1 /* $OpenBSD: subr_pool.c,v 1.51 2007/04/23 09:27:59 art Exp $ */ 2 /* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */ 3 4 /*- 5 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the NetBSD 23 * Foundation, Inc. and its contributors. 24 * 4. Neither the name of The NetBSD Foundation nor the names of its 25 * contributors may be used to endorse or promote products derived 26 * from this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGE. 39 */ 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/proc.h> 44 #include <sys/errno.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/lock.h> 48 #include <sys/pool.h> 49 #include <sys/syslog.h> 50 #include <sys/sysctl.h> 51 52 #include <uvm/uvm.h> 53 54 /* 55 * XXX - for now. 56 */ 57 #ifdef LOCKDEBUG 58 #define simple_lock_freecheck(a, s) do { /* nothing */ } while (0) 59 #define simple_lock_only_held(lkp, str) do { /* nothing */ } while (0) 60 #endif 61 62 /* 63 * Pool resource management utility. 64 * 65 * Memory is allocated in pages which are split into pieces according to 66 * the pool item size. Each page is kept on one of three lists in the 67 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 68 * for empty, full and partially-full pages respectively. The individual 69 * pool items are on a linked list headed by `ph_itemlist' in each page 70 * header. The memory for building the page list is either taken from 71 * the allocated pages themselves (for small pool items) or taken from 72 * an internal pool of page headers (`phpool'). 73 */ 74 75 /* List of all pools */ 76 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 77 78 /* Private pool for page header structures */ 79 static struct pool phpool; 80 81 /* # of seconds to retain page after last use */ 82 int pool_inactive_time = 10; 83 84 /* This spin lock protects both pool_head */ 85 struct simplelock pool_head_slock; 86 87 struct pool_item_header { 88 /* Page headers */ 89 LIST_ENTRY(pool_item_header) 90 ph_pagelist; /* pool page list */ 91 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 92 SPLAY_ENTRY(pool_item_header) 93 ph_node; /* Off-page page headers */ 94 int ph_nmissing; /* # of chunks in use */ 95 caddr_t ph_page; /* this page's address */ 96 struct timeval ph_time; /* last referenced */ 97 }; 98 99 struct pool_item { 100 #ifdef DIAGNOSTIC 101 int pi_magic; 102 #endif 103 #ifdef DEADBEEF1 104 #define PI_MAGIC DEADBEEF1 105 #else 106 #define PI_MAGIC 0xdeafbeef 107 #endif 108 /* Other entries use only this list entry */ 109 TAILQ_ENTRY(pool_item) pi_list; 110 }; 111 112 #define POOL_NEEDS_CATCHUP(pp) \ 113 ((pp)->pr_nitems < (pp)->pr_minitems) 114 115 /* 116 * Every pool gets a unique serial number assigned to it. If this counter 117 * wraps, we're screwed, but we shouldn't create so many pools anyway. 118 */ 119 unsigned int pool_serial; 120 121 /* 122 * Pool cache management. 123 * 124 * Pool caches provide a way for constructed objects to be cached by the 125 * pool subsystem. This can lead to performance improvements by avoiding 126 * needless object construction/destruction; it is deferred until absolutely 127 * necessary. 128 * 129 * Caches are grouped into cache groups. Each cache group references 130 * up to 16 constructed objects. When a cache allocates an object 131 * from the pool, it calls the object's constructor and places it into 132 * a cache group. When a cache group frees an object back to the pool, 133 * it first calls the object's destructor. This allows the object to 134 * persist in constructed form while freed to the cache. 135 * 136 * Multiple caches may exist for each pool. This allows a single 137 * object type to have multiple constructed forms. The pool references 138 * each cache, so that when a pool is drained by the pagedaemon, it can 139 * drain each individual cache as well. Each time a cache is drained, 140 * the most idle cache group is freed to the pool in its entirety. 141 * 142 * Pool caches are layed on top of pools. By layering them, we can avoid 143 * the complexity of cache management for pools which would not benefit 144 * from it. 145 */ 146 147 /* The cache group pool. */ 148 static struct pool pcgpool; 149 150 /* The pool cache group. */ 151 #define PCG_NOBJECTS 16 152 struct pool_cache_group { 153 TAILQ_ENTRY(pool_cache_group) 154 pcg_list; /* link in the pool cache's group list */ 155 u_int pcg_avail; /* # available objects */ 156 /* pointers to the objects */ 157 void *pcg_objects[PCG_NOBJECTS]; 158 }; 159 160 void pool_cache_reclaim(struct pool_cache *); 161 void pool_cache_do_invalidate(struct pool_cache *, int, 162 void (*)(struct pool *, void *)); 163 164 int pool_catchup(struct pool *); 165 void pool_prime_page(struct pool *, caddr_t, struct pool_item_header *); 166 void pool_update_curpage(struct pool *); 167 void pool_do_put(struct pool *, void *); 168 void pr_rmpage(struct pool *, struct pool_item_header *, 169 struct pool_pagelist *); 170 int pool_chk_page(struct pool *, const char *, struct pool_item_header *); 171 172 void *pool_allocator_alloc(struct pool *, int); 173 void pool_allocator_free(struct pool *, void *); 174 175 #ifdef DDB 176 void pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...)); 177 void pool_print1(struct pool *, const char *, int (*)(const char *, ...)); 178 #endif 179 180 181 /* 182 * Pool log entry. An array of these is allocated in pool_init(). 183 */ 184 struct pool_log { 185 const char *pl_file; 186 long pl_line; 187 int pl_action; 188 #define PRLOG_GET 1 189 #define PRLOG_PUT 2 190 void *pl_addr; 191 }; 192 193 /* Number of entries in pool log buffers */ 194 #ifndef POOL_LOGSIZE 195 #define POOL_LOGSIZE 10 196 #endif 197 198 int pool_logsize = POOL_LOGSIZE; 199 200 #ifdef POOL_DIAGNOSTIC 201 static __inline void 202 pr_log(struct pool *pp, void *v, int action, const char *file, long line) 203 { 204 int n = pp->pr_curlogentry; 205 struct pool_log *pl; 206 207 if ((pp->pr_roflags & PR_LOGGING) == 0) 208 return; 209 210 /* 211 * Fill in the current entry. Wrap around and overwrite 212 * the oldest entry if necessary. 213 */ 214 pl = &pp->pr_log[n]; 215 pl->pl_file = file; 216 pl->pl_line = line; 217 pl->pl_action = action; 218 pl->pl_addr = v; 219 if (++n >= pp->pr_logsize) 220 n = 0; 221 pp->pr_curlogentry = n; 222 } 223 224 static void 225 pr_printlog(struct pool *pp, struct pool_item *pi, 226 int (*pr)(const char *, ...)) 227 { 228 int i = pp->pr_logsize; 229 int n = pp->pr_curlogentry; 230 231 if ((pp->pr_roflags & PR_LOGGING) == 0) 232 return; 233 234 /* 235 * Print all entries in this pool's log. 236 */ 237 while (i-- > 0) { 238 struct pool_log *pl = &pp->pr_log[n]; 239 if (pl->pl_action != 0) { 240 if (pi == NULL || pi == pl->pl_addr) { 241 (*pr)("\tlog entry %d:\n", i); 242 (*pr)("\t\taction = %s, addr = %p\n", 243 pl->pl_action == PRLOG_GET ? "get" : "put", 244 pl->pl_addr); 245 (*pr)("\t\tfile: %s at line %lu\n", 246 pl->pl_file, pl->pl_line); 247 } 248 } 249 if (++n >= pp->pr_logsize) 250 n = 0; 251 } 252 } 253 254 static __inline void 255 pr_enter(struct pool *pp, const char *file, long line) 256 { 257 258 if (__predict_false(pp->pr_entered_file != NULL)) { 259 printf("pool %s: reentrancy at file %s line %ld\n", 260 pp->pr_wchan, file, line); 261 printf(" previous entry at file %s line %ld\n", 262 pp->pr_entered_file, pp->pr_entered_line); 263 panic("pr_enter"); 264 } 265 266 pp->pr_entered_file = file; 267 pp->pr_entered_line = line; 268 } 269 270 static __inline void 271 pr_leave(struct pool *pp) 272 { 273 274 if (__predict_false(pp->pr_entered_file == NULL)) { 275 printf("pool %s not entered?\n", pp->pr_wchan); 276 panic("pr_leave"); 277 } 278 279 pp->pr_entered_file = NULL; 280 pp->pr_entered_line = 0; 281 } 282 283 static __inline void 284 pr_enter_check(struct pool *pp, int (*pr)(const char *, ...)) 285 { 286 287 if (pp->pr_entered_file != NULL) 288 (*pr)("\n\tcurrently entered from file %s line %ld\n", 289 pp->pr_entered_file, pp->pr_entered_line); 290 } 291 #else 292 #define pr_log(pp, v, action, file, line) 293 #define pr_printlog(pp, pi, pr) 294 #define pr_enter(pp, file, line) 295 #define pr_leave(pp) 296 #define pr_enter_check(pp, pr) 297 #endif /* POOL_DIAGNOSTIC */ 298 299 static __inline int 300 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 301 { 302 if (a->ph_page < b->ph_page) 303 return (-1); 304 else if (a->ph_page > b->ph_page) 305 return (1); 306 else 307 return (0); 308 } 309 310 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 311 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 312 313 /* 314 * Return the pool page header based on page address. 315 */ 316 static __inline struct pool_item_header * 317 pr_find_pagehead(struct pool *pp, caddr_t page) 318 { 319 struct pool_item_header *ph, tmp; 320 321 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 322 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 323 324 tmp.ph_page = page; 325 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 326 return ph; 327 } 328 329 /* 330 * Remove a page from the pool. 331 */ 332 void 333 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 334 struct pool_pagelist *pq) 335 { 336 int s; 337 338 /* 339 * If the page was idle, decrement the idle page count. 340 */ 341 if (ph->ph_nmissing == 0) { 342 #ifdef DIAGNOSTIC 343 if (pp->pr_nidle == 0) 344 panic("pr_rmpage: nidle inconsistent"); 345 if (pp->pr_nitems < pp->pr_itemsperpage) 346 panic("pr_rmpage: nitems inconsistent"); 347 #endif 348 pp->pr_nidle--; 349 } 350 351 pp->pr_nitems -= pp->pr_itemsperpage; 352 353 /* 354 * Unlink a page from the pool and release it (or queue it for release). 355 */ 356 LIST_REMOVE(ph, ph_pagelist); 357 if (pq) { 358 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 359 } else { 360 pool_allocator_free(pp, ph->ph_page); 361 if ((pp->pr_roflags & PR_PHINPAGE) == 0) { 362 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 363 s = splhigh(); 364 pool_put(&phpool, ph); 365 splx(s); 366 } 367 } 368 pp->pr_npages--; 369 pp->pr_npagefree++; 370 371 pool_update_curpage(pp); 372 } 373 374 /* 375 * Initialize the given pool resource structure. 376 * 377 * We export this routine to allow other kernel parts to declare 378 * static pools that must be initialized before malloc() is available. 379 */ 380 void 381 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 382 const char *wchan, struct pool_allocator *palloc) 383 { 384 int off, slack; 385 386 #ifdef POOL_DIAGNOSTIC 387 /* 388 * Always log if POOL_DIAGNOSTIC is defined. 389 */ 390 if (pool_logsize != 0) 391 flags |= PR_LOGGING; 392 #endif 393 394 #ifdef MALLOC_DEBUG 395 if ((flags & PR_DEBUG) && (ioff != 0 || align != 0)) 396 flags &= ~PR_DEBUG; 397 #endif 398 /* 399 * Check arguments and construct default values. 400 */ 401 if (palloc == NULL) 402 palloc = &pool_allocator_nointr; 403 if ((palloc->pa_flags & PA_INITIALIZED) == 0) { 404 if (palloc->pa_pagesz == 0) 405 palloc->pa_pagesz = PAGE_SIZE; 406 407 TAILQ_INIT(&palloc->pa_list); 408 409 simple_lock_init(&palloc->pa_slock); 410 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 411 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 412 palloc->pa_flags |= PA_INITIALIZED; 413 } 414 415 if (align == 0) 416 align = ALIGN(1); 417 418 if (size < sizeof(struct pool_item)) 419 size = sizeof(struct pool_item); 420 421 size = roundup(size, align); 422 #ifdef DIAGNOSTIC 423 if (size > palloc->pa_pagesz) 424 panic("pool_init: pool item size (%lu) too large", 425 (u_long)size); 426 #endif 427 428 /* 429 * Initialize the pool structure. 430 */ 431 LIST_INIT(&pp->pr_emptypages); 432 LIST_INIT(&pp->pr_fullpages); 433 LIST_INIT(&pp->pr_partpages); 434 TAILQ_INIT(&pp->pr_cachelist); 435 pp->pr_curpage = NULL; 436 pp->pr_npages = 0; 437 pp->pr_minitems = 0; 438 pp->pr_minpages = 0; 439 pp->pr_maxpages = 8; 440 pp->pr_roflags = flags; 441 pp->pr_flags = 0; 442 pp->pr_size = size; 443 pp->pr_align = align; 444 pp->pr_wchan = wchan; 445 pp->pr_alloc = palloc; 446 pp->pr_nitems = 0; 447 pp->pr_nout = 0; 448 pp->pr_hardlimit = UINT_MAX; 449 pp->pr_hardlimit_warning = NULL; 450 pp->pr_hardlimit_ratecap.tv_sec = 0; 451 pp->pr_hardlimit_ratecap.tv_usec = 0; 452 pp->pr_hardlimit_warning_last.tv_sec = 0; 453 pp->pr_hardlimit_warning_last.tv_usec = 0; 454 pp->pr_serial = ++pool_serial; 455 if (pool_serial == 0) 456 panic("pool_init: too much uptime"); 457 458 /* 459 * Decide whether to put the page header off page to avoid 460 * wasting too large a part of the page. Off-page page headers 461 * go on a hash table, so we can match a returned item 462 * with its header based on the page address. 463 * We use 1/16 of the page size as the threshold (XXX: tune) 464 */ 465 if (pp->pr_size < palloc->pa_pagesz/16) { 466 /* Use the end of the page for the page header */ 467 pp->pr_roflags |= PR_PHINPAGE; 468 pp->pr_phoffset = off = palloc->pa_pagesz - 469 ALIGN(sizeof(struct pool_item_header)); 470 } else { 471 /* The page header will be taken from our page header pool */ 472 pp->pr_phoffset = 0; 473 off = palloc->pa_pagesz; 474 SPLAY_INIT(&pp->pr_phtree); 475 } 476 477 /* 478 * Alignment is to take place at `ioff' within the item. This means 479 * we must reserve up to `align - 1' bytes on the page to allow 480 * appropriate positioning of each item. 481 * 482 * Silently enforce `0 <= ioff < align'. 483 */ 484 pp->pr_itemoffset = ioff = ioff % align; 485 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 486 KASSERT(pp->pr_itemsperpage != 0); 487 488 /* 489 * Use the slack between the chunks and the page header 490 * for "cache coloring". 491 */ 492 slack = off - pp->pr_itemsperpage * pp->pr_size; 493 pp->pr_maxcolor = (slack / align) * align; 494 pp->pr_curcolor = 0; 495 496 pp->pr_nget = 0; 497 pp->pr_nfail = 0; 498 pp->pr_nput = 0; 499 pp->pr_npagealloc = 0; 500 pp->pr_npagefree = 0; 501 pp->pr_hiwat = 0; 502 pp->pr_nidle = 0; 503 504 #ifdef POOL_DIAGNOSTIC 505 if (flags & PR_LOGGING) { 506 if (kmem_map == NULL || 507 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log), 508 M_TEMP, M_NOWAIT)) == NULL) 509 pp->pr_roflags &= ~PR_LOGGING; 510 pp->pr_curlogentry = 0; 511 pp->pr_logsize = pool_logsize; 512 } 513 #endif 514 515 pp->pr_entered_file = NULL; 516 pp->pr_entered_line = 0; 517 518 simple_lock_init(&pp->pr_slock); 519 520 /* 521 * Initialize private page header pool and cache magazine pool if we 522 * haven't done so yet. 523 * XXX LOCKING. 524 */ 525 if (phpool.pr_size == 0) { 526 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 527 0, "phpool", NULL); 528 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0, 529 0, "pcgpool", NULL); 530 } 531 532 simple_lock_init(&pool_head_slock); 533 534 /* Insert this into the list of all pools. */ 535 simple_lock(&pool_head_slock); 536 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 537 simple_unlock(&pool_head_slock); 538 539 /* Insert into the list of pools using this allocator. */ 540 simple_lock(&palloc->pa_slock); 541 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 542 simple_unlock(&palloc->pa_slock); 543 } 544 545 /* 546 * Decommission a pool resource. 547 */ 548 void 549 pool_destroy(struct pool *pp) 550 { 551 struct pool_item_header *ph; 552 struct pool_cache *pc; 553 554 /* Locking order: pool_allocator -> pool */ 555 simple_lock(&pp->pr_alloc->pa_slock); 556 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 557 simple_unlock(&pp->pr_alloc->pa_slock); 558 559 /* Destroy all caches for this pool. */ 560 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL) 561 pool_cache_destroy(pc); 562 563 #ifdef DIAGNOSTIC 564 if (pp->pr_nout != 0) { 565 pr_printlog(pp, NULL, printf); 566 panic("pool_destroy: pool busy: still out: %u", 567 pp->pr_nout); 568 } 569 #endif 570 571 /* Remove all pages */ 572 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 573 pr_rmpage(pp, ph, NULL); 574 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 575 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 576 577 /* Remove from global pool list */ 578 simple_lock(&pool_head_slock); 579 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 580 simple_unlock(&pool_head_slock); 581 582 #ifdef POOL_DIAGNOSTIC 583 if ((pp->pr_roflags & PR_LOGGING) != 0) 584 free(pp->pr_log, M_TEMP); 585 #endif 586 } 587 588 static struct pool_item_header * 589 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 590 { 591 struct pool_item_header *ph; 592 int s; 593 594 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0); 595 596 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 597 ph = (struct pool_item_header *) (storage + pp->pr_phoffset); 598 else { 599 s = splhigh(); 600 ph = pool_get(&phpool, flags); 601 splx(s); 602 } 603 604 return (ph); 605 } 606 607 /* 608 * Grab an item from the pool; must be called at appropriate spl level 609 */ 610 void * 611 #ifdef POOL_DIAGNOSTIC 612 _pool_get(struct pool *pp, int flags, const char *file, long line) 613 #else 614 pool_get(struct pool *pp, int flags) 615 #endif 616 { 617 struct pool_item *pi; 618 struct pool_item_header *ph; 619 void *v; 620 621 #ifdef DIAGNOSTIC 622 if ((flags & PR_WAITOK) != 0) 623 splassert(IPL_NONE); 624 if (__predict_false(curproc == NULL && /* doing_shutdown == 0 && XXX*/ 625 (flags & PR_WAITOK) != 0)) 626 panic("pool_get: %s:must have NOWAIT", pp->pr_wchan); 627 628 #ifdef LOCKDEBUG 629 if (flags & PR_WAITOK) 630 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)"); 631 #endif 632 #endif /* DIAGNOSTIC */ 633 634 #ifdef MALLOC_DEBUG 635 if (pp->pr_roflags & PR_DEBUG) { 636 void *addr; 637 638 addr = NULL; 639 debug_malloc(pp->pr_size, M_DEBUG, 640 (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr); 641 return (addr); 642 } 643 #endif 644 645 simple_lock(&pp->pr_slock); 646 pr_enter(pp, file, line); 647 648 startover: 649 /* 650 * Check to see if we've reached the hard limit. If we have, 651 * and we can wait, then wait until an item has been returned to 652 * the pool. 653 */ 654 #ifdef DIAGNOSTIC 655 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { 656 pr_leave(pp); 657 simple_unlock(&pp->pr_slock); 658 panic("pool_get: %s: crossed hard limit", pp->pr_wchan); 659 } 660 #endif 661 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 662 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 663 /* 664 * XXX: A warning isn't logged in this case. Should 665 * it be? 666 */ 667 pp->pr_flags |= PR_WANTED; 668 pr_leave(pp); 669 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 670 pr_enter(pp, file, line); 671 goto startover; 672 } 673 674 /* 675 * Log a message that the hard limit has been hit. 676 */ 677 if (pp->pr_hardlimit_warning != NULL && 678 ratecheck(&pp->pr_hardlimit_warning_last, 679 &pp->pr_hardlimit_ratecap)) 680 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 681 682 pp->pr_nfail++; 683 684 pr_leave(pp); 685 simple_unlock(&pp->pr_slock); 686 return (NULL); 687 } 688 689 /* 690 * The convention we use is that if `curpage' is not NULL, then 691 * it points at a non-empty bucket. In particular, `curpage' 692 * never points at a page header which has PR_PHINPAGE set and 693 * has no items in its bucket. 694 */ 695 if ((ph = pp->pr_curpage) == NULL) { 696 #ifdef DIAGNOSTIC 697 if (pp->pr_nitems != 0) { 698 simple_unlock(&pp->pr_slock); 699 printf("pool_get: %s: curpage NULL, nitems %u\n", 700 pp->pr_wchan, pp->pr_nitems); 701 panic("pool_get: nitems inconsistent"); 702 } 703 #endif 704 705 /* 706 * Call the back-end page allocator for more memory. 707 * Release the pool lock, as the back-end page allocator 708 * may block. 709 */ 710 pr_leave(pp); 711 simple_unlock(&pp->pr_slock); 712 v = pool_allocator_alloc(pp, flags); 713 if (__predict_true(v != NULL)) 714 ph = pool_alloc_item_header(pp, v, flags); 715 simple_lock(&pp->pr_slock); 716 pr_enter(pp, file, line); 717 718 if (__predict_false(v == NULL || ph == NULL)) { 719 if (v != NULL) 720 pool_allocator_free(pp, v); 721 722 /* 723 * We were unable to allocate a page or item 724 * header, but we released the lock during 725 * allocation, so perhaps items were freed 726 * back to the pool. Check for this case. 727 */ 728 if (pp->pr_curpage != NULL) 729 goto startover; 730 731 if ((flags & PR_WAITOK) == 0) { 732 pp->pr_nfail++; 733 pr_leave(pp); 734 simple_unlock(&pp->pr_slock); 735 return (NULL); 736 } 737 738 /* 739 * Wait for items to be returned to this pool. 740 * 741 * XXX: maybe we should wake up once a second and 742 * try again? 743 */ 744 pp->pr_flags |= PR_WANTED; 745 /* PA_WANTED is already set on the allocator. */ 746 pr_leave(pp); 747 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock); 748 pr_enter(pp, file, line); 749 goto startover; 750 } 751 752 /* We have more memory; add it to the pool */ 753 pool_prime_page(pp, v, ph); 754 pp->pr_npagealloc++; 755 756 /* Start the allocation process over. */ 757 goto startover; 758 } 759 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 760 pr_leave(pp); 761 simple_unlock(&pp->pr_slock); 762 panic("pool_get: %s: page empty", pp->pr_wchan); 763 } 764 #ifdef DIAGNOSTIC 765 if (__predict_false(pp->pr_nitems == 0)) { 766 pr_leave(pp); 767 simple_unlock(&pp->pr_slock); 768 printf("pool_get: %s: items on itemlist, nitems %u\n", 769 pp->pr_wchan, pp->pr_nitems); 770 panic("pool_get: nitems inconsistent"); 771 } 772 #endif 773 774 #ifdef POOL_DIAGNOSTIC 775 pr_log(pp, v, PRLOG_GET, file, line); 776 #endif 777 778 #ifdef DIAGNOSTIC 779 if (__predict_false(pi->pi_magic != PI_MAGIC)) { 780 pr_printlog(pp, pi, printf); 781 panic("pool_get(%s): free list modified: magic=%x; page %p;" 782 " item addr %p", 783 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 784 } 785 #endif 786 787 /* 788 * Remove from item list. 789 */ 790 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 791 pp->pr_nitems--; 792 pp->pr_nout++; 793 if (ph->ph_nmissing == 0) { 794 #ifdef DIAGNOSTIC 795 if (__predict_false(pp->pr_nidle == 0)) 796 panic("pool_get: nidle inconsistent"); 797 #endif 798 pp->pr_nidle--; 799 800 /* 801 * This page was previously empty. Move it to the list of 802 * partially-full pages. This page is already curpage. 803 */ 804 LIST_REMOVE(ph, ph_pagelist); 805 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 806 } 807 ph->ph_nmissing++; 808 if (TAILQ_EMPTY(&ph->ph_itemlist)) { 809 #ifdef DIAGNOSTIC 810 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 811 pr_leave(pp); 812 simple_unlock(&pp->pr_slock); 813 panic("pool_get: %s: nmissing inconsistent", 814 pp->pr_wchan); 815 } 816 #endif 817 /* 818 * This page is now full. Move it to the full list 819 * and select a new current page. 820 */ 821 LIST_REMOVE(ph, ph_pagelist); 822 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 823 pool_update_curpage(pp); 824 } 825 826 pp->pr_nget++; 827 828 /* 829 * If we have a low water mark and we are now below that low 830 * water mark, add more items to the pool. 831 */ 832 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 833 /* 834 * XXX: Should we log a warning? Should we set up a timeout 835 * to try again in a second or so? The latter could break 836 * a caller's assumptions about interrupt protection, etc. 837 */ 838 } 839 840 pr_leave(pp); 841 simple_unlock(&pp->pr_slock); 842 return (v); 843 } 844 845 /* 846 * Internal version of pool_put(). Pool is already locked/entered. 847 */ 848 void 849 pool_do_put(struct pool *pp, void *v) 850 { 851 struct pool_item *pi = v; 852 struct pool_item_header *ph; 853 caddr_t page; 854 855 #ifdef MALLOC_DEBUG 856 if (pp->pr_roflags & PR_DEBUG) { 857 debug_free(v, M_DEBUG); 858 return; 859 } 860 #endif 861 862 LOCK_ASSERT(simple_lock_held(&pp->pr_slock)); 863 864 page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask); 865 866 #ifdef DIAGNOSTIC 867 if (__predict_false(pp->pr_nout == 0)) { 868 printf("pool %s: putting with none out\n", 869 pp->pr_wchan); 870 panic("pool_put"); 871 } 872 #endif 873 874 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) { 875 pr_printlog(pp, NULL, printf); 876 panic("pool_put: %s: page header missing", pp->pr_wchan); 877 } 878 879 #ifdef LOCKDEBUG 880 /* 881 * Check if we're freeing a locked simple lock. 882 */ 883 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size); 884 #endif 885 886 /* 887 * Return to item list. 888 */ 889 #ifdef DIAGNOSTIC 890 pi->pi_magic = PI_MAGIC; 891 #endif 892 #ifdef DEBUG 893 { 894 int i, *ip = v; 895 896 for (i = 0; i < pp->pr_size / sizeof(int); i++) { 897 *ip++ = PI_MAGIC; 898 } 899 } 900 #endif 901 902 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 903 ph->ph_nmissing--; 904 pp->pr_nput++; 905 pp->pr_nitems++; 906 pp->pr_nout--; 907 908 /* Cancel "pool empty" condition if it exists */ 909 if (pp->pr_curpage == NULL) 910 pp->pr_curpage = ph; 911 912 if (pp->pr_flags & PR_WANTED) { 913 pp->pr_flags &= ~PR_WANTED; 914 if (ph->ph_nmissing == 0) 915 pp->pr_nidle++; 916 wakeup(pp); 917 return; 918 } 919 920 /* 921 * If this page is now empty, do one of two things: 922 * 923 * (1) If we have more pages than the page high water mark, 924 * free the page back to the system. 925 * 926 * (2) Otherwise, move the page to the empty page list. 927 * 928 * Either way, select a new current page (so we use a partially-full 929 * page if one is available). 930 */ 931 if (ph->ph_nmissing == 0) { 932 pp->pr_nidle++; 933 if (pp->pr_nidle > pp->pr_maxpages || 934 (pp->pr_alloc->pa_flags & PA_WANT) != 0) { 935 pr_rmpage(pp, ph, NULL); 936 } else { 937 LIST_REMOVE(ph, ph_pagelist); 938 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 939 940 /* 941 * Update the timestamp on the page. A page must 942 * be idle for some period of time before it can 943 * be reclaimed by the pagedaemon. This minimizes 944 * ping-pong'ing for memory. 945 */ 946 microuptime(&ph->ph_time); 947 } 948 pool_update_curpage(pp); 949 } 950 951 /* 952 * If the page was previously completely full, move it to the 953 * partially-full list and make it the current page. The next 954 * allocation will get the item from this page, instead of 955 * further fragmenting the pool. 956 */ 957 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 958 LIST_REMOVE(ph, ph_pagelist); 959 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 960 pp->pr_curpage = ph; 961 } 962 } 963 964 /* 965 * Return resource to the pool; must be called at appropriate spl level 966 */ 967 #ifdef POOL_DIAGNOSTIC 968 void 969 _pool_put(struct pool *pp, void *v, const char *file, long line) 970 { 971 972 simple_lock(&pp->pr_slock); 973 pr_enter(pp, file, line); 974 975 pr_log(pp, v, PRLOG_PUT, file, line); 976 977 pool_do_put(pp, v); 978 979 pr_leave(pp); 980 simple_unlock(&pp->pr_slock); 981 } 982 #undef pool_put 983 #endif /* POOL_DIAGNOSTIC */ 984 985 void 986 pool_put(struct pool *pp, void *v) 987 { 988 989 simple_lock(&pp->pr_slock); 990 991 pool_do_put(pp, v); 992 993 simple_unlock(&pp->pr_slock); 994 } 995 996 #ifdef POOL_DIAGNOSTIC 997 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) 998 #endif 999 1000 /* 1001 * Add N items to the pool. 1002 */ 1003 int 1004 pool_prime(struct pool *pp, int n) 1005 { 1006 struct pool_item_header *ph; 1007 caddr_t cp; 1008 int newpages; 1009 1010 simple_lock(&pp->pr_slock); 1011 1012 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1013 1014 while (newpages-- > 0) { 1015 simple_unlock(&pp->pr_slock); 1016 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1017 if (__predict_true(cp != NULL)) 1018 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1019 simple_lock(&pp->pr_slock); 1020 1021 if (__predict_false(cp == NULL || ph == NULL)) { 1022 if (cp != NULL) 1023 pool_allocator_free(pp, cp); 1024 break; 1025 } 1026 1027 pool_prime_page(pp, cp, ph); 1028 pp->pr_npagealloc++; 1029 pp->pr_minpages++; 1030 } 1031 1032 if (pp->pr_minpages >= pp->pr_maxpages) 1033 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1034 1035 simple_unlock(&pp->pr_slock); 1036 return (0); 1037 } 1038 1039 /* 1040 * Add a page worth of items to the pool. 1041 * 1042 * Note, we must be called with the pool descriptor LOCKED. 1043 */ 1044 void 1045 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 1046 { 1047 struct pool_item *pi; 1048 caddr_t cp = storage; 1049 unsigned int align = pp->pr_align; 1050 unsigned int ioff = pp->pr_itemoffset; 1051 int n; 1052 1053 #ifdef DIAGNOSTIC 1054 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) 1055 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); 1056 #endif 1057 1058 /* 1059 * Insert page header. 1060 */ 1061 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1062 TAILQ_INIT(&ph->ph_itemlist); 1063 ph->ph_page = storage; 1064 ph->ph_nmissing = 0; 1065 memset(&ph->ph_time, 0, sizeof(ph->ph_time)); 1066 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 1067 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1068 1069 pp->pr_nidle++; 1070 1071 /* 1072 * Color this page. 1073 */ 1074 cp = (caddr_t)(cp + pp->pr_curcolor); 1075 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1076 pp->pr_curcolor = 0; 1077 1078 /* 1079 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 1080 */ 1081 if (ioff != 0) 1082 cp = (caddr_t)(cp + (align - ioff)); 1083 1084 /* 1085 * Insert remaining chunks on the bucket list. 1086 */ 1087 n = pp->pr_itemsperpage; 1088 pp->pr_nitems += n; 1089 1090 while (n--) { 1091 pi = (struct pool_item *)cp; 1092 1093 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 1094 1095 /* Insert on page list */ 1096 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 1097 #ifdef DIAGNOSTIC 1098 pi->pi_magic = PI_MAGIC; 1099 #endif 1100 cp = (caddr_t)(cp + pp->pr_size); 1101 } 1102 1103 /* 1104 * If the pool was depleted, point at the new page. 1105 */ 1106 if (pp->pr_curpage == NULL) 1107 pp->pr_curpage = ph; 1108 1109 if (++pp->pr_npages > pp->pr_hiwat) 1110 pp->pr_hiwat = pp->pr_npages; 1111 } 1112 1113 /* 1114 * Used by pool_get() when nitems drops below the low water mark. This 1115 * is used to catch up pr_nitems with the low water mark. 1116 * 1117 * Note 1, we never wait for memory here, we let the caller decide what to do. 1118 * 1119 * Note 2, we must be called with the pool already locked, and we return 1120 * with it locked. 1121 */ 1122 int 1123 pool_catchup(struct pool *pp) 1124 { 1125 struct pool_item_header *ph; 1126 caddr_t cp; 1127 int error = 0; 1128 1129 while (POOL_NEEDS_CATCHUP(pp)) { 1130 /* 1131 * Call the page back-end allocator for more memory. 1132 * 1133 * XXX: We never wait, so should we bother unlocking 1134 * the pool descriptor? 1135 */ 1136 simple_unlock(&pp->pr_slock); 1137 cp = pool_allocator_alloc(pp, PR_NOWAIT); 1138 if (__predict_true(cp != NULL)) 1139 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 1140 simple_lock(&pp->pr_slock); 1141 if (__predict_false(cp == NULL || ph == NULL)) { 1142 if (cp != NULL) 1143 pool_allocator_free(pp, cp); 1144 error = ENOMEM; 1145 break; 1146 } 1147 pool_prime_page(pp, cp, ph); 1148 pp->pr_npagealloc++; 1149 } 1150 1151 return (error); 1152 } 1153 1154 void 1155 pool_update_curpage(struct pool *pp) 1156 { 1157 1158 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1159 if (pp->pr_curpage == NULL) { 1160 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1161 } 1162 } 1163 1164 void 1165 pool_setlowat(struct pool *pp, int n) 1166 { 1167 1168 simple_lock(&pp->pr_slock); 1169 1170 pp->pr_minitems = n; 1171 pp->pr_minpages = (n == 0) 1172 ? 0 1173 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1174 1175 /* Make sure we're caught up with the newly-set low water mark. */ 1176 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1177 /* 1178 * XXX: Should we log a warning? Should we set up a timeout 1179 * to try again in a second or so? The latter could break 1180 * a caller's assumptions about interrupt protection, etc. 1181 */ 1182 } 1183 1184 simple_unlock(&pp->pr_slock); 1185 } 1186 1187 void 1188 pool_sethiwat(struct pool *pp, int n) 1189 { 1190 1191 simple_lock(&pp->pr_slock); 1192 1193 pp->pr_maxpages = (n == 0) 1194 ? 0 1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1196 1197 simple_unlock(&pp->pr_slock); 1198 } 1199 1200 int 1201 pool_sethardlimit(struct pool *pp, unsigned n, const char *warnmess, int ratecap) 1202 { 1203 int error = 0; 1204 1205 simple_lock(&pp->pr_slock); 1206 1207 if (n < pp->pr_nout) { 1208 error = EINVAL; 1209 goto done; 1210 } 1211 1212 pp->pr_hardlimit = n; 1213 pp->pr_hardlimit_warning = warnmess; 1214 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1215 pp->pr_hardlimit_warning_last.tv_sec = 0; 1216 pp->pr_hardlimit_warning_last.tv_usec = 0; 1217 1218 /* 1219 * In-line version of pool_sethiwat(), because we don't want to 1220 * release the lock. 1221 */ 1222 pp->pr_maxpages = (n == 0 || n == UINT_MAX) 1223 ? n 1224 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1225 1226 done: 1227 simple_unlock(&pp->pr_slock); 1228 1229 return (error); 1230 } 1231 1232 /* 1233 * Release all complete pages that have not been used recently. 1234 * 1235 * Returns non-zero if any pages have been reclaimed. 1236 */ 1237 int 1238 #ifdef POOL_DIAGNOSTIC 1239 _pool_reclaim(struct pool *pp, const char *file, long line) 1240 #else 1241 pool_reclaim(struct pool *pp) 1242 #endif 1243 { 1244 struct pool_item_header *ph, *phnext; 1245 struct pool_cache *pc; 1246 struct timeval curtime; 1247 struct pool_pagelist pq; 1248 struct timeval diff; 1249 int s; 1250 1251 if (simple_lock_try(&pp->pr_slock) == 0) 1252 return (0); 1253 pr_enter(pp, file, line); 1254 1255 LIST_INIT(&pq); 1256 1257 /* 1258 * Reclaim items from the pool's caches. 1259 */ 1260 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) 1261 pool_cache_reclaim(pc); 1262 1263 microuptime(&curtime); 1264 1265 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1266 phnext = LIST_NEXT(ph, ph_pagelist); 1267 1268 /* Check our minimum page claim */ 1269 if (pp->pr_npages <= pp->pr_minpages) 1270 break; 1271 1272 KASSERT(ph->ph_nmissing == 0); 1273 timersub(&curtime, &ph->ph_time, &diff); 1274 if (diff.tv_sec < pool_inactive_time) 1275 continue; 1276 1277 /* 1278 * If freeing this page would put us below 1279 * the low water mark, stop now. 1280 */ 1281 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1282 pp->pr_minitems) 1283 break; 1284 1285 pr_rmpage(pp, ph, &pq); 1286 } 1287 1288 pr_leave(pp); 1289 simple_unlock(&pp->pr_slock); 1290 if (LIST_EMPTY(&pq)) 1291 return (0); 1292 while ((ph = LIST_FIRST(&pq)) != NULL) { 1293 LIST_REMOVE(ph, ph_pagelist); 1294 pool_allocator_free(pp, ph->ph_page); 1295 if (pp->pr_roflags & PR_PHINPAGE) { 1296 continue; 1297 } 1298 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 1299 s = splhigh(); 1300 pool_put(&phpool, ph); 1301 splx(s); 1302 } 1303 1304 return (1); 1305 } 1306 1307 #ifdef DDB 1308 #include <machine/db_machdep.h> 1309 #include <ddb/db_interface.h> 1310 #include <ddb/db_output.h> 1311 1312 /* 1313 * Diagnostic helpers. 1314 */ 1315 void 1316 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...)) 1317 { 1318 int s; 1319 1320 s = splvm(); 1321 if (simple_lock_try(&pp->pr_slock) == 0) { 1322 pr("pool %s is locked; try again later\n", 1323 pp->pr_wchan); 1324 splx(s); 1325 return; 1326 } 1327 pool_print1(pp, modif, pr); 1328 simple_unlock(&pp->pr_slock); 1329 splx(s); 1330 } 1331 1332 void 1333 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...)) 1334 { 1335 struct pool_item_header *ph; 1336 #ifdef DIAGNOSTIC 1337 struct pool_item *pi; 1338 #endif 1339 1340 LIST_FOREACH(ph, pl, ph_pagelist) { 1341 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n", 1342 ph->ph_page, ph->ph_nmissing, 1343 (u_long)ph->ph_time.tv_sec, 1344 (u_long)ph->ph_time.tv_usec); 1345 #ifdef DIAGNOSTIC 1346 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1347 if (pi->pi_magic != PI_MAGIC) { 1348 (*pr)("\t\t\titem %p, magic 0x%x\n", 1349 pi, pi->pi_magic); 1350 } 1351 } 1352 #endif 1353 } 1354 } 1355 1356 void 1357 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...)) 1358 { 1359 struct pool_item_header *ph; 1360 struct pool_cache *pc; 1361 struct pool_cache_group *pcg; 1362 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1363 char c; 1364 1365 while ((c = *modif++) != '\0') { 1366 if (c == 'l') 1367 print_log = 1; 1368 if (c == 'p') 1369 print_pagelist = 1; 1370 if (c == 'c') 1371 print_cache = 1; 1372 modif++; 1373 } 1374 1375 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1376 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1377 pp->pr_roflags); 1378 (*pr)("\talloc %p\n", pp->pr_alloc); 1379 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1380 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1381 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1382 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1383 1384 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1385 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1386 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1387 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1388 1389 if (print_pagelist == 0) 1390 goto skip_pagelist; 1391 1392 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1393 (*pr)("\n\tempty page list:\n"); 1394 pool_print_pagelist(&pp->pr_emptypages, pr); 1395 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1396 (*pr)("\n\tfull page list:\n"); 1397 pool_print_pagelist(&pp->pr_fullpages, pr); 1398 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1399 (*pr)("\n\tpartial-page list:\n"); 1400 pool_print_pagelist(&pp->pr_partpages, pr); 1401 1402 if (pp->pr_curpage == NULL) 1403 (*pr)("\tno current page\n"); 1404 else 1405 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1406 1407 skip_pagelist: 1408 if (print_log == 0) 1409 goto skip_log; 1410 1411 (*pr)("\n"); 1412 if ((pp->pr_roflags & PR_LOGGING) == 0) 1413 (*pr)("\tno log\n"); 1414 else 1415 pr_printlog(pp, NULL, pr); 1416 1417 skip_log: 1418 if (print_cache == 0) 1419 goto skip_cache; 1420 1421 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) { 1422 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc, 1423 pc->pc_allocfrom, pc->pc_freeto); 1424 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n", 1425 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems); 1426 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1427 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); 1428 for (i = 0; i < PCG_NOBJECTS; i++) 1429 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]); 1430 } 1431 } 1432 1433 skip_cache: 1434 pr_enter_check(pp, pr); 1435 } 1436 1437 void 1438 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif) 1439 { 1440 struct pool *pp; 1441 char maxp[16]; 1442 int ovflw; 1443 char mode; 1444 1445 mode = modif[0]; 1446 if (mode != '\0' && mode != 'a') { 1447 db_printf("usage: show all pools [/a]\n"); 1448 return; 1449 } 1450 1451 if (mode == '\0') 1452 db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n", 1453 "Name", 1454 "Size", 1455 "Requests", 1456 "Fail", 1457 "Releases", 1458 "Pgreq", 1459 "Pgrel", 1460 "Npage", 1461 "Hiwat", 1462 "Minpg", 1463 "Maxpg", 1464 "Idle"); 1465 else 1466 db_printf("%-10s %18s %18s\n", 1467 "Name", "Address", "Allocator"); 1468 1469 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1470 if (mode == 'a') { 1471 db_printf("%-10s %18p %18p\n", pp->pr_wchan, pp, 1472 pp->pr_alloc); 1473 continue; 1474 } 1475 1476 if (!pp->pr_nget) 1477 continue; 1478 1479 if (pp->pr_maxpages == UINT_MAX) 1480 snprintf(maxp, sizeof maxp, "inf"); 1481 else 1482 snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages); 1483 1484 #define PRWORD(ovflw, fmt, width, fixed, val) do { \ 1485 (ovflw) += db_printf((fmt), \ 1486 (width) - (fixed) - (ovflw) > 0 ? \ 1487 (width) - (fixed) - (ovflw) : 0, \ 1488 (val)) - (width); \ 1489 if ((ovflw) < 0) \ 1490 (ovflw) = 0; \ 1491 } while (/* CONSTCOND */0) 1492 1493 ovflw = 0; 1494 PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan); 1495 PRWORD(ovflw, " %*u", 4, 1, pp->pr_size); 1496 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget); 1497 PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail); 1498 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput); 1499 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc); 1500 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree); 1501 PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages); 1502 PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat); 1503 PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages); 1504 PRWORD(ovflw, " %*s", 6, 1, maxp); 1505 PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle); 1506 } 1507 } 1508 1509 int 1510 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1511 { 1512 struct pool_item *pi; 1513 caddr_t page; 1514 int n; 1515 1516 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask); 1517 if (page != ph->ph_page && 1518 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1519 if (label != NULL) 1520 printf("%s: ", label); 1521 printf("pool(%p:%s): page inconsistency: page %p;" 1522 " at page head addr %p (p %p)\n", pp, 1523 pp->pr_wchan, ph->ph_page, 1524 ph, page); 1525 return 1; 1526 } 1527 1528 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1529 pi != NULL; 1530 pi = TAILQ_NEXT(pi,pi_list), n++) { 1531 1532 #ifdef DIAGNOSTIC 1533 if (pi->pi_magic != PI_MAGIC) { 1534 if (label != NULL) 1535 printf("%s: ", label); 1536 printf("pool(%s): free list modified: magic=%x;" 1537 " page %p; item ordinal %d;" 1538 " addr %p (p %p)\n", 1539 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1540 n, pi, page); 1541 panic("pool"); 1542 } 1543 #endif 1544 page = 1545 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask); 1546 if (page == ph->ph_page) 1547 continue; 1548 1549 if (label != NULL) 1550 printf("%s: ", label); 1551 printf("pool(%p:%s): page inconsistency: page %p;" 1552 " item ordinal %d; addr %p (p %p)\n", pp, 1553 pp->pr_wchan, ph->ph_page, 1554 n, pi, page); 1555 return 1; 1556 } 1557 return 0; 1558 } 1559 1560 int 1561 pool_chk(struct pool *pp, const char *label) 1562 { 1563 struct pool_item_header *ph; 1564 int r = 0; 1565 1566 simple_lock(&pp->pr_slock); 1567 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1568 r = pool_chk_page(pp, label, ph); 1569 if (r) { 1570 goto out; 1571 } 1572 } 1573 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1574 r = pool_chk_page(pp, label, ph); 1575 if (r) { 1576 goto out; 1577 } 1578 } 1579 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1580 r = pool_chk_page(pp, label, ph); 1581 if (r) { 1582 goto out; 1583 } 1584 } 1585 1586 out: 1587 simple_unlock(&pp->pr_slock); 1588 return (r); 1589 } 1590 #endif 1591 1592 /* 1593 * pool_cache_init: 1594 * 1595 * Initialize a pool cache. 1596 * 1597 * NOTE: If the pool must be protected from interrupts, we expect 1598 * to be called at the appropriate interrupt priority level. 1599 */ 1600 void 1601 pool_cache_init(struct pool_cache *pc, struct pool *pp, 1602 int (*ctor)(void *, void *, int), 1603 void (*dtor)(void *, void *), 1604 void *arg) 1605 { 1606 1607 TAILQ_INIT(&pc->pc_grouplist); 1608 simple_lock_init(&pc->pc_slock); 1609 1610 pc->pc_allocfrom = NULL; 1611 pc->pc_freeto = NULL; 1612 pc->pc_pool = pp; 1613 1614 pc->pc_ctor = ctor; 1615 pc->pc_dtor = dtor; 1616 pc->pc_arg = arg; 1617 1618 pc->pc_hits = 0; 1619 pc->pc_misses = 0; 1620 1621 pc->pc_ngroups = 0; 1622 1623 pc->pc_nitems = 0; 1624 1625 simple_lock(&pp->pr_slock); 1626 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist); 1627 simple_unlock(&pp->pr_slock); 1628 } 1629 1630 /* 1631 * pool_cache_destroy: 1632 * 1633 * Destroy a pool cache. 1634 */ 1635 void 1636 pool_cache_destroy(struct pool_cache *pc) 1637 { 1638 struct pool *pp = pc->pc_pool; 1639 1640 /* First, invalidate the entire cache. */ 1641 pool_cache_invalidate(pc); 1642 1643 /* ...and remove it from the pool's cache list. */ 1644 simple_lock(&pp->pr_slock); 1645 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist); 1646 simple_unlock(&pp->pr_slock); 1647 } 1648 1649 static __inline void * 1650 pcg_get(struct pool_cache_group *pcg) 1651 { 1652 void *object; 1653 u_int idx; 1654 1655 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS); 1656 KASSERT(pcg->pcg_avail != 0); 1657 idx = --pcg->pcg_avail; 1658 1659 KASSERT(pcg->pcg_objects[idx] != NULL); 1660 object = pcg->pcg_objects[idx]; 1661 pcg->pcg_objects[idx] = NULL; 1662 1663 return (object); 1664 } 1665 1666 static __inline void 1667 pcg_put(struct pool_cache_group *pcg, void *object) 1668 { 1669 u_int idx; 1670 1671 KASSERT(pcg->pcg_avail < PCG_NOBJECTS); 1672 idx = pcg->pcg_avail++; 1673 1674 KASSERT(pcg->pcg_objects[idx] == NULL); 1675 pcg->pcg_objects[idx] = object; 1676 } 1677 1678 /* 1679 * pool_cache_get: 1680 * 1681 * Get an object from a pool cache. 1682 */ 1683 void * 1684 pool_cache_get(struct pool_cache *pc, int flags) 1685 { 1686 struct pool_cache_group *pcg; 1687 void *object; 1688 1689 #ifdef LOCKDEBUG 1690 if (flags & PR_WAITOK) 1691 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)"); 1692 #endif 1693 1694 simple_lock(&pc->pc_slock); 1695 1696 if ((pcg = pc->pc_allocfrom) == NULL) { 1697 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1698 if (pcg->pcg_avail != 0) { 1699 pc->pc_allocfrom = pcg; 1700 goto have_group; 1701 } 1702 } 1703 1704 /* 1705 * No groups with any available objects. Allocate 1706 * a new object, construct it, and return it to 1707 * the caller. We will allocate a group, if necessary, 1708 * when the object is freed back to the cache. 1709 */ 1710 pc->pc_misses++; 1711 simple_unlock(&pc->pc_slock); 1712 object = pool_get(pc->pc_pool, flags); 1713 if (object != NULL && pc->pc_ctor != NULL) { 1714 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) { 1715 pool_put(pc->pc_pool, object); 1716 return (NULL); 1717 } 1718 } 1719 return (object); 1720 } 1721 1722 have_group: 1723 pc->pc_hits++; 1724 pc->pc_nitems--; 1725 object = pcg_get(pcg); 1726 1727 if (pcg->pcg_avail == 0) 1728 pc->pc_allocfrom = NULL; 1729 1730 simple_unlock(&pc->pc_slock); 1731 1732 return (object); 1733 } 1734 1735 /* 1736 * pool_cache_put: 1737 * 1738 * Put an object back to the pool cache. 1739 */ 1740 void 1741 pool_cache_put(struct pool_cache *pc, void *object) 1742 { 1743 struct pool_cache_group *pcg; 1744 int s; 1745 1746 simple_lock(&pc->pc_slock); 1747 1748 if ((pcg = pc->pc_freeto) == NULL) { 1749 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) { 1750 if (pcg->pcg_avail != PCG_NOBJECTS) { 1751 pc->pc_freeto = pcg; 1752 goto have_group; 1753 } 1754 } 1755 1756 /* 1757 * No empty groups to free the object to. Attempt to 1758 * allocate one. 1759 */ 1760 simple_unlock(&pc->pc_slock); 1761 s = splvm(); 1762 pcg = pool_get(&pcgpool, PR_NOWAIT); 1763 splx(s); 1764 if (pcg != NULL) { 1765 memset(pcg, 0, sizeof(*pcg)); 1766 simple_lock(&pc->pc_slock); 1767 pc->pc_ngroups++; 1768 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list); 1769 if (pc->pc_freeto == NULL) 1770 pc->pc_freeto = pcg; 1771 goto have_group; 1772 } 1773 1774 /* 1775 * Unable to allocate a cache group; destruct the object 1776 * and free it back to the pool. 1777 */ 1778 pool_cache_destruct_object(pc, object); 1779 return; 1780 } 1781 1782 have_group: 1783 pc->pc_nitems++; 1784 pcg_put(pcg, object); 1785 1786 if (pcg->pcg_avail == PCG_NOBJECTS) 1787 pc->pc_freeto = NULL; 1788 1789 simple_unlock(&pc->pc_slock); 1790 } 1791 1792 /* 1793 * pool_cache_destruct_object: 1794 * 1795 * Force destruction of an object and its release back into 1796 * the pool. 1797 */ 1798 void 1799 pool_cache_destruct_object(struct pool_cache *pc, void *object) 1800 { 1801 1802 if (pc->pc_dtor != NULL) 1803 (*pc->pc_dtor)(pc->pc_arg, object); 1804 pool_put(pc->pc_pool, object); 1805 } 1806 1807 /* 1808 * pool_cache_do_invalidate: 1809 * 1810 * This internal function implements pool_cache_invalidate() and 1811 * pool_cache_reclaim(). 1812 */ 1813 void 1814 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups, 1815 void (*putit)(struct pool *, void *)) 1816 { 1817 struct pool_cache_group *pcg, *npcg; 1818 void *object; 1819 int s; 1820 1821 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL; 1822 pcg = npcg) { 1823 npcg = TAILQ_NEXT(pcg, pcg_list); 1824 while (pcg->pcg_avail != 0) { 1825 pc->pc_nitems--; 1826 object = pcg_get(pcg); 1827 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg) 1828 pc->pc_allocfrom = NULL; 1829 if (pc->pc_dtor != NULL) 1830 (*pc->pc_dtor)(pc->pc_arg, object); 1831 (*putit)(pc->pc_pool, object); 1832 } 1833 if (free_groups) { 1834 pc->pc_ngroups--; 1835 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list); 1836 if (pc->pc_freeto == pcg) 1837 pc->pc_freeto = NULL; 1838 s = splvm(); 1839 pool_put(&pcgpool, pcg); 1840 splx(s); 1841 } 1842 } 1843 } 1844 1845 /* 1846 * pool_cache_invalidate: 1847 * 1848 * Invalidate a pool cache (destruct and release all of the 1849 * cached objects). 1850 */ 1851 void 1852 pool_cache_invalidate(struct pool_cache *pc) 1853 { 1854 1855 simple_lock(&pc->pc_slock); 1856 pool_cache_do_invalidate(pc, 0, pool_put); 1857 simple_unlock(&pc->pc_slock); 1858 } 1859 1860 /* 1861 * pool_cache_reclaim: 1862 * 1863 * Reclaim a pool cache for pool_reclaim(). 1864 */ 1865 void 1866 pool_cache_reclaim(struct pool_cache *pc) 1867 { 1868 1869 simple_lock(&pc->pc_slock); 1870 pool_cache_do_invalidate(pc, 1, pool_do_put); 1871 simple_unlock(&pc->pc_slock); 1872 } 1873 1874 /* 1875 * We have three different sysctls. 1876 * kern.pool.npools - the number of pools. 1877 * kern.pool.pool.<pool#> - the pool struct for the pool#. 1878 * kern.pool.name.<pool#> - the name for pool#. 1879 */ 1880 int 1881 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep) 1882 { 1883 struct pool *pp, *foundpool = NULL; 1884 size_t buflen = where != NULL ? *sizep : 0; 1885 int npools = 0, s; 1886 unsigned int lookfor; 1887 size_t len; 1888 1889 switch (*name) { 1890 case KERN_POOL_NPOOLS: 1891 if (namelen != 1 || buflen != sizeof(int)) 1892 return (EINVAL); 1893 lookfor = 0; 1894 break; 1895 case KERN_POOL_NAME: 1896 if (namelen != 2 || buflen < 1) 1897 return (EINVAL); 1898 lookfor = name[1]; 1899 break; 1900 case KERN_POOL_POOL: 1901 if (namelen != 2 || buflen != sizeof(struct pool)) 1902 return (EINVAL); 1903 lookfor = name[1]; 1904 break; 1905 default: 1906 return (EINVAL); 1907 } 1908 1909 s = splvm(); 1910 simple_lock(&pool_head_slock); 1911 1912 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1913 npools++; 1914 if (lookfor == pp->pr_serial) { 1915 foundpool = pp; 1916 break; 1917 } 1918 } 1919 1920 simple_unlock(&pool_head_slock); 1921 splx(s); 1922 1923 if (lookfor != 0 && foundpool == NULL) 1924 return (ENOENT); 1925 1926 switch (*name) { 1927 case KERN_POOL_NPOOLS: 1928 return copyout(&npools, where, buflen); 1929 case KERN_POOL_NAME: 1930 len = strlen(foundpool->pr_wchan) + 1; 1931 if (*sizep < len) 1932 return (ENOMEM); 1933 *sizep = len; 1934 return copyout(foundpool->pr_wchan, where, len); 1935 case KERN_POOL_POOL: 1936 return copyout(foundpool, where, buflen); 1937 } 1938 /* NOTREACHED */ 1939 return (0); /* XXX - Stupid gcc */ 1940 } 1941 1942 /* 1943 * Pool backend allocators. 1944 * 1945 * Each pool has a backend allocator that handles allocation, deallocation 1946 */ 1947 void *pool_page_alloc_oldnointr(struct pool *, int); 1948 void pool_page_free_oldnointr(struct pool *, void *); 1949 void *pool_page_alloc(struct pool *, int); 1950 void pool_page_free(struct pool *, void *); 1951 1952 /* previous nointr. handles large allocations safely */ 1953 struct pool_allocator pool_allocator_oldnointr = { 1954 pool_page_alloc_oldnointr, pool_page_free_oldnointr, 0, 1955 }; 1956 /* safe for interrupts, name preserved for compat 1957 * this is the default allocator */ 1958 struct pool_allocator pool_allocator_nointr = { 1959 pool_page_alloc, pool_page_free, 0, 1960 }; 1961 1962 /* 1963 * XXX - we have at least three different resources for the same allocation 1964 * and each resource can be depleted. First we have the ready elements in 1965 * the pool. Then we have the resource (typically a vm_map) for this 1966 * allocator, then we have physical memory. Waiting for any of these can 1967 * be unnecessary when any other is freed, but the kernel doesn't support 1968 * sleeping on multiple addresses, so we have to fake. The caller sleeps on 1969 * the pool (so that we can be awakened when an item is returned to the pool), 1970 * but we set PA_WANT on the allocator. When a page is returned to 1971 * the allocator and PA_WANT is set pool_allocator_free will wakeup all 1972 * sleeping pools belonging to this allocator. (XXX - thundering herd). 1973 * We also wake up the allocator in case someone without a pool (malloc) 1974 * is sleeping waiting for this allocator. 1975 */ 1976 1977 void * 1978 pool_allocator_alloc(struct pool *pp, int flags) 1979 { 1980 1981 return (pp->pr_alloc->pa_alloc(pp, flags)); 1982 } 1983 1984 void 1985 pool_allocator_free(struct pool *pp, void *v) 1986 { 1987 struct pool_allocator *pa = pp->pr_alloc; 1988 int s; 1989 1990 (*pa->pa_free)(pp, v); 1991 1992 s = splvm(); 1993 simple_lock(&pa->pa_slock); 1994 if ((pa->pa_flags & PA_WANT) == 0) { 1995 simple_unlock(&pa->pa_slock); 1996 splx(s); 1997 return; 1998 } 1999 2000 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { 2001 simple_lock(&pp->pr_slock); 2002 if ((pp->pr_flags & PR_WANTED) != 0) { 2003 pp->pr_flags &= ~PR_WANTED; 2004 wakeup(pp); 2005 } 2006 simple_unlock(&pp->pr_slock); 2007 } 2008 pa->pa_flags &= ~PA_WANT; 2009 simple_unlock(&pa->pa_slock); 2010 splx(s); 2011 } 2012 2013 void * 2014 pool_page_alloc(struct pool *pp, int flags) 2015 { 2016 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2017 2018 return (uvm_km_getpage(waitok)); 2019 } 2020 2021 void 2022 pool_page_free(struct pool *pp, void *v) 2023 { 2024 2025 uvm_km_putpage(v); 2026 } 2027 2028 void * 2029 pool_page_alloc_oldnointr(struct pool *pp, int flags) 2030 { 2031 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 2032 2033 splassert(IPL_NONE); 2034 2035 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object, 2036 waitok)); 2037 } 2038 2039 void 2040 pool_page_free_oldnointr(struct pool *pp, void *v) 2041 { 2042 splassert(IPL_NONE); 2043 2044 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v); 2045 } 2046