1 /* $OpenBSD: subr_pool.c,v 1.90 2009/09/05 16:06:57 thib Exp $ */ 2 /* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */ 3 4 /*- 5 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/proc.h> 37 #include <sys/errno.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/pool.h> 41 #include <sys/syslog.h> 42 #include <sys/sysctl.h> 43 44 #include <uvm/uvm.h> 45 46 47 /* 48 * Pool resource management utility. 49 * 50 * Memory is allocated in pages which are split into pieces according to 51 * the pool item size. Each page is kept on one of three lists in the 52 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 53 * for empty, full and partially-full pages respectively. The individual 54 * pool items are on a linked list headed by `ph_itemlist' in each page 55 * header. The memory for building the page list is either taken from 56 * the allocated pages themselves (for small pool items) or taken from 57 * an internal pool of page headers (`phpool'). 58 */ 59 60 /* List of all pools */ 61 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 62 63 /* Private pool for page header structures */ 64 struct pool phpool; 65 66 struct pool_item_header { 67 /* Page headers */ 68 LIST_ENTRY(pool_item_header) 69 ph_pagelist; /* pool page list */ 70 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 71 RB_ENTRY(pool_item_header) 72 ph_node; /* Off-page page headers */ 73 int ph_nmissing; /* # of chunks in use */ 74 caddr_t ph_page; /* this page's address */ 75 caddr_t ph_colored; /* page's colored address */ 76 int ph_pagesize; 77 }; 78 79 struct pool_item { 80 #ifdef DIAGNOSTIC 81 u_int32_t pi_magic; 82 #endif 83 /* Other entries use only this list entry */ 84 TAILQ_ENTRY(pool_item) pi_list; 85 }; 86 87 #ifdef DEADBEEF1 88 #define PI_MAGIC DEADBEEF1 89 #else 90 #define PI_MAGIC 0xdeafbeef 91 #endif 92 93 #define POOL_NEEDS_CATCHUP(pp) \ 94 ((pp)->pr_nitems < (pp)->pr_minitems) 95 96 /* 97 * Every pool gets a unique serial number assigned to it. If this counter 98 * wraps, we're screwed, but we shouldn't create so many pools anyway. 99 */ 100 unsigned int pool_serial; 101 102 int pool_catchup(struct pool *); 103 void pool_prime_page(struct pool *, caddr_t, struct pool_item_header *); 104 void pool_update_curpage(struct pool *); 105 void *pool_do_get(struct pool *, int); 106 void pool_do_put(struct pool *, void *); 107 void pr_rmpage(struct pool *, struct pool_item_header *, 108 struct pool_pagelist *); 109 int pool_chk_page(struct pool *, const char *, struct pool_item_header *); 110 struct pool_item_header *pool_alloc_item_header(struct pool *, caddr_t , int); 111 112 void *pool_allocator_alloc(struct pool *, int, int *); 113 void pool_allocator_free(struct pool *, void *); 114 115 /* 116 * XXX - quick hack. For pools with large items we want to use a special 117 * allocator. For now, instead of having the allocator figure out 118 * the allocation size from the pool (which can be done trivially 119 * with round_page(pr_itemsperpage * pr_size)) which would require 120 * lots of changes everywhere, we just create allocators for each 121 * size. We limit those to 128 pages. 122 */ 123 #define POOL_LARGE_MAXPAGES 128 124 struct pool_allocator pool_allocator_large[POOL_LARGE_MAXPAGES]; 125 struct pool_allocator pool_allocator_large_ni[POOL_LARGE_MAXPAGES]; 126 void *pool_large_alloc(struct pool *, int, int *); 127 void pool_large_free(struct pool *, void *); 128 void *pool_large_alloc_ni(struct pool *, int, int *); 129 void pool_large_free_ni(struct pool *, void *); 130 131 132 #ifdef DDB 133 void pool_print_pagelist(struct pool_pagelist *, 134 int (*)(const char *, ...)); 135 void pool_print1(struct pool *, const char *, int (*)(const char *, ...)); 136 #endif 137 138 #define pool_sleep(pl) msleep(pl, &pl->pr_mtx, PSWP, pl->pr_wchan, 0) 139 140 static __inline int 141 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 142 { 143 long diff = (vaddr_t)a->ph_page - (vaddr_t)b->ph_page; 144 if (diff < 0) 145 return -(-diff >= a->ph_pagesize); 146 else if (diff > 0) 147 return (diff >= b->ph_pagesize); 148 else 149 return (0); 150 } 151 152 RB_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 153 RB_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 154 155 /* 156 * Return the pool page header based on page address. 157 */ 158 static __inline struct pool_item_header * 159 pr_find_pagehead(struct pool *pp, void *v) 160 { 161 struct pool_item_header *ph, tmp; 162 163 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 164 caddr_t page; 165 166 page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask); 167 168 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 169 } 170 171 /* 172 * The trick we're using in the tree compare function is to compare 173 * two elements equal when they overlap. We want to return the 174 * page header that belongs to the element just before this address. 175 * We don't want this element to compare equal to the next element, 176 * so the compare function takes the pagesize from the lower element. 177 * If this header is the lower, its pagesize is zero, so it can't 178 * overlap with the next header. But if the header we're looking for 179 * is lower, we'll use its pagesize and it will overlap and return 180 * equal. 181 */ 182 tmp.ph_page = v; 183 tmp.ph_pagesize = 0; 184 ph = RB_FIND(phtree, &pp->pr_phtree, &tmp); 185 186 if (ph) { 187 KASSERT(ph->ph_page <= (caddr_t)v); 188 KASSERT(ph->ph_page + ph->ph_pagesize > (caddr_t)v); 189 } 190 return ph; 191 } 192 193 /* 194 * Remove a page from the pool. 195 */ 196 void 197 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 198 struct pool_pagelist *pq) 199 { 200 201 /* 202 * If the page was idle, decrement the idle page count. 203 */ 204 if (ph->ph_nmissing == 0) { 205 #ifdef DIAGNOSTIC 206 if (pp->pr_nidle == 0) 207 panic("pr_rmpage: nidle inconsistent"); 208 if (pp->pr_nitems < pp->pr_itemsperpage) 209 panic("pr_rmpage: nitems inconsistent"); 210 #endif 211 pp->pr_nidle--; 212 } 213 214 pp->pr_nitems -= pp->pr_itemsperpage; 215 216 /* 217 * Unlink a page from the pool and release it (or queue it for release). 218 */ 219 LIST_REMOVE(ph, ph_pagelist); 220 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 221 RB_REMOVE(phtree, &pp->pr_phtree, ph); 222 if (pq) { 223 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 224 } else { 225 pool_allocator_free(pp, ph->ph_page); 226 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 227 pool_put(&phpool, ph); 228 } 229 pp->pr_npages--; 230 pp->pr_npagefree++; 231 232 pool_update_curpage(pp); 233 } 234 235 /* 236 * Initialize the given pool resource structure. 237 * 238 * We export this routine to allow other kernel parts to declare 239 * static pools that must be initialized before malloc() is available. 240 */ 241 void 242 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 243 const char *wchan, struct pool_allocator *palloc) 244 { 245 int off, slack; 246 247 #ifdef MALLOC_DEBUG 248 if ((flags & PR_DEBUG) && (ioff != 0 || align != 0)) 249 flags &= ~PR_DEBUG; 250 #endif 251 /* 252 * Check arguments and construct default values. 253 */ 254 if (palloc == NULL) { 255 if (size > PAGE_SIZE) { 256 int psize; 257 258 /* 259 * XXX - should take align into account as well. 260 */ 261 if (size == round_page(size)) 262 psize = size / PAGE_SIZE; 263 else 264 psize = PAGE_SIZE / roundup(size % PAGE_SIZE, 265 1024); 266 if (psize > POOL_LARGE_MAXPAGES) 267 psize = POOL_LARGE_MAXPAGES; 268 if (flags & PR_WAITOK) 269 palloc = &pool_allocator_large_ni[psize-1]; 270 else 271 palloc = &pool_allocator_large[psize-1]; 272 if (palloc->pa_pagesz == 0) { 273 palloc->pa_pagesz = psize * PAGE_SIZE; 274 if (flags & PR_WAITOK) { 275 palloc->pa_alloc = pool_large_alloc_ni; 276 palloc->pa_free = pool_large_free_ni; 277 } else { 278 palloc->pa_alloc = pool_large_alloc; 279 palloc->pa_free = pool_large_free; 280 } 281 } 282 } else { 283 palloc = &pool_allocator_nointr; 284 } 285 } 286 if (palloc->pa_pagesz == 0) { 287 palloc->pa_pagesz = PAGE_SIZE; 288 } 289 if (palloc->pa_pagemask == 0) { 290 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 291 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 292 } 293 294 if (align == 0) 295 align = ALIGN(1); 296 297 if (size < sizeof(struct pool_item)) 298 size = sizeof(struct pool_item); 299 300 size = roundup(size, align); 301 #ifdef DIAGNOSTIC 302 if (size > palloc->pa_pagesz) 303 panic("pool_init: pool item size (%lu) too large", 304 (u_long)size); 305 #endif 306 307 /* 308 * Initialize the pool structure. 309 */ 310 LIST_INIT(&pp->pr_emptypages); 311 LIST_INIT(&pp->pr_fullpages); 312 LIST_INIT(&pp->pr_partpages); 313 pp->pr_curpage = NULL; 314 pp->pr_npages = 0; 315 pp->pr_minitems = 0; 316 pp->pr_minpages = 0; 317 pp->pr_maxpages = 8; 318 pp->pr_roflags = flags; 319 pp->pr_flags = 0; 320 pp->pr_size = size; 321 pp->pr_align = align; 322 pp->pr_wchan = wchan; 323 pp->pr_alloc = palloc; 324 pp->pr_nitems = 0; 325 pp->pr_nout = 0; 326 pp->pr_hardlimit = UINT_MAX; 327 pp->pr_hardlimit_warning = NULL; 328 pp->pr_hardlimit_ratecap.tv_sec = 0; 329 pp->pr_hardlimit_ratecap.tv_usec = 0; 330 pp->pr_hardlimit_warning_last.tv_sec = 0; 331 pp->pr_hardlimit_warning_last.tv_usec = 0; 332 pp->pr_serial = ++pool_serial; 333 if (pool_serial == 0) 334 panic("pool_init: too much uptime"); 335 336 /* constructor, destructor, and arg */ 337 pp->pr_ctor = NULL; 338 pp->pr_dtor = NULL; 339 pp->pr_arg = NULL; 340 341 /* 342 * Decide whether to put the page header off page to avoid 343 * wasting too large a part of the page. Off-page page headers 344 * go into an RB tree, so we can match a returned item with 345 * its header based on the page address. 346 * We use 1/16 of the page size as the threshold (XXX: tune) 347 */ 348 if (pp->pr_size < palloc->pa_pagesz/16 && pp->pr_size < PAGE_SIZE) { 349 /* Use the end of the page for the page header */ 350 pp->pr_roflags |= PR_PHINPAGE; 351 pp->pr_phoffset = off = palloc->pa_pagesz - 352 ALIGN(sizeof(struct pool_item_header)); 353 } else { 354 /* The page header will be taken from our page header pool */ 355 pp->pr_phoffset = 0; 356 off = palloc->pa_pagesz; 357 RB_INIT(&pp->pr_phtree); 358 } 359 360 /* 361 * Alignment is to take place at `ioff' within the item. This means 362 * we must reserve up to `align - 1' bytes on the page to allow 363 * appropriate positioning of each item. 364 * 365 * Silently enforce `0 <= ioff < align'. 366 */ 367 pp->pr_itemoffset = ioff = ioff % align; 368 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 369 KASSERT(pp->pr_itemsperpage != 0); 370 371 /* 372 * Use the slack between the chunks and the page header 373 * for "cache coloring". 374 */ 375 slack = off - pp->pr_itemsperpage * pp->pr_size; 376 pp->pr_maxcolor = (slack / align) * align; 377 pp->pr_curcolor = 0; 378 379 pp->pr_nget = 0; 380 pp->pr_nfail = 0; 381 pp->pr_nput = 0; 382 pp->pr_npagealloc = 0; 383 pp->pr_npagefree = 0; 384 pp->pr_hiwat = 0; 385 pp->pr_nidle = 0; 386 387 pp->pr_ipl = -1; 388 mtx_init(&pp->pr_mtx, IPL_NONE); 389 390 if (phpool.pr_size == 0) { 391 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 392 0, "phpool", NULL); 393 pool_setipl(&phpool, IPL_HIGH); 394 } 395 396 /* Insert this into the list of all pools. */ 397 TAILQ_INSERT_HEAD(&pool_head, pp, pr_poollist); 398 } 399 400 void 401 pool_setipl(struct pool *pp, int ipl) 402 { 403 pp->pr_ipl = ipl; 404 mtx_init(&pp->pr_mtx, ipl); 405 } 406 407 /* 408 * Decommission a pool resource. 409 */ 410 void 411 pool_destroy(struct pool *pp) 412 { 413 struct pool_item_header *ph; 414 415 #ifdef DIAGNOSTIC 416 if (pp->pr_nout != 0) 417 panic("pool_destroy: pool busy: still out: %u", pp->pr_nout); 418 #endif 419 420 /* Remove all pages */ 421 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 422 pr_rmpage(pp, ph, NULL); 423 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 424 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 425 426 /* Remove from global pool list */ 427 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 428 } 429 430 struct pool_item_header * 431 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 432 { 433 struct pool_item_header *ph; 434 435 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 436 ph = (struct pool_item_header *)(storage + pp->pr_phoffset); 437 else { 438 ph = pool_get(&phpool, flags); 439 } 440 441 return (ph); 442 } 443 444 /* 445 * Grab an item from the pool; must be called at appropriate spl level 446 */ 447 void * 448 pool_get(struct pool *pp, int flags) 449 { 450 void *v; 451 452 #ifdef DIAGNOSTIC 453 if ((flags & PR_WAITOK) != 0) 454 splassert(IPL_NONE); 455 #endif /* DIAGNOSTIC */ 456 457 mtx_enter(&pp->pr_mtx); 458 v = pool_do_get(pp, flags); 459 mtx_leave(&pp->pr_mtx); 460 if (v == NULL) 461 return (v); 462 463 if (pp->pr_ctor) { 464 if (flags & PR_ZERO) 465 panic("pool_get: PR_ZERO when ctor set"); 466 if (pp->pr_ctor(pp->pr_arg, v, flags)) { 467 mtx_enter(&pp->pr_mtx); 468 pool_do_put(pp, v); 469 mtx_leave(&pp->pr_mtx); 470 v = NULL; 471 } 472 } else { 473 if (flags & PR_ZERO) 474 memset(v, 0, pp->pr_size); 475 } 476 if (v != NULL) 477 pp->pr_nget++; 478 return (v); 479 } 480 481 void * 482 pool_do_get(struct pool *pp, int flags) 483 { 484 struct pool_item *pi; 485 struct pool_item_header *ph; 486 void *v; 487 int slowdown = 0; 488 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 489 int i, *ip; 490 #endif 491 492 #ifdef MALLOC_DEBUG 493 if (pp->pr_roflags & PR_DEBUG) { 494 void *addr; 495 496 addr = NULL; 497 debug_malloc(pp->pr_size, M_DEBUG, 498 (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr); 499 return (addr); 500 } 501 #endif 502 503 startover: 504 /* 505 * Check to see if we've reached the hard limit. If we have, 506 * and we can wait, then wait until an item has been returned to 507 * the pool. 508 */ 509 #ifdef DIAGNOSTIC 510 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) 511 panic("pool_do_get: %s: crossed hard limit", pp->pr_wchan); 512 #endif 513 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 514 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 515 /* 516 * XXX: A warning isn't logged in this case. Should 517 * it be? 518 */ 519 pp->pr_flags |= PR_WANTED; 520 pool_sleep(pp); 521 goto startover; 522 } 523 524 /* 525 * Log a message that the hard limit has been hit. 526 */ 527 if (pp->pr_hardlimit_warning != NULL && 528 ratecheck(&pp->pr_hardlimit_warning_last, 529 &pp->pr_hardlimit_ratecap)) 530 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 531 532 pp->pr_nfail++; 533 return (NULL); 534 } 535 536 /* 537 * The convention we use is that if `curpage' is not NULL, then 538 * it points at a non-empty bucket. In particular, `curpage' 539 * never points at a page header which has PR_PHINPAGE set and 540 * has no items in its bucket. 541 */ 542 if ((ph = pp->pr_curpage) == NULL) { 543 #ifdef DIAGNOSTIC 544 if (pp->pr_nitems != 0) { 545 printf("pool_do_get: %s: curpage NULL, nitems %u\n", 546 pp->pr_wchan, pp->pr_nitems); 547 panic("pool_do_get: nitems inconsistent"); 548 } 549 #endif 550 551 /* 552 * Call the back-end page allocator for more memory. 553 */ 554 v = pool_allocator_alloc(pp, flags, &slowdown); 555 if (__predict_true(v != NULL)) 556 ph = pool_alloc_item_header(pp, v, flags); 557 558 if (__predict_false(v == NULL || ph == NULL)) { 559 if (v != NULL) 560 pool_allocator_free(pp, v); 561 562 if ((flags & PR_WAITOK) == 0) { 563 pp->pr_nfail++; 564 return (NULL); 565 } 566 567 /* 568 * Wait for items to be returned to this pool. 569 * 570 * XXX: maybe we should wake up once a second and 571 * try again? 572 */ 573 pp->pr_flags |= PR_WANTED; 574 pool_sleep(pp); 575 goto startover; 576 } 577 578 /* We have more memory; add it to the pool */ 579 pool_prime_page(pp, v, ph); 580 pp->pr_npagealloc++; 581 582 if (slowdown && (flags & PR_WAITOK)) { 583 mtx_leave(&pp->pr_mtx); 584 yield(); 585 mtx_enter(&pp->pr_mtx); 586 } 587 588 /* Start the allocation process over. */ 589 goto startover; 590 } 591 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 592 panic("pool_do_get: %s: page empty", pp->pr_wchan); 593 } 594 #ifdef DIAGNOSTIC 595 if (__predict_false(pp->pr_nitems == 0)) { 596 printf("pool_do_get: %s: items on itemlist, nitems %u\n", 597 pp->pr_wchan, pp->pr_nitems); 598 panic("pool_do_get: nitems inconsistent"); 599 } 600 #endif 601 602 #ifdef DIAGNOSTIC 603 if (__predict_false(pi->pi_magic != PI_MAGIC)) 604 panic("pool_do_get(%s): free list modified: " 605 "page %p; item addr %p; offset 0x%x=0x%x", 606 pp->pr_wchan, ph->ph_page, pi, 0, pi->pi_magic); 607 #ifdef POOL_DEBUG 608 for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int); 609 i < pp->pr_size / sizeof(int); i++) { 610 if (ip[i] != PI_MAGIC) { 611 panic("pool_do_get(%s): free list modified: " 612 "page %p; item addr %p; offset 0x%x=0x%x", 613 pp->pr_wchan, ph->ph_page, pi, 614 i * sizeof(int), ip[i]); 615 } 616 } 617 #endif /* POOL_DEBUG */ 618 #endif /* DIAGNOSTIC */ 619 620 /* 621 * Remove from item list. 622 */ 623 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 624 pp->pr_nitems--; 625 pp->pr_nout++; 626 if (ph->ph_nmissing == 0) { 627 #ifdef DIAGNOSTIC 628 if (__predict_false(pp->pr_nidle == 0)) 629 panic("pool_do_get: nidle inconsistent"); 630 #endif 631 pp->pr_nidle--; 632 633 /* 634 * This page was previously empty. Move it to the list of 635 * partially-full pages. This page is already curpage. 636 */ 637 LIST_REMOVE(ph, ph_pagelist); 638 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 639 } 640 ph->ph_nmissing++; 641 if (TAILQ_EMPTY(&ph->ph_itemlist)) { 642 #ifdef DIAGNOSTIC 643 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 644 panic("pool_do_get: %s: nmissing inconsistent", 645 pp->pr_wchan); 646 } 647 #endif 648 /* 649 * This page is now full. Move it to the full list 650 * and select a new current page. 651 */ 652 LIST_REMOVE(ph, ph_pagelist); 653 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 654 pool_update_curpage(pp); 655 } 656 657 /* 658 * If we have a low water mark and we are now below that low 659 * water mark, add more items to the pool. 660 */ 661 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 662 /* 663 * XXX: Should we log a warning? Should we set up a timeout 664 * to try again in a second or so? The latter could break 665 * a caller's assumptions about interrupt protection, etc. 666 */ 667 } 668 return (v); 669 } 670 671 /* 672 * Return resource to the pool; must be called at appropriate spl level 673 */ 674 void 675 pool_put(struct pool *pp, void *v) 676 { 677 if (pp->pr_dtor) 678 pp->pr_dtor(pp->pr_arg, v); 679 mtx_enter(&pp->pr_mtx); 680 pool_do_put(pp, v); 681 mtx_leave(&pp->pr_mtx); 682 pp->pr_nput++; 683 } 684 685 /* 686 * Internal version of pool_put(). 687 */ 688 void 689 pool_do_put(struct pool *pp, void *v) 690 { 691 struct pool_item *pi = v; 692 struct pool_item_header *ph; 693 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 694 int i, *ip; 695 #endif 696 697 if (v == NULL) 698 panic("pool_put of NULL"); 699 700 #ifdef MALLOC_DEBUG 701 if (pp->pr_roflags & PR_DEBUG) { 702 debug_free(v, M_DEBUG); 703 return; 704 } 705 #endif 706 707 #ifdef DIAGNOSTIC 708 if (pp->pr_ipl != -1) 709 splassert(pp->pr_ipl); 710 711 if (__predict_false(pp->pr_nout == 0)) { 712 printf("pool %s: putting with none out\n", 713 pp->pr_wchan); 714 panic("pool_do_put"); 715 } 716 #endif 717 718 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 719 panic("pool_do_put: %s: page header missing", pp->pr_wchan); 720 } 721 722 /* 723 * Return to item list. 724 */ 725 #ifdef DIAGNOSTIC 726 pi->pi_magic = PI_MAGIC; 727 #ifdef POOL_DEBUG 728 for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int); 729 i < pp->pr_size / sizeof(int); i++) 730 ip[i] = PI_MAGIC; 731 #endif /* POOL_DEBUG */ 732 #endif /* DIAGNOSTIC */ 733 734 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 735 ph->ph_nmissing--; 736 pp->pr_nitems++; 737 pp->pr_nout--; 738 739 /* Cancel "pool empty" condition if it exists */ 740 if (pp->pr_curpage == NULL) 741 pp->pr_curpage = ph; 742 743 if (pp->pr_flags & PR_WANTED) { 744 pp->pr_flags &= ~PR_WANTED; 745 if (ph->ph_nmissing == 0) 746 pp->pr_nidle++; 747 wakeup(pp); 748 return; 749 } 750 751 /* 752 * If this page is now empty, do one of two things: 753 * 754 * (1) If we have more pages than the page high water mark, 755 * free the page back to the system. 756 * 757 * (2) Otherwise, move the page to the empty page list. 758 * 759 * Either way, select a new current page (so we use a partially-full 760 * page if one is available). 761 */ 762 if (ph->ph_nmissing == 0) { 763 pp->pr_nidle++; 764 if (pp->pr_nidle > pp->pr_maxpages) { 765 pr_rmpage(pp, ph, NULL); 766 } else { 767 LIST_REMOVE(ph, ph_pagelist); 768 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 769 } 770 pool_update_curpage(pp); 771 } 772 773 /* 774 * If the page was previously completely full, move it to the 775 * partially-full list and make it the current page. The next 776 * allocation will get the item from this page, instead of 777 * further fragmenting the pool. 778 */ 779 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 780 LIST_REMOVE(ph, ph_pagelist); 781 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 782 pp->pr_curpage = ph; 783 } 784 } 785 786 /* 787 * Add N items to the pool. 788 */ 789 int 790 pool_prime(struct pool *pp, int n) 791 { 792 struct pool_item_header *ph; 793 caddr_t cp; 794 int newpages; 795 int slowdown; 796 797 mtx_enter(&pp->pr_mtx); 798 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 799 800 while (newpages-- > 0) { 801 cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown); 802 if (__predict_true(cp != NULL)) 803 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 804 if (__predict_false(cp == NULL || ph == NULL)) { 805 if (cp != NULL) 806 pool_allocator_free(pp, cp); 807 break; 808 } 809 810 pool_prime_page(pp, cp, ph); 811 pp->pr_npagealloc++; 812 pp->pr_minpages++; 813 } 814 815 if (pp->pr_minpages >= pp->pr_maxpages) 816 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 817 818 mtx_leave(&pp->pr_mtx); 819 return (0); 820 } 821 822 /* 823 * Add a page worth of items to the pool. 824 * 825 * Note, we must be called with the pool descriptor LOCKED. 826 */ 827 void 828 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 829 { 830 struct pool_item *pi; 831 caddr_t cp = storage; 832 unsigned int align = pp->pr_align; 833 unsigned int ioff = pp->pr_itemoffset; 834 int n; 835 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 836 int i, *ip; 837 #endif 838 839 /* 840 * Insert page header. 841 */ 842 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 843 TAILQ_INIT(&ph->ph_itemlist); 844 ph->ph_page = storage; 845 ph->ph_pagesize = pp->pr_alloc->pa_pagesz; 846 ph->ph_nmissing = 0; 847 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 848 RB_INSERT(phtree, &pp->pr_phtree, ph); 849 850 pp->pr_nidle++; 851 852 /* 853 * Color this page. 854 */ 855 cp = (caddr_t)(cp + pp->pr_curcolor); 856 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 857 pp->pr_curcolor = 0; 858 859 /* 860 * Adjust storage to apply aligment to `pr_itemoffset' in each item. 861 */ 862 if (ioff != 0) 863 cp = (caddr_t)(cp + (align - ioff)); 864 ph->ph_colored = cp; 865 866 /* 867 * Insert remaining chunks on the bucket list. 868 */ 869 n = pp->pr_itemsperpage; 870 pp->pr_nitems += n; 871 872 while (n--) { 873 pi = (struct pool_item *)cp; 874 875 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 876 877 /* Insert on page list */ 878 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 879 880 #ifdef DIAGNOSTIC 881 pi->pi_magic = PI_MAGIC; 882 #ifdef POOL_DEBUG 883 for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int); 884 i < pp->pr_size / sizeof(int); i++) 885 ip[i] = PI_MAGIC; 886 #endif /* POOL_DEBUG */ 887 #endif /* DIAGNOSTIC */ 888 cp = (caddr_t)(cp + pp->pr_size); 889 } 890 891 /* 892 * If the pool was depleted, point at the new page. 893 */ 894 if (pp->pr_curpage == NULL) 895 pp->pr_curpage = ph; 896 897 if (++pp->pr_npages > pp->pr_hiwat) 898 pp->pr_hiwat = pp->pr_npages; 899 } 900 901 /* 902 * Used by pool_get() when nitems drops below the low water mark. This 903 * is used to catch up pr_nitems with the low water mark. 904 * 905 * Note we never wait for memory here, we let the caller decide what to do. 906 */ 907 int 908 pool_catchup(struct pool *pp) 909 { 910 struct pool_item_header *ph; 911 caddr_t cp; 912 int error = 0; 913 int slowdown; 914 915 while (POOL_NEEDS_CATCHUP(pp)) { 916 /* 917 * Call the page back-end allocator for more memory. 918 */ 919 cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown); 920 if (__predict_true(cp != NULL)) 921 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 922 if (__predict_false(cp == NULL || ph == NULL)) { 923 if (cp != NULL) 924 pool_allocator_free(pp, cp); 925 error = ENOMEM; 926 break; 927 } 928 pool_prime_page(pp, cp, ph); 929 pp->pr_npagealloc++; 930 } 931 932 return (error); 933 } 934 935 void 936 pool_update_curpage(struct pool *pp) 937 { 938 939 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 940 if (pp->pr_curpage == NULL) { 941 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 942 } 943 } 944 945 void 946 pool_setlowat(struct pool *pp, int n) 947 { 948 949 pp->pr_minitems = n; 950 pp->pr_minpages = (n == 0) 951 ? 0 952 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 953 954 mtx_enter(&pp->pr_mtx); 955 /* Make sure we're caught up with the newly-set low water mark. */ 956 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 957 /* 958 * XXX: Should we log a warning? Should we set up a timeout 959 * to try again in a second or so? The latter could break 960 * a caller's assumptions about interrupt protection, etc. 961 */ 962 } 963 mtx_leave(&pp->pr_mtx); 964 } 965 966 void 967 pool_sethiwat(struct pool *pp, int n) 968 { 969 970 pp->pr_maxpages = (n == 0) 971 ? 0 972 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 973 } 974 975 int 976 pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap) 977 { 978 int error = 0; 979 980 if (n < pp->pr_nout) { 981 error = EINVAL; 982 goto done; 983 } 984 985 pp->pr_hardlimit = n; 986 pp->pr_hardlimit_warning = warnmsg; 987 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 988 pp->pr_hardlimit_warning_last.tv_sec = 0; 989 pp->pr_hardlimit_warning_last.tv_usec = 0; 990 991 /* 992 * In-line version of pool_sethiwat(). 993 */ 994 pp->pr_maxpages = (n == 0 || n == UINT_MAX) 995 ? n 996 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 997 998 done: 999 return (error); 1000 } 1001 1002 void 1003 pool_set_ctordtor(struct pool *pp, int (*ctor)(void *, void *, int), 1004 void (*dtor)(void *, void *), void *arg) 1005 { 1006 pp->pr_ctor = ctor; 1007 pp->pr_dtor = dtor; 1008 pp->pr_arg = arg; 1009 } 1010 /* 1011 * Release all complete pages that have not been used recently. 1012 * 1013 * Returns non-zero if any pages have been reclaimed. 1014 */ 1015 int 1016 pool_reclaim(struct pool *pp) 1017 { 1018 struct pool_item_header *ph, *phnext; 1019 struct pool_pagelist pq; 1020 1021 LIST_INIT(&pq); 1022 1023 mtx_enter(&pp->pr_mtx); 1024 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1025 phnext = LIST_NEXT(ph, ph_pagelist); 1026 1027 /* Check our minimum page claim */ 1028 if (pp->pr_npages <= pp->pr_minpages) 1029 break; 1030 1031 KASSERT(ph->ph_nmissing == 0); 1032 1033 /* 1034 * If freeing this page would put us below 1035 * the low water mark, stop now. 1036 */ 1037 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1038 pp->pr_minitems) 1039 break; 1040 1041 pr_rmpage(pp, ph, &pq); 1042 } 1043 mtx_leave(&pp->pr_mtx); 1044 1045 if (LIST_EMPTY(&pq)) 1046 return (0); 1047 while ((ph = LIST_FIRST(&pq)) != NULL) { 1048 LIST_REMOVE(ph, ph_pagelist); 1049 pool_allocator_free(pp, ph->ph_page); 1050 if (pp->pr_roflags & PR_PHINPAGE) 1051 continue; 1052 pool_put(&phpool, ph); 1053 } 1054 1055 return (1); 1056 } 1057 1058 #ifdef DDB 1059 #include <machine/db_machdep.h> 1060 #include <ddb/db_interface.h> 1061 #include <ddb/db_output.h> 1062 1063 /* 1064 * Diagnostic helpers. 1065 */ 1066 void 1067 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...)) 1068 { 1069 pool_print1(pp, modif, pr); 1070 } 1071 1072 void 1073 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...)) 1074 { 1075 struct pool_item_header *ph; 1076 #ifdef DIAGNOSTIC 1077 struct pool_item *pi; 1078 #endif 1079 1080 LIST_FOREACH(ph, pl, ph_pagelist) { 1081 (*pr)("\t\tpage %p, nmissing %d\n", 1082 ph->ph_page, ph->ph_nmissing); 1083 #ifdef DIAGNOSTIC 1084 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1085 if (pi->pi_magic != PI_MAGIC) { 1086 (*pr)("\t\t\titem %p, magic 0x%x\n", 1087 pi, pi->pi_magic); 1088 } 1089 } 1090 #endif 1091 } 1092 } 1093 1094 void 1095 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...)) 1096 { 1097 struct pool_item_header *ph; 1098 int print_pagelist = 0; 1099 char c; 1100 1101 while ((c = *modif++) != '\0') { 1102 if (c == 'p') 1103 print_pagelist = 1; 1104 modif++; 1105 } 1106 1107 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1108 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1109 pp->pr_roflags); 1110 (*pr)("\talloc %p\n", pp->pr_alloc); 1111 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1112 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1113 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1114 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1115 1116 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1117 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1118 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1119 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1120 1121 if (print_pagelist == 0) 1122 return; 1123 1124 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1125 (*pr)("\n\tempty page list:\n"); 1126 pool_print_pagelist(&pp->pr_emptypages, pr); 1127 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1128 (*pr)("\n\tfull page list:\n"); 1129 pool_print_pagelist(&pp->pr_fullpages, pr); 1130 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1131 (*pr)("\n\tpartial-page list:\n"); 1132 pool_print_pagelist(&pp->pr_partpages, pr); 1133 1134 if (pp->pr_curpage == NULL) 1135 (*pr)("\tno current page\n"); 1136 else 1137 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1138 } 1139 1140 void 1141 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif) 1142 { 1143 struct pool *pp; 1144 char maxp[16]; 1145 int ovflw; 1146 char mode; 1147 1148 mode = modif[0]; 1149 if (mode != '\0' && mode != 'a') { 1150 db_printf("usage: show all pools [/a]\n"); 1151 return; 1152 } 1153 1154 if (mode == '\0') 1155 db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n", 1156 "Name", 1157 "Size", 1158 "Requests", 1159 "Fail", 1160 "Releases", 1161 "Pgreq", 1162 "Pgrel", 1163 "Npage", 1164 "Hiwat", 1165 "Minpg", 1166 "Maxpg", 1167 "Idle"); 1168 else 1169 db_printf("%-10s %18s %18s\n", 1170 "Name", "Address", "Allocator"); 1171 1172 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1173 if (mode == 'a') { 1174 db_printf("%-10s %18p %18p\n", pp->pr_wchan, pp, 1175 pp->pr_alloc); 1176 continue; 1177 } 1178 1179 if (!pp->pr_nget) 1180 continue; 1181 1182 if (pp->pr_maxpages == UINT_MAX) 1183 snprintf(maxp, sizeof maxp, "inf"); 1184 else 1185 snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages); 1186 1187 #define PRWORD(ovflw, fmt, width, fixed, val) do { \ 1188 (ovflw) += db_printf((fmt), \ 1189 (width) - (fixed) - (ovflw) > 0 ? \ 1190 (width) - (fixed) - (ovflw) : 0, \ 1191 (val)) - (width); \ 1192 if ((ovflw) < 0) \ 1193 (ovflw) = 0; \ 1194 } while (/* CONSTCOND */0) 1195 1196 ovflw = 0; 1197 PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan); 1198 PRWORD(ovflw, " %*u", 4, 1, pp->pr_size); 1199 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget); 1200 PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail); 1201 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput); 1202 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc); 1203 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree); 1204 PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages); 1205 PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat); 1206 PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages); 1207 PRWORD(ovflw, " %*s", 6, 1, maxp); 1208 PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle); 1209 1210 pool_chk(pp, pp->pr_wchan); 1211 } 1212 } 1213 1214 int 1215 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1216 { 1217 struct pool_item *pi; 1218 caddr_t page; 1219 int n; 1220 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 1221 int i, *ip; 1222 #endif 1223 1224 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask); 1225 if (page != ph->ph_page && 1226 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1227 if (label != NULL) 1228 printf("%s: ", label); 1229 printf("pool(%p:%s): page inconsistency: page %p; " 1230 "at page head addr %p (p %p)\n", 1231 pp, pp->pr_wchan, ph->ph_page, ph, page); 1232 return 1; 1233 } 1234 1235 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1236 pi != NULL; 1237 pi = TAILQ_NEXT(pi,pi_list), n++) { 1238 1239 #ifdef DIAGNOSTIC 1240 if (pi->pi_magic != PI_MAGIC) { 1241 if (label != NULL) 1242 printf("%s: ", label); 1243 printf("pool(%s): free list modified: " 1244 "page %p; item ordinal %d; addr %p " 1245 "(p %p); offset 0x%x=0x%x\n", 1246 pp->pr_wchan, ph->ph_page, n, pi, page, 1247 0, pi->pi_magic); 1248 } 1249 #ifdef POOL_DEBUG 1250 for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int); 1251 i < pp->pr_size / sizeof(int); i++) { 1252 if (ip[i] != PI_MAGIC) { 1253 printf("pool(%s): free list modified: " 1254 "page %p; item ordinal %d; addr %p " 1255 "(p %p); offset 0x%x=0x%x\n", 1256 pp->pr_wchan, ph->ph_page, n, pi, 1257 page, i * sizeof(int), ip[i]); 1258 } 1259 } 1260 1261 #endif /* POOL_DEBUG */ 1262 #endif /* DIAGNOSTIC */ 1263 page = 1264 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask); 1265 if (page == ph->ph_page) 1266 continue; 1267 1268 if (label != NULL) 1269 printf("%s: ", label); 1270 printf("pool(%p:%s): page inconsistency: page %p;" 1271 " item ordinal %d; addr %p (p %p)\n", pp, 1272 pp->pr_wchan, ph->ph_page, n, pi, page); 1273 return 1; 1274 } 1275 return 0; 1276 } 1277 1278 int 1279 pool_chk(struct pool *pp, const char *label) 1280 { 1281 struct pool_item_header *ph; 1282 int r = 0; 1283 1284 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) 1285 r += pool_chk_page(pp, label, ph); 1286 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) 1287 r += pool_chk_page(pp, label, ph); 1288 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) 1289 r += pool_chk_page(pp, label, ph); 1290 1291 return (r); 1292 } 1293 1294 void 1295 pool_walk(struct pool *pp, int full, int (*pr)(const char *, ...), 1296 void (*func)(void *, int, int (*)(const char *, ...))) 1297 { 1298 struct pool_item_header *ph; 1299 struct pool_item *pi; 1300 caddr_t cp; 1301 int n; 1302 1303 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1304 cp = ph->ph_colored; 1305 n = ph->ph_nmissing; 1306 1307 while (n--) { 1308 func(cp, full, pr); 1309 cp += pp->pr_size; 1310 } 1311 } 1312 1313 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1314 cp = ph->ph_colored; 1315 n = ph->ph_nmissing; 1316 1317 do { 1318 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1319 if (cp == (caddr_t)pi) 1320 break; 1321 } 1322 if (cp != (caddr_t)pi) { 1323 func(cp, full, pr); 1324 n--; 1325 } 1326 1327 cp += pp->pr_size; 1328 } while (n > 0); 1329 } 1330 } 1331 #endif 1332 1333 /* 1334 * We have three different sysctls. 1335 * kern.pool.npools - the number of pools. 1336 * kern.pool.pool.<pool#> - the pool struct for the pool#. 1337 * kern.pool.name.<pool#> - the name for pool#. 1338 */ 1339 int 1340 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep) 1341 { 1342 struct pool *pp, *foundpool = NULL; 1343 size_t buflen = where != NULL ? *sizep : 0; 1344 int npools = 0, s; 1345 unsigned int lookfor; 1346 size_t len; 1347 1348 switch (*name) { 1349 case KERN_POOL_NPOOLS: 1350 if (namelen != 1 || buflen != sizeof(int)) 1351 return (EINVAL); 1352 lookfor = 0; 1353 break; 1354 case KERN_POOL_NAME: 1355 if (namelen != 2 || buflen < 1) 1356 return (EINVAL); 1357 lookfor = name[1]; 1358 break; 1359 case KERN_POOL_POOL: 1360 if (namelen != 2 || buflen != sizeof(struct pool)) 1361 return (EINVAL); 1362 lookfor = name[1]; 1363 break; 1364 default: 1365 return (EINVAL); 1366 } 1367 1368 s = splvm(); 1369 1370 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1371 npools++; 1372 if (lookfor == pp->pr_serial) { 1373 foundpool = pp; 1374 break; 1375 } 1376 } 1377 1378 splx(s); 1379 1380 if (*name != KERN_POOL_NPOOLS && foundpool == NULL) 1381 return (ENOENT); 1382 1383 switch (*name) { 1384 case KERN_POOL_NPOOLS: 1385 return copyout(&npools, where, buflen); 1386 case KERN_POOL_NAME: 1387 len = strlen(foundpool->pr_wchan) + 1; 1388 if (*sizep < len) 1389 return (ENOMEM); 1390 *sizep = len; 1391 return copyout(foundpool->pr_wchan, where, len); 1392 case KERN_POOL_POOL: 1393 return copyout(foundpool, where, buflen); 1394 } 1395 /* NOTREACHED */ 1396 return (0); /* XXX - Stupid gcc */ 1397 } 1398 1399 /* 1400 * Pool backend allocators. 1401 * 1402 * Each pool has a backend allocator that handles allocation, deallocation 1403 */ 1404 void *pool_page_alloc(struct pool *, int, int *); 1405 void pool_page_free(struct pool *, void *); 1406 1407 /* 1408 * safe for interrupts, name preserved for compat this is the default 1409 * allocator 1410 */ 1411 struct pool_allocator pool_allocator_nointr = { 1412 pool_page_alloc, pool_page_free, 0, 1413 }; 1414 1415 /* 1416 * XXX - we have at least three different resources for the same allocation 1417 * and each resource can be depleted. First we have the ready elements in 1418 * the pool. Then we have the resource (typically a vm_map) for this 1419 * allocator, then we have physical memory. Waiting for any of these can 1420 * be unnecessary when any other is freed, but the kernel doesn't support 1421 * sleeping on multiple addresses, so we have to fake. The caller sleeps on 1422 * the pool (so that we can be awakened when an item is returned to the pool), 1423 * but we set PA_WANT on the allocator. When a page is returned to 1424 * the allocator and PA_WANT is set pool_allocator_free will wakeup all 1425 * sleeping pools belonging to this allocator. (XXX - thundering herd). 1426 * We also wake up the allocator in case someone without a pool (malloc) 1427 * is sleeping waiting for this allocator. 1428 */ 1429 1430 void * 1431 pool_allocator_alloc(struct pool *pp, int flags, int *slowdown) 1432 { 1433 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1434 void *v; 1435 1436 if (waitok) 1437 mtx_leave(&pp->pr_mtx); 1438 v = pp->pr_alloc->pa_alloc(pp, flags, slowdown); 1439 if (waitok) 1440 mtx_enter(&pp->pr_mtx); 1441 1442 return (v); 1443 } 1444 1445 void 1446 pool_allocator_free(struct pool *pp, void *v) 1447 { 1448 struct pool_allocator *pa = pp->pr_alloc; 1449 1450 (*pa->pa_free)(pp, v); 1451 } 1452 1453 void * 1454 pool_page_alloc(struct pool *pp, int flags, int *slowdown) 1455 { 1456 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1457 1458 return (uvm_km_getpage(waitok, slowdown)); 1459 } 1460 1461 void 1462 pool_page_free(struct pool *pp, void *v) 1463 { 1464 1465 uvm_km_putpage(v); 1466 } 1467 1468 void * 1469 pool_large_alloc(struct pool *pp, int flags, int *slowdown) 1470 { 1471 int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT; 1472 vaddr_t va; 1473 int s; 1474 1475 s = splvm(); 1476 va = uvm_km_kmemalloc(kmem_map, NULL, pp->pr_alloc->pa_pagesz, kfl); 1477 splx(s); 1478 1479 return ((void *)va); 1480 } 1481 1482 void 1483 pool_large_free(struct pool *pp, void *v) 1484 { 1485 int s; 1486 1487 s = splvm(); 1488 uvm_km_free(kmem_map, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 1489 splx(s); 1490 } 1491 1492 void * 1493 pool_large_alloc_ni(struct pool *pp, int flags, int *slowdown) 1494 { 1495 int kfl = (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT; 1496 1497 return ((void *)uvm_km_kmemalloc(kernel_map, uvm.kernel_object, 1498 pp->pr_alloc->pa_pagesz, kfl)); 1499 } 1500 1501 void 1502 pool_large_free_ni(struct pool *pp, void *v) 1503 { 1504 uvm_km_free(kernel_map, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 1505 } 1506