 	u_int idx;
1659 
1660 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1661 	idx = pcg->pcg_avail++;
1662 
1663 	KASSERT(pcg->pcg_objects[idx] == NULL);
1664 	pcg->pcg_objects[idx] = object;
1665 }
1666 
1667 /*
1668  * pool_cache_get:
1669  *
1670  *	Get an object from a pool cache.
1671  */
1672 void *
1673 pool_cache_get(struct pool_cache *pc, int flags)
1674 {
1675 	struct pool_cache_group *pcg;
1676 	void *object;
1677 
1678 #ifdef LOCKDEBUG
1679 	if (flags & PR_WAITOK)
1680 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1681 #endif
1682 
1683 	simple_lock(&pc->pc_slock);
1684 
1685 	if ((pcg = pc->pc_allocfrom) == NULL) {
1686 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1687 			if (pcg->pcg_avail != 0) {
1688 				pc->pc_allocfrom = pcg;
1689 				goto have_group;
1690 			}
1691 		}
1692 
1693 		/*
1694 		 * No groups with any available objects.  Allocate
1695 		 * a new object, construct it, and return it to
1696 		 * the caller.  We will allocate a group, if necessary,
1697 		 * when the object is freed back to the cache.
1698 		 */
1699 		pc->pc_misses++;
1700 		simple_unlock(&pc->pc_slock);
1701 		object = pool_get(pc->pc_pool, flags);
1702 		if (object != NULL && pc->pc_ctor != NULL) {
1703 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1704 				pool_put(pc->pc_pool, object);
1705 				return (NULL);
1706 			}
1707 		}
1708 		return (object);
1709 	}
1710 
1711  have_group:
1712 	pc->pc_hits++;
1713 	pc->pc_nitems--;
1714 	object = pcg_get(pcg);
1715 
1716 	if (pcg->pcg_avail == 0)
1717 		pc->pc_allocfrom = NULL;
1718 
1719 	simple_unlock(&pc->pc_slock);
1720 
1721 	return (object);
1722 }
1723 
1724 /*
1725  * pool_cache_put:
1726  *
1727  *	Put an object back to the pool cache.
1728  */
1729 void
1730 pool_cache_put(struct pool_cache *pc, void *object)
1731 {
1732 	struct pool_cache_group *pcg;
1733 	int s;
1734 
1735 	simple_lock(&pc->pc_slock);
1736 
1737 	if ((pcg = pc->pc_freeto) == NULL) {
1738 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1739 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1740 				pc->pc_freeto = pcg;
1741 				goto have_group;
1742 			}
1743 		}
1744 
1745 		/*
1746 		 * No empty groups to free the object to.  Attempt to
1747 		 * allocate one.
1748 		 */
1749 		simple_unlock(&pc->pc_slock);
1750 		s = splvm();
1751 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1752 		splx(s);
1753 		if (pcg != NULL) {
1754 			memset(pcg, 0, sizeof(*pcg));
1755 			simple_lock(&pc->pc_slock);
1756 			pc->pc_ngroups++;
1757 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1758 			if (pc->pc_freeto == NULL)
1759 				pc->pc_freeto = pcg;
1760 			goto have_group;
1761 		}
1762 
1763 		/*
1764 		 * Unable to allocate a cache group; destruct the object
1765 		 * and free it back to the pool.
1766 		 */
1767 		pool_cache_destruct_object(pc, object);
1768 		return;
1769 	}
1770 
1771  have_group:
1772 	pc->pc_nitems++;
1773 	pcg_put(pcg, object);
1774 
1775 	if (pcg->pcg_avail == PCG_NOBJECTS)
1776 		pc->pc_freeto = NULL;
1777 
1778 	simple_unlock(&pc->pc_slock);
1779 }
1780 
1781 /*
1782  * pool_cache_destruct_object:
1783  *
1784  *	Force destruction of an object and its release back into
1785  *	the pool.
1786  */
1787 void
1788 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1789 {
1790 
1791 	if (pc->pc_dtor != NULL)
1792 		(*pc->pc_dtor)(pc->pc_arg, object);
1793 	pool_put(pc->pc_pool, object);
1794 }
1795 
1796 /*
1797  * pool_cache_do_invalidate:
1798  *
1799  *	This internal function implements pool_cache_invalidate() and
1800  *	pool_cache_reclaim().
1801  */
1802 void
1803 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1804     void (*putit)(struct pool *, void *))
1805 {
1806 	struct pool_cache_group *pcg, *npcg;
1807 	void *object;
1808 	int s;
1809 
1810 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1811 	     pcg = npcg) {
1812 		npcg = TAILQ_NEXT(pcg, pcg_list);
1813 		while (pcg->pcg_avail != 0) {
1814 			pc->pc_nitems--;
1815 			object = pcg_get(pcg);
1816 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1817 				pc->pc_allocfrom = NULL;
1818 			if (pc->pc_dtor != NULL)
1819 				(*pc->pc_dtor)(pc->pc_arg, object);
1820 			(*putit)(pc->pc_pool, object);
1821 		}
1822 		if (free_groups) {
1823 			pc->pc_ngroups--;
1824 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1825 			if (pc->pc_freeto == pcg)
1826 				pc->pc_freeto = NULL;
1827 			s = splvm();
1828 			pool_put(&pcgpool, pcg);
1829 			splx(s);
1830 		}
1831 	}
1832 }
1833 
1834 /*
1835  * pool_cache_invalidate:
1836  *
1837  *	Invalidate a pool cache (destruct and release all of the
1838  *	cached objects).
1839  */
1840 void
1841 pool_cache_invalidate(struct pool_cache *pc)
1842 {
1843 
1844 	simple_lock(&pc->pc_slock);
1845 	pool_cache_do_invalidate(pc, 0, pool_put);
1846 	simple_unlock(&pc->pc_slock);
1847 }
1848 
1849 /*
1850  * pool_cache_reclaim:
1851  *
1852  *	Reclaim a pool cache for pool_reclaim().
1853  */
1854 void
1855 pool_cache_reclaim(struct pool_cache *pc)
1856 {
1857 
1858 	simple_lock(&pc->pc_slock);
1859 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1860 	simple_unlock(&pc->pc_slock);
1861 }
1862 
1863 /*
1864  * We have three different sysctls.
1865  * kern.pool.npools - the number of pools.
1866  * kern.pool.pool.<pool#> - the pool struct for the pool#.
1867  * kern.pool.name.<pool#> - the name for pool#.[6~
1868  */
1869 int
1870 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep)
1871 {
1872 	struct pool *pp, *foundpool = NULL;
1873 	size_t buflen = where != NULL ? *sizep : 0;
1874 	int npools = 0, s;
1875 	unsigned int lookfor;
1876 	size_t len;
1877 
1878 	switch (*name) {
1879 	case KERN_POOL_NPOOLS:
1880 		if (namelen != 1 || buflen != sizeof(int))
1881 			return (EINVAL);
1882 		lookfor = 0;
1883 		break;
1884 	case KERN_POOL_NAME:
1885 		if (namelen != 2 || buflen < 1)
1886 			return (EINVAL);
1887 		lookfor = name[1];
1888 		break;
1889 	case KERN_POOL_POOL:
1890 		if (namelen != 2 || buflen != sizeof(struct pool))
1891 			return (EINVAL);
1892 		lookfor = name[1];
1893 		break;
1894 	default:
1895 		return (EINVAL);
1896 	}
1897 
1898 	s = splvm();
1899 	simple_lock(&pool_head_slock);
1900 
1901 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1902 		npools++;
1903 		if (lookfor == pp->pr_serial) {
1904 			foundpool = pp;
1905 			break;
1906 		}
1907 	}
1908 
1909 	simple_unlock(&pool_head_slock);
1910 	splx(s);
1911 
1912 	if (lookfor != 0 && foundpool == NULL)
1913 		return (ENOENT);
1914 
1915 	switch (*name) {
1916 	case KERN_POOL_NPOOLS:
1917 		return copyout(&npools, where, buflen);
1918 	case KERN_POOL_NAME:
1919 		len = strlen(foundpool->pr_wchan) + 1;
1920 		if (*sizep < len)
1921 			return (ENOMEM);
1922 		*sizep = len;
1923 		return copyout(foundpool->pr_wchan, where, len);
1924 	case KERN_POOL_POOL:
1925 		return copyout(foundpool, where, buflen);
1926 	}
1927 	/* NOTREACHED */
1928 	return (0); /* XXX - Stupid gcc */
1929 }
1930 
1931 /*
1932  * Pool backend allocators.
1933  *
1934  * Each pool has a backend allocator that handles allocation, deallocation
1935  * and any additional draining that might be needed.
1936  *
1937  * We provide two standard allocators.
1938  *  pool_alloc_kmem - the default used when no allocator is specified.
1939  *  pool_alloc_nointr - used for pools that will not be accessed in
1940  *   interrupt context.
1941  */
1942 void	*pool_page_alloc(struct pool *, int);
1943 void	pool_page_free(struct pool *, void *);
1944 void	*pool_page_alloc_nointr(struct pool *, int);
1945 void	pool_page_free_nointr(struct pool *, void *);
1946 
1947 struct pool_allocator pool_allocator_kmem = {
1948 	pool_page_alloc, pool_page_free, 0,
1949 };
1950 struct pool_allocator pool_allocator_nointr = {
1951 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
1952 };
1953 
1954 /*
1955  * XXX - we have at least three different resources for the same allocation
1956  *  and each resource can be depleted. First we have the ready elements in
1957  *  the pool. Then we have the resource (typically a vm_map) for this
1958  *  allocator, then we have physical memory. Waiting for any of these can
1959  *  be unnecessary when any other is freed, but the kernel doesn't support
1960  *  sleeping on multiple addresses, so we have to fake. The caller sleeps on
1961  *  the pool (so that we can be awakened when an item is returned to the pool),
1962  *  but we set PA_WANT on the allocator. When a page is returned to
1963  *  the allocator and PA_WANT is set pool_allocator_free will wakeup all
1964  *  sleeping pools belonging to this allocator. (XXX - thundering herd).
1965  *  We also wake up the allocator in case someone without a pool (malloc)
1966  *  is sleeping waiting for this allocator.
1967  */
1968 
1969 void *
1970 pool_allocator_alloc(struct pool *org, int flags)
1971 {
1972 	struct pool_allocator *pa = org->pr_alloc;
1973 	int freed;
1974 	void *res;
1975 	int s;
1976 
1977 	do {
1978 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1979 			return (res);
1980 		if ((flags & PR_WAITOK) == 0) {
1981 			/*
1982 			 * We only run the drain hook here if PR_NOWAIT.
1983 			 * In other cases the hook will be run in
1984 			 * pool_reclaim.
1985 			 */
1986 			if (org->pr_drain_hook != NULL) {
1987 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
1988 				    flags);
1989 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1990 					return (res);
1991 			}
1992 			break;
1993 		}
1994 		s = splvm();
1995 		simple_lock(&pa->pa_slock);
1996 		freed = pool_allocator_drain(pa, org, 1);
1997 		simple_unlock(&pa->pa_slock);
1998 		splx(s);
1999 	} while (freed);
2000 	return (NULL);
2001 }
2002 
2003 void
2004 pool_allocator_free(struct pool *pp, void *v)
2005 {
2006 	struct pool_allocator *pa = pp->pr_alloc;
2007 	int s;
2008 
2009 	(*pa->pa_free)(pp, v);
2010 
2011 	s = splvm();
2012 	simple_lock(&pa->pa_slock);
2013 	if ((pa->pa_flags & PA_WANT) == 0) {
2014 		simple_unlock(&pa->pa_slock);
2015 		splx(s);
2016 		return;
2017 	}
2018 
2019 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2020 		simple_lock(&pp->pr_slock);
2021 		if ((pp->pr_flags & PR_WANTED) != 0) {
2022 			pp->pr_flags &= ~PR_WANTED;
2023 			wakeup(pp);
2024 		}
2025 		simple_unlock(&pp->pr_slock);
2026 	}
2027 	pa->pa_flags &= ~PA_WANT;
2028 	simple_unlock(&pa->pa_slock);
2029 	splx(s);
2030 }
2031 
2032 /*
2033  * Drain all pools, except 'org', that use this allocator.
2034  *
2035  * Must be called at appropriate spl level and with the allocator locked.
2036  *
2037  * We do this to reclaim va space. pa_alloc is responsible
2038  * for waiting for physical memory.
2039  * XXX - we risk looping forever if start if someone calls
2040  *  pool_destroy on 'start'. But there is no other way to
2041  *  have potentially sleeping pool_reclaim, non-sleeping
2042  *  locks on pool_allocator and some stirring of drained
2043  *  pools in the allocator.
2044  * XXX - maybe we should use pool_head_slock for locking
2045  *  the allocators?
2046  */
2047 int
2048 pool_allocator_drain(struct pool_allocator *pa, struct pool *org, int need)
2049 {
2050 	struct pool *pp, *start;
2051 	int freed;
2052 
2053 	freed = 0;
2054 
2055 	pp = start = TAILQ_FIRST(&pa->pa_list);
2056 	do {
2057 		TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2058 		TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2059 		if (pp == org)
2060 			continue;
2061 		simple_unlock(&pa->pa_list);
2062 		freed = pool_reclaim(pp)
2063 		simple_lock(&pa->pa_list);
2064 	} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start && (freed < need));
2065 
2066 	if (!freed) {
2067 		/*
2068 		 * We set PA_WANT here, the caller will most likely
2069 		 * sleep waiting for pages (if not, this won't hurt
2070 		 * that much) and there is no way to set this in the
2071 		 * caller without violating locking order.
2072 		 */
2073 		pa->pa_flags |= PA_WANT;
2074 	}
2075 
2076 	return (freed);
2077 }
2078 
2079 void *
2080 pool_page_alloc(struct pool *pp, int flags)
2081 {
2082 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2083 
2084 	return ((void *)uvm_km_alloc_poolpage1(kmem_map, uvmexp.kmem_object,
2085 	    waitok));
2086 }
2087 
2088 void
2089 pool_page_free(struct pool *pp, void *v)
2090 {
2091 
2092 	uvm_km_free_poolpage1(kmem_map, (vaddr_t)v);
2093 }
2094 
2095 void *
2096 pool_page_alloc_nointr(struct pool *pp, int flags)
2097 {
2098 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2099 
2100 	splassert(IPL_NONE);
2101 
2102 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
2103 	    waitok));
2104 }
2105 
2106 void
2107 pool_page_free_nointr(struct pool *pp, void *v)
2108 {
2109 	splassert(IPL_NONE);
2110 
2111 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
2112 }
2113