1 /* $OpenBSD: subr_pool.c,v 1.105 2011/07/05 16:36:15 tedu Exp $ */ 2 /* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */ 3 4 /*- 5 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 10 * Simulation Facility, NASA Ames Research Center. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/proc.h> 37 #include <sys/errno.h> 38 #include <sys/kernel.h> 39 #include <sys/malloc.h> 40 #include <sys/pool.h> 41 #include <sys/syslog.h> 42 #include <sys/sysctl.h> 43 44 #include <uvm/uvm.h> 45 #include <dev/rndvar.h> 46 47 /* 48 * Pool resource management utility. 49 * 50 * Memory is allocated in pages which are split into pieces according to 51 * the pool item size. Each page is kept on one of three lists in the 52 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 53 * for empty, full and partially-full pages respectively. The individual 54 * pool items are on a linked list headed by `ph_itemlist' in each page 55 * header. The memory for building the page list is either taken from 56 * the allocated pages themselves (for small pool items) or taken from 57 * an internal pool of page headers (`phpool'). 58 */ 59 60 /* List of all pools */ 61 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 62 63 /* Private pool for page header structures */ 64 struct pool phpool; 65 66 struct pool_item_header { 67 /* Page headers */ 68 LIST_ENTRY(pool_item_header) 69 ph_pagelist; /* pool page list */ 70 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */ 71 RB_ENTRY(pool_item_header) 72 ph_node; /* Off-page page headers */ 73 int ph_nmissing; /* # of chunks in use */ 74 caddr_t ph_page; /* this page's address */ 75 caddr_t ph_colored; /* page's colored address */ 76 int ph_pagesize; 77 int ph_magic; 78 }; 79 80 struct pool_item { 81 #ifdef DIAGNOSTIC 82 u_int32_t pi_magic; 83 #endif 84 /* Other entries use only this list entry */ 85 TAILQ_ENTRY(pool_item) pi_list; 86 }; 87 88 #ifdef DEADBEEF1 89 #define PI_MAGIC DEADBEEF1 90 #else 91 #define PI_MAGIC 0xdeafbeef 92 #endif 93 94 #ifdef POOL_DEBUG 95 int pool_debug = 1; 96 #else 97 int pool_debug = 0; 98 #endif 99 100 #define POOL_NEEDS_CATCHUP(pp) \ 101 ((pp)->pr_nitems < (pp)->pr_minitems) 102 103 /* 104 * Every pool gets a unique serial number assigned to it. If this counter 105 * wraps, we're screwed, but we shouldn't create so many pools anyway. 106 */ 107 unsigned int pool_serial; 108 109 int pool_catchup(struct pool *); 110 void pool_prime_page(struct pool *, caddr_t, struct pool_item_header *); 111 void pool_update_curpage(struct pool *); 112 void *pool_do_get(struct pool *, int); 113 void pool_do_put(struct pool *, void *); 114 void pr_rmpage(struct pool *, struct pool_item_header *, 115 struct pool_pagelist *); 116 int pool_chk_page(struct pool *, struct pool_item_header *, int); 117 struct pool_item_header *pool_alloc_item_header(struct pool *, caddr_t , int); 118 119 void *pool_allocator_alloc(struct pool *, int, int *); 120 void pool_allocator_free(struct pool *, void *); 121 122 /* 123 * XXX - quick hack. For pools with large items we want to use a special 124 * allocator. For now, instead of having the allocator figure out 125 * the allocation size from the pool (which can be done trivially 126 * with round_page(pr_itemsperpage * pr_size)) which would require 127 * lots of changes everywhere, we just create allocators for each 128 * size. We limit those to 128 pages. 129 */ 130 #define POOL_LARGE_MAXPAGES 128 131 struct pool_allocator pool_allocator_large[POOL_LARGE_MAXPAGES]; 132 struct pool_allocator pool_allocator_large_ni[POOL_LARGE_MAXPAGES]; 133 void *pool_large_alloc(struct pool *, int, int *); 134 void pool_large_free(struct pool *, void *); 135 void *pool_large_alloc_ni(struct pool *, int, int *); 136 void pool_large_free_ni(struct pool *, void *); 137 138 139 #ifdef DDB 140 void pool_print_pagelist(struct pool_pagelist *, 141 int (*)(const char *, ...)); 142 void pool_print1(struct pool *, const char *, int (*)(const char *, ...)); 143 #endif 144 145 #define pool_sleep(pl) msleep(pl, &pl->pr_mtx, PSWP, pl->pr_wchan, 0) 146 147 static __inline int 148 phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 149 { 150 long diff = (vaddr_t)a->ph_page - (vaddr_t)b->ph_page; 151 if (diff < 0) 152 return -(-diff >= a->ph_pagesize); 153 else if (diff > 0) 154 return (diff >= b->ph_pagesize); 155 else 156 return (0); 157 } 158 159 RB_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 160 RB_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 161 162 /* 163 * Return the pool page header based on page address. 164 */ 165 static __inline struct pool_item_header * 166 pr_find_pagehead(struct pool *pp, void *v) 167 { 168 struct pool_item_header *ph, tmp; 169 170 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 171 caddr_t page; 172 173 page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask); 174 175 return ((struct pool_item_header *)(page + pp->pr_phoffset)); 176 } 177 178 /* 179 * The trick we're using in the tree compare function is to compare 180 * two elements equal when they overlap. We want to return the 181 * page header that belongs to the element just before this address. 182 * We don't want this element to compare equal to the next element, 183 * so the compare function takes the pagesize from the lower element. 184 * If this header is the lower, its pagesize is zero, so it can't 185 * overlap with the next header. But if the header we're looking for 186 * is lower, we'll use its pagesize and it will overlap and return 187 * equal. 188 */ 189 tmp.ph_page = v; 190 tmp.ph_pagesize = 0; 191 ph = RB_FIND(phtree, &pp->pr_phtree, &tmp); 192 193 if (ph) { 194 KASSERT(ph->ph_page <= (caddr_t)v); 195 KASSERT(ph->ph_page + ph->ph_pagesize > (caddr_t)v); 196 } 197 return ph; 198 } 199 200 /* 201 * Remove a page from the pool. 202 */ 203 void 204 pr_rmpage(struct pool *pp, struct pool_item_header *ph, 205 struct pool_pagelist *pq) 206 { 207 208 /* 209 * If the page was idle, decrement the idle page count. 210 */ 211 if (ph->ph_nmissing == 0) { 212 #ifdef DIAGNOSTIC 213 if (pp->pr_nidle == 0) 214 panic("pr_rmpage: nidle inconsistent"); 215 if (pp->pr_nitems < pp->pr_itemsperpage) 216 panic("pr_rmpage: nitems inconsistent"); 217 #endif 218 pp->pr_nidle--; 219 } 220 221 pp->pr_nitems -= pp->pr_itemsperpage; 222 223 /* 224 * Unlink a page from the pool and release it (or queue it for release). 225 */ 226 LIST_REMOVE(ph, ph_pagelist); 227 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 228 RB_REMOVE(phtree, &pp->pr_phtree, ph); 229 if (pq) { 230 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 231 } else { 232 pool_allocator_free(pp, ph->ph_page); 233 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 234 pool_put(&phpool, ph); 235 } 236 pp->pr_npages--; 237 pp->pr_npagefree++; 238 239 pool_update_curpage(pp); 240 } 241 242 /* 243 * Initialize the given pool resource structure. 244 * 245 * We export this routine to allow other kernel parts to declare 246 * static pools that must be initialized before malloc() is available. 247 */ 248 void 249 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 250 const char *wchan, struct pool_allocator *palloc) 251 { 252 int off, slack; 253 254 #ifdef MALLOC_DEBUG 255 if ((flags & PR_DEBUG) && (ioff != 0 || align != 0)) 256 flags &= ~PR_DEBUG; 257 #endif 258 /* 259 * Check arguments and construct default values. 260 */ 261 if (palloc == NULL) { 262 if (size > PAGE_SIZE) { 263 int psize; 264 265 /* 266 * XXX - should take align into account as well. 267 */ 268 if (size == round_page(size)) 269 psize = size / PAGE_SIZE; 270 else 271 psize = PAGE_SIZE / roundup(size % PAGE_SIZE, 272 1024); 273 if (psize > POOL_LARGE_MAXPAGES) 274 psize = POOL_LARGE_MAXPAGES; 275 if (flags & PR_WAITOK) 276 palloc = &pool_allocator_large_ni[psize-1]; 277 else 278 palloc = &pool_allocator_large[psize-1]; 279 if (palloc->pa_pagesz == 0) { 280 palloc->pa_pagesz = psize * PAGE_SIZE; 281 if (flags & PR_WAITOK) { 282 palloc->pa_alloc = pool_large_alloc_ni; 283 palloc->pa_free = pool_large_free_ni; 284 } else { 285 palloc->pa_alloc = pool_large_alloc; 286 palloc->pa_free = pool_large_free; 287 } 288 } 289 } else { 290 palloc = &pool_allocator_nointr; 291 } 292 } 293 if (palloc->pa_pagesz == 0) { 294 palloc->pa_pagesz = PAGE_SIZE; 295 } 296 if (palloc->pa_pagemask == 0) { 297 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 298 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 299 } 300 301 if (align == 0) 302 align = ALIGN(1); 303 304 if (size < sizeof(struct pool_item)) 305 size = sizeof(struct pool_item); 306 307 size = roundup(size, align); 308 #ifdef DIAGNOSTIC 309 if (size > palloc->pa_pagesz) 310 panic("pool_init: pool item size (%lu) too large", 311 (u_long)size); 312 #endif 313 314 /* 315 * Initialize the pool structure. 316 */ 317 LIST_INIT(&pp->pr_emptypages); 318 LIST_INIT(&pp->pr_fullpages); 319 LIST_INIT(&pp->pr_partpages); 320 pp->pr_curpage = NULL; 321 pp->pr_npages = 0; 322 pp->pr_minitems = 0; 323 pp->pr_minpages = 0; 324 pp->pr_maxpages = 8; 325 pp->pr_roflags = flags; 326 pp->pr_flags = 0; 327 pp->pr_size = size; 328 pp->pr_align = align; 329 pp->pr_wchan = wchan; 330 pp->pr_alloc = palloc; 331 pp->pr_nitems = 0; 332 pp->pr_nout = 0; 333 pp->pr_hardlimit = UINT_MAX; 334 pp->pr_hardlimit_warning = NULL; 335 pp->pr_hardlimit_ratecap.tv_sec = 0; 336 pp->pr_hardlimit_ratecap.tv_usec = 0; 337 pp->pr_hardlimit_warning_last.tv_sec = 0; 338 pp->pr_hardlimit_warning_last.tv_usec = 0; 339 pp->pr_serial = ++pool_serial; 340 if (pool_serial == 0) 341 panic("pool_init: too much uptime"); 342 343 /* constructor, destructor, and arg */ 344 pp->pr_ctor = NULL; 345 pp->pr_dtor = NULL; 346 pp->pr_arg = NULL; 347 348 /* 349 * Decide whether to put the page header off page to avoid 350 * wasting too large a part of the page. Off-page page headers 351 * go into an RB tree, so we can match a returned item with 352 * its header based on the page address. 353 * We use 1/16 of the page size as the threshold (XXX: tune) 354 */ 355 if (pp->pr_size < palloc->pa_pagesz/16 && pp->pr_size < PAGE_SIZE) { 356 /* Use the end of the page for the page header */ 357 pp->pr_roflags |= PR_PHINPAGE; 358 pp->pr_phoffset = off = palloc->pa_pagesz - 359 ALIGN(sizeof(struct pool_item_header)); 360 } else { 361 /* The page header will be taken from our page header pool */ 362 pp->pr_phoffset = 0; 363 off = palloc->pa_pagesz; 364 RB_INIT(&pp->pr_phtree); 365 } 366 367 /* 368 * Alignment is to take place at `ioff' within the item. This means 369 * we must reserve up to `align - 1' bytes on the page to allow 370 * appropriate positioning of each item. 371 * 372 * Silently enforce `0 <= ioff < align'. 373 */ 374 pp->pr_itemoffset = ioff = ioff % align; 375 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; 376 KASSERT(pp->pr_itemsperpage != 0); 377 378 /* 379 * Use the slack between the chunks and the page header 380 * for "cache coloring". 381 */ 382 slack = off - pp->pr_itemsperpage * pp->pr_size; 383 pp->pr_maxcolor = (slack / align) * align; 384 pp->pr_curcolor = 0; 385 386 pp->pr_nget = 0; 387 pp->pr_nfail = 0; 388 pp->pr_nput = 0; 389 pp->pr_npagealloc = 0; 390 pp->pr_npagefree = 0; 391 pp->pr_hiwat = 0; 392 pp->pr_nidle = 0; 393 394 pp->pr_ipl = -1; 395 mtx_init(&pp->pr_mtx, IPL_NONE); 396 397 if (phpool.pr_size == 0) { 398 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 399 0, "phpool", NULL); 400 pool_setipl(&phpool, IPL_HIGH); 401 } 402 403 /* pglistalloc/constraint parameters */ 404 pp->pr_crange = &kp_dirty; 405 406 /* Insert this into the list of all pools. */ 407 TAILQ_INSERT_HEAD(&pool_head, pp, pr_poollist); 408 } 409 410 void 411 pool_setipl(struct pool *pp, int ipl) 412 { 413 pp->pr_ipl = ipl; 414 mtx_init(&pp->pr_mtx, ipl); 415 } 416 417 /* 418 * Decommission a pool resource. 419 */ 420 void 421 pool_destroy(struct pool *pp) 422 { 423 struct pool_item_header *ph; 424 425 #ifdef DIAGNOSTIC 426 if (pp->pr_nout != 0) 427 panic("pool_destroy: pool busy: still out: %u", pp->pr_nout); 428 #endif 429 430 /* Remove all pages */ 431 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 432 pr_rmpage(pp, ph, NULL); 433 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 434 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 435 436 /* Remove from global pool list */ 437 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 438 } 439 440 struct pool_item_header * 441 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags) 442 { 443 struct pool_item_header *ph; 444 445 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 446 ph = (struct pool_item_header *)(storage + pp->pr_phoffset); 447 else 448 ph = pool_get(&phpool, (flags & ~(PR_WAITOK | PR_ZERO)) | 449 PR_NOWAIT); 450 if (pool_debug) 451 ph->ph_magic = PI_MAGIC; 452 return (ph); 453 } 454 455 /* 456 * Grab an item from the pool; must be called at appropriate spl level 457 */ 458 void * 459 pool_get(struct pool *pp, int flags) 460 { 461 void *v; 462 463 KASSERT(flags & (PR_WAITOK | PR_NOWAIT)); 464 465 #ifdef DIAGNOSTIC 466 if ((flags & PR_WAITOK) != 0) 467 assertwaitok(); 468 #endif /* DIAGNOSTIC */ 469 470 mtx_enter(&pp->pr_mtx); 471 #ifdef POOL_DEBUG 472 if (pp->pr_roflags & PR_DEBUGCHK) { 473 if (pool_chk(pp)) 474 panic("before pool_get"); 475 } 476 #endif 477 v = pool_do_get(pp, flags); 478 #ifdef POOL_DEBUG 479 if (pp->pr_roflags & PR_DEBUGCHK) { 480 if (pool_chk(pp)) 481 panic("after pool_get"); 482 } 483 #endif 484 mtx_leave(&pp->pr_mtx); 485 if (v == NULL) 486 return (v); 487 488 if (pp->pr_ctor) { 489 if (flags & PR_ZERO) 490 panic("pool_get: PR_ZERO when ctor set"); 491 if (pp->pr_ctor(pp->pr_arg, v, flags)) { 492 mtx_enter(&pp->pr_mtx); 493 pool_do_put(pp, v); 494 mtx_leave(&pp->pr_mtx); 495 v = NULL; 496 } 497 } else { 498 if (flags & PR_ZERO) 499 memset(v, 0, pp->pr_size); 500 } 501 if (v != NULL) 502 pp->pr_nget++; 503 return (v); 504 } 505 506 void * 507 pool_do_get(struct pool *pp, int flags) 508 { 509 struct pool_item *pi; 510 struct pool_item_header *ph; 511 void *v; 512 int slowdown = 0; 513 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 514 int i, *ip; 515 #endif 516 517 #ifdef MALLOC_DEBUG 518 if (pp->pr_roflags & PR_DEBUG) { 519 void *addr; 520 521 addr = NULL; 522 debug_malloc(pp->pr_size, M_DEBUG, 523 (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr); 524 return (addr); 525 } 526 #endif 527 528 startover: 529 /* 530 * Check to see if we've reached the hard limit. If we have, 531 * and we can wait, then wait until an item has been returned to 532 * the pool. 533 */ 534 #ifdef DIAGNOSTIC 535 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) 536 panic("pool_do_get: %s: crossed hard limit", pp->pr_wchan); 537 #endif 538 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 539 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 540 /* 541 * XXX: A warning isn't logged in this case. Should 542 * it be? 543 */ 544 pp->pr_flags |= PR_WANTED; 545 pool_sleep(pp); 546 goto startover; 547 } 548 549 /* 550 * Log a message that the hard limit has been hit. 551 */ 552 if (pp->pr_hardlimit_warning != NULL && 553 ratecheck(&pp->pr_hardlimit_warning_last, 554 &pp->pr_hardlimit_ratecap)) 555 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 556 557 pp->pr_nfail++; 558 return (NULL); 559 } 560 561 /* 562 * The convention we use is that if `curpage' is not NULL, then 563 * it points at a non-empty bucket. In particular, `curpage' 564 * never points at a page header which has PR_PHINPAGE set and 565 * has no items in its bucket. 566 */ 567 if ((ph = pp->pr_curpage) == NULL) { 568 #ifdef DIAGNOSTIC 569 if (pp->pr_nitems != 0) { 570 printf("pool_do_get: %s: curpage NULL, nitems %u\n", 571 pp->pr_wchan, pp->pr_nitems); 572 panic("pool_do_get: nitems inconsistent"); 573 } 574 #endif 575 576 /* 577 * Call the back-end page allocator for more memory. 578 */ 579 v = pool_allocator_alloc(pp, flags, &slowdown); 580 if (__predict_true(v != NULL)) 581 ph = pool_alloc_item_header(pp, v, flags); 582 583 if (__predict_false(v == NULL || ph == NULL)) { 584 if (v != NULL) 585 pool_allocator_free(pp, v); 586 587 if ((flags & PR_WAITOK) == 0) { 588 pp->pr_nfail++; 589 return (NULL); 590 } 591 592 /* 593 * Wait for items to be returned to this pool. 594 * 595 * XXX: maybe we should wake up once a second and 596 * try again? 597 */ 598 pp->pr_flags |= PR_WANTED; 599 pool_sleep(pp); 600 goto startover; 601 } 602 603 /* We have more memory; add it to the pool */ 604 pool_prime_page(pp, v, ph); 605 pp->pr_npagealloc++; 606 607 if (slowdown && (flags & PR_WAITOK)) { 608 mtx_leave(&pp->pr_mtx); 609 yield(); 610 mtx_enter(&pp->pr_mtx); 611 } 612 613 /* Start the allocation process over. */ 614 goto startover; 615 } 616 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) { 617 panic("pool_do_get: %s: page empty", pp->pr_wchan); 618 } 619 #ifdef DIAGNOSTIC 620 if (__predict_false(pp->pr_nitems == 0)) { 621 printf("pool_do_get: %s: items on itemlist, nitems %u\n", 622 pp->pr_wchan, pp->pr_nitems); 623 panic("pool_do_get: nitems inconsistent"); 624 } 625 #endif 626 627 #ifdef DIAGNOSTIC 628 if (__predict_false(pi->pi_magic != PI_MAGIC)) 629 panic("pool_do_get(%s): free list modified: " 630 "page %p; item addr %p; offset 0x%x=0x%x", 631 pp->pr_wchan, ph->ph_page, pi, 0, pi->pi_magic); 632 #ifdef POOL_DEBUG 633 if (pool_debug && ph->ph_magic) { 634 for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int); 635 i < pp->pr_size / sizeof(int); i++) { 636 if (ip[i] != ph->ph_magic) { 637 panic("pool_do_get(%s): free list modified: " 638 "page %p; item addr %p; offset 0x%x=0x%x", 639 pp->pr_wchan, ph->ph_page, pi, 640 i * sizeof(int), ip[i]); 641 } 642 } 643 } 644 #endif /* POOL_DEBUG */ 645 #endif /* DIAGNOSTIC */ 646 647 /* 648 * Remove from item list. 649 */ 650 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list); 651 pp->pr_nitems--; 652 pp->pr_nout++; 653 if (ph->ph_nmissing == 0) { 654 #ifdef DIAGNOSTIC 655 if (__predict_false(pp->pr_nidle == 0)) 656 panic("pool_do_get: nidle inconsistent"); 657 #endif 658 pp->pr_nidle--; 659 660 /* 661 * This page was previously empty. Move it to the list of 662 * partially-full pages. This page is already curpage. 663 */ 664 LIST_REMOVE(ph, ph_pagelist); 665 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 666 } 667 ph->ph_nmissing++; 668 if (TAILQ_EMPTY(&ph->ph_itemlist)) { 669 #ifdef DIAGNOSTIC 670 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) { 671 panic("pool_do_get: %s: nmissing inconsistent", 672 pp->pr_wchan); 673 } 674 #endif 675 /* 676 * This page is now full. Move it to the full list 677 * and select a new current page. 678 */ 679 LIST_REMOVE(ph, ph_pagelist); 680 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 681 pool_update_curpage(pp); 682 } 683 684 /* 685 * If we have a low water mark and we are now below that low 686 * water mark, add more items to the pool. 687 */ 688 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 689 /* 690 * XXX: Should we log a warning? Should we set up a timeout 691 * to try again in a second or so? The latter could break 692 * a caller's assumptions about interrupt protection, etc. 693 */ 694 } 695 return (v); 696 } 697 698 /* 699 * Return resource to the pool; must be called at appropriate spl level 700 */ 701 void 702 pool_put(struct pool *pp, void *v) 703 { 704 if (pp->pr_dtor) 705 pp->pr_dtor(pp->pr_arg, v); 706 mtx_enter(&pp->pr_mtx); 707 #ifdef POOL_DEBUG 708 if (pp->pr_roflags & PR_DEBUGCHK) { 709 if (pool_chk(pp)) 710 panic("before pool_put"); 711 } 712 #endif 713 pool_do_put(pp, v); 714 #ifdef POOL_DEBUG 715 if (pp->pr_roflags & PR_DEBUGCHK) { 716 if (pool_chk(pp)) 717 panic("after pool_put"); 718 } 719 #endif 720 mtx_leave(&pp->pr_mtx); 721 pp->pr_nput++; 722 } 723 724 /* 725 * Internal version of pool_put(). 726 */ 727 void 728 pool_do_put(struct pool *pp, void *v) 729 { 730 struct pool_item *pi = v; 731 struct pool_item_header *ph; 732 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 733 int i, *ip; 734 #endif 735 736 if (v == NULL) 737 panic("pool_put of NULL"); 738 739 #ifdef MALLOC_DEBUG 740 if (pp->pr_roflags & PR_DEBUG) { 741 debug_free(v, M_DEBUG); 742 return; 743 } 744 #endif 745 746 #ifdef DIAGNOSTIC 747 if (pp->pr_ipl != -1) 748 splassert(pp->pr_ipl); 749 750 if (__predict_false(pp->pr_nout == 0)) { 751 printf("pool %s: putting with none out\n", 752 pp->pr_wchan); 753 panic("pool_do_put"); 754 } 755 #endif 756 757 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 758 panic("pool_do_put: %s: page header missing", pp->pr_wchan); 759 } 760 761 /* 762 * Return to item list. 763 */ 764 #ifdef DIAGNOSTIC 765 pi->pi_magic = PI_MAGIC; 766 #ifdef POOL_DEBUG 767 if (ph->ph_magic) { 768 for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int); 769 i < pp->pr_size / sizeof(int); i++) 770 ip[i] = ph->ph_magic; 771 } 772 #endif /* POOL_DEBUG */ 773 #endif /* DIAGNOSTIC */ 774 775 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 776 ph->ph_nmissing--; 777 pp->pr_nitems++; 778 pp->pr_nout--; 779 780 /* Cancel "pool empty" condition if it exists */ 781 if (pp->pr_curpage == NULL) 782 pp->pr_curpage = ph; 783 784 if (pp->pr_flags & PR_WANTED) { 785 pp->pr_flags &= ~PR_WANTED; 786 if (ph->ph_nmissing == 0) 787 pp->pr_nidle++; 788 wakeup(pp); 789 return; 790 } 791 792 /* 793 * If this page is now empty, do one of two things: 794 * 795 * (1) If we have more pages than the page high water mark, 796 * free the page back to the system. 797 * 798 * (2) Otherwise, move the page to the empty page list. 799 * 800 * Either way, select a new current page (so we use a partially-full 801 * page if one is available). 802 */ 803 if (ph->ph_nmissing == 0) { 804 pp->pr_nidle++; 805 if (pp->pr_nidle > pp->pr_maxpages) { 806 pr_rmpage(pp, ph, NULL); 807 } else { 808 LIST_REMOVE(ph, ph_pagelist); 809 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 810 } 811 pool_update_curpage(pp); 812 } 813 814 /* 815 * If the page was previously completely full, move it to the 816 * partially-full list and make it the current page. The next 817 * allocation will get the item from this page, instead of 818 * further fragmenting the pool. 819 */ 820 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 821 LIST_REMOVE(ph, ph_pagelist); 822 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 823 pp->pr_curpage = ph; 824 } 825 } 826 827 /* 828 * Add N items to the pool. 829 */ 830 int 831 pool_prime(struct pool *pp, int n) 832 { 833 struct pool_item_header *ph; 834 caddr_t cp; 835 int newpages; 836 int slowdown; 837 838 mtx_enter(&pp->pr_mtx); 839 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 840 841 while (newpages-- > 0) { 842 cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown); 843 if (__predict_true(cp != NULL)) 844 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 845 if (__predict_false(cp == NULL || ph == NULL)) { 846 if (cp != NULL) 847 pool_allocator_free(pp, cp); 848 break; 849 } 850 851 pool_prime_page(pp, cp, ph); 852 pp->pr_npagealloc++; 853 pp->pr_minpages++; 854 } 855 856 if (pp->pr_minpages >= pp->pr_maxpages) 857 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 858 859 mtx_leave(&pp->pr_mtx); 860 return (0); 861 } 862 863 /* 864 * Add a page worth of items to the pool. 865 * 866 * Note, we must be called with the pool descriptor LOCKED. 867 */ 868 void 869 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph) 870 { 871 struct pool_item *pi; 872 caddr_t cp = storage; 873 unsigned int align = pp->pr_align; 874 unsigned int ioff = pp->pr_itemoffset; 875 int n; 876 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 877 int i, *ip; 878 #endif 879 880 /* 881 * Insert page header. 882 */ 883 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 884 TAILQ_INIT(&ph->ph_itemlist); 885 ph->ph_page = storage; 886 ph->ph_pagesize = pp->pr_alloc->pa_pagesz; 887 ph->ph_nmissing = 0; 888 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 889 RB_INSERT(phtree, &pp->pr_phtree, ph); 890 891 pp->pr_nidle++; 892 893 /* 894 * Color this page. 895 */ 896 cp = (caddr_t)(cp + pp->pr_curcolor); 897 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 898 pp->pr_curcolor = 0; 899 900 /* 901 * Adjust storage to apply alignment to `pr_itemoffset' in each item. 902 */ 903 if (ioff != 0) 904 cp = (caddr_t)(cp + (align - ioff)); 905 ph->ph_colored = cp; 906 907 /* 908 * Insert remaining chunks on the bucket list. 909 */ 910 n = pp->pr_itemsperpage; 911 pp->pr_nitems += n; 912 913 while (n--) { 914 pi = (struct pool_item *)cp; 915 916 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); 917 918 /* Insert on page list */ 919 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list); 920 921 #ifdef DIAGNOSTIC 922 pi->pi_magic = PI_MAGIC; 923 #ifdef POOL_DEBUG 924 if (ph->ph_magic) { 925 for (ip = (int *)pi, i = sizeof(*pi)/sizeof(int); 926 i < pp->pr_size / sizeof(int); i++) 927 ip[i] = ph->ph_magic; 928 } 929 #endif /* POOL_DEBUG */ 930 #endif /* DIAGNOSTIC */ 931 cp = (caddr_t)(cp + pp->pr_size); 932 } 933 934 /* 935 * If the pool was depleted, point at the new page. 936 */ 937 if (pp->pr_curpage == NULL) 938 pp->pr_curpage = ph; 939 940 if (++pp->pr_npages > pp->pr_hiwat) 941 pp->pr_hiwat = pp->pr_npages; 942 } 943 944 /* 945 * Used by pool_get() when nitems drops below the low water mark. This 946 * is used to catch up pr_nitems with the low water mark. 947 * 948 * Note we never wait for memory here, we let the caller decide what to do. 949 */ 950 int 951 pool_catchup(struct pool *pp) 952 { 953 struct pool_item_header *ph; 954 caddr_t cp; 955 int error = 0; 956 int slowdown; 957 958 while (POOL_NEEDS_CATCHUP(pp)) { 959 /* 960 * Call the page back-end allocator for more memory. 961 */ 962 cp = pool_allocator_alloc(pp, PR_NOWAIT, &slowdown); 963 if (__predict_true(cp != NULL)) 964 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT); 965 if (__predict_false(cp == NULL || ph == NULL)) { 966 if (cp != NULL) 967 pool_allocator_free(pp, cp); 968 error = ENOMEM; 969 break; 970 } 971 pool_prime_page(pp, cp, ph); 972 pp->pr_npagealloc++; 973 } 974 975 return (error); 976 } 977 978 void 979 pool_update_curpage(struct pool *pp) 980 { 981 982 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 983 if (pp->pr_curpage == NULL) { 984 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 985 } 986 } 987 988 void 989 pool_setlowat(struct pool *pp, int n) 990 { 991 992 pp->pr_minitems = n; 993 pp->pr_minpages = (n == 0) 994 ? 0 995 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 996 997 mtx_enter(&pp->pr_mtx); 998 /* Make sure we're caught up with the newly-set low water mark. */ 999 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1000 /* 1001 * XXX: Should we log a warning? Should we set up a timeout 1002 * to try again in a second or so? The latter could break 1003 * a caller's assumptions about interrupt protection, etc. 1004 */ 1005 } 1006 mtx_leave(&pp->pr_mtx); 1007 } 1008 1009 void 1010 pool_sethiwat(struct pool *pp, int n) 1011 { 1012 1013 pp->pr_maxpages = (n == 0) 1014 ? 0 1015 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1016 } 1017 1018 int 1019 pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap) 1020 { 1021 int error = 0; 1022 1023 if (n < pp->pr_nout) { 1024 error = EINVAL; 1025 goto done; 1026 } 1027 1028 pp->pr_hardlimit = n; 1029 pp->pr_hardlimit_warning = warnmsg; 1030 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1031 pp->pr_hardlimit_warning_last.tv_sec = 0; 1032 pp->pr_hardlimit_warning_last.tv_usec = 0; 1033 1034 done: 1035 return (error); 1036 } 1037 1038 void 1039 pool_set_constraints(struct pool *pp, const struct kmem_pa_mode *mode) 1040 { 1041 pp->pr_crange = mode; 1042 } 1043 1044 void 1045 pool_set_ctordtor(struct pool *pp, int (*ctor)(void *, void *, int), 1046 void (*dtor)(void *, void *), void *arg) 1047 { 1048 pp->pr_ctor = ctor; 1049 pp->pr_dtor = dtor; 1050 pp->pr_arg = arg; 1051 } 1052 /* 1053 * Release all complete pages that have not been used recently. 1054 * 1055 * Returns non-zero if any pages have been reclaimed. 1056 */ 1057 int 1058 pool_reclaim(struct pool *pp) 1059 { 1060 struct pool_item_header *ph, *phnext; 1061 struct pool_pagelist pq; 1062 1063 LIST_INIT(&pq); 1064 1065 mtx_enter(&pp->pr_mtx); 1066 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1067 phnext = LIST_NEXT(ph, ph_pagelist); 1068 1069 /* Check our minimum page claim */ 1070 if (pp->pr_npages <= pp->pr_minpages) 1071 break; 1072 1073 KASSERT(ph->ph_nmissing == 0); 1074 1075 /* 1076 * If freeing this page would put us below 1077 * the low water mark, stop now. 1078 */ 1079 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1080 pp->pr_minitems) 1081 break; 1082 1083 pr_rmpage(pp, ph, &pq); 1084 } 1085 mtx_leave(&pp->pr_mtx); 1086 1087 if (LIST_EMPTY(&pq)) 1088 return (0); 1089 while ((ph = LIST_FIRST(&pq)) != NULL) { 1090 LIST_REMOVE(ph, ph_pagelist); 1091 pool_allocator_free(pp, ph->ph_page); 1092 if (pp->pr_roflags & PR_PHINPAGE) 1093 continue; 1094 pool_put(&phpool, ph); 1095 } 1096 1097 return (1); 1098 } 1099 1100 /* 1101 * Release all complete pages that have not been used recently 1102 * from all pools. 1103 */ 1104 void 1105 pool_reclaim_all(void) 1106 { 1107 struct pool *pp; 1108 TAILQ_FOREACH(pp, &pool_head, pr_poollist) 1109 pool_reclaim(pp); 1110 } 1111 1112 #ifdef DDB 1113 #include <machine/db_machdep.h> 1114 #include <ddb/db_interface.h> 1115 #include <ddb/db_output.h> 1116 1117 /* 1118 * Diagnostic helpers. 1119 */ 1120 void 1121 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...)) 1122 { 1123 pool_print1(pp, modif, pr); 1124 } 1125 1126 void 1127 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...)) 1128 { 1129 struct pool_item_header *ph; 1130 #ifdef DIAGNOSTIC 1131 struct pool_item *pi; 1132 #endif 1133 1134 LIST_FOREACH(ph, pl, ph_pagelist) { 1135 (*pr)("\t\tpage %p, nmissing %d\n", 1136 ph->ph_page, ph->ph_nmissing); 1137 #ifdef DIAGNOSTIC 1138 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1139 if (pi->pi_magic != PI_MAGIC) { 1140 (*pr)("\t\t\titem %p, magic 0x%x\n", 1141 pi, pi->pi_magic); 1142 } 1143 } 1144 #endif 1145 } 1146 } 1147 1148 void 1149 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...)) 1150 { 1151 struct pool_item_header *ph; 1152 int print_pagelist = 0; 1153 char c; 1154 1155 while ((c = *modif++) != '\0') { 1156 if (c == 'p') 1157 print_pagelist = 1; 1158 modif++; 1159 } 1160 1161 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1162 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1163 pp->pr_roflags); 1164 (*pr)("\talloc %p\n", pp->pr_alloc); 1165 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1166 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1167 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1168 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1169 1170 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n", 1171 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1172 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1173 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1174 1175 if (print_pagelist == 0) 1176 return; 1177 1178 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1179 (*pr)("\n\tempty page list:\n"); 1180 pool_print_pagelist(&pp->pr_emptypages, pr); 1181 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1182 (*pr)("\n\tfull page list:\n"); 1183 pool_print_pagelist(&pp->pr_fullpages, pr); 1184 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1185 (*pr)("\n\tpartial-page list:\n"); 1186 pool_print_pagelist(&pp->pr_partpages, pr); 1187 1188 if (pp->pr_curpage == NULL) 1189 (*pr)("\tno current page\n"); 1190 else 1191 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1192 } 1193 1194 void 1195 db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif) 1196 { 1197 struct pool *pp; 1198 char maxp[16]; 1199 int ovflw; 1200 char mode; 1201 1202 mode = modif[0]; 1203 if (mode != '\0' && mode != 'a') { 1204 db_printf("usage: show all pools [/a]\n"); 1205 return; 1206 } 1207 1208 if (mode == '\0') 1209 db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n", 1210 "Name", 1211 "Size", 1212 "Requests", 1213 "Fail", 1214 "Releases", 1215 "Pgreq", 1216 "Pgrel", 1217 "Npage", 1218 "Hiwat", 1219 "Minpg", 1220 "Maxpg", 1221 "Idle"); 1222 else 1223 db_printf("%-10s %18s %18s\n", 1224 "Name", "Address", "Allocator"); 1225 1226 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1227 if (mode == 'a') { 1228 db_printf("%-10s %18p %18p\n", pp->pr_wchan, pp, 1229 pp->pr_alloc); 1230 continue; 1231 } 1232 1233 if (!pp->pr_nget) 1234 continue; 1235 1236 if (pp->pr_maxpages == UINT_MAX) 1237 snprintf(maxp, sizeof maxp, "inf"); 1238 else 1239 snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages); 1240 1241 #define PRWORD(ovflw, fmt, width, fixed, val) do { \ 1242 (ovflw) += db_printf((fmt), \ 1243 (width) - (fixed) - (ovflw) > 0 ? \ 1244 (width) - (fixed) - (ovflw) : 0, \ 1245 (val)) - (width); \ 1246 if ((ovflw) < 0) \ 1247 (ovflw) = 0; \ 1248 } while (/* CONSTCOND */0) 1249 1250 ovflw = 0; 1251 PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan); 1252 PRWORD(ovflw, " %*u", 4, 1, pp->pr_size); 1253 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget); 1254 PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail); 1255 PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput); 1256 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc); 1257 PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree); 1258 PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages); 1259 PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat); 1260 PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages); 1261 PRWORD(ovflw, " %*s", 6, 1, maxp); 1262 PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle); 1263 1264 pool_chk(pp); 1265 } 1266 } 1267 1268 int 1269 pool_chk_page(struct pool *pp, struct pool_item_header *ph, int expected) 1270 { 1271 struct pool_item *pi; 1272 caddr_t page; 1273 int n; 1274 #if defined(DIAGNOSTIC) && defined(POOL_DEBUG) 1275 int i, *ip; 1276 #endif 1277 const char *label = pp->pr_wchan; 1278 1279 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask); 1280 if (page != ph->ph_page && 1281 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1282 printf("%s: ", label); 1283 printf("pool(%p:%s): page inconsistency: page %p; " 1284 "at page head addr %p (p %p)\n", 1285 pp, pp->pr_wchan, ph->ph_page, ph, page); 1286 return 1; 1287 } 1288 1289 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0; 1290 pi != NULL; 1291 pi = TAILQ_NEXT(pi,pi_list), n++) { 1292 1293 #ifdef DIAGNOSTIC 1294 if (pi->pi_magic != PI_MAGIC) { 1295 printf("%s: ", label); 1296 printf("pool(%s): free list modified: " 1297 "page %p; item ordinal %d; addr %p " 1298 "(p %p); offset 0x%x=0x%x\n", 1299 pp->pr_wchan, ph->ph_page, n, pi, page, 1300 0, pi->pi_magic); 1301 } 1302 #ifdef POOL_DEBUG 1303 if (pool_debug && ph->ph_magic) { 1304 for (ip = (int *)pi, i = sizeof(*pi) / sizeof(int); 1305 i < pp->pr_size / sizeof(int); i++) { 1306 if (ip[i] != ph->ph_magic) { 1307 printf("pool(%s): free list modified: " 1308 "page %p; item ordinal %d; addr %p " 1309 "(p %p); offset 0x%x=0x%x\n", 1310 pp->pr_wchan, ph->ph_page, n, pi, 1311 page, i * sizeof(int), ip[i]); 1312 } 1313 } 1314 } 1315 1316 #endif /* POOL_DEBUG */ 1317 #endif /* DIAGNOSTIC */ 1318 page = 1319 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask); 1320 if (page == ph->ph_page) 1321 continue; 1322 1323 printf("%s: ", label); 1324 printf("pool(%p:%s): page inconsistency: page %p;" 1325 " item ordinal %d; addr %p (p %p)\n", pp, 1326 pp->pr_wchan, ph->ph_page, n, pi, page); 1327 return 1; 1328 } 1329 if (n + ph->ph_nmissing != pp->pr_itemsperpage) { 1330 printf("pool(%p:%s): page inconsistency: page %p;" 1331 " %d on list, %d missing, %d items per page\n", pp, 1332 pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing, 1333 pp->pr_itemsperpage); 1334 return 1; 1335 } 1336 if (expected >= 0 && n != expected) { 1337 printf("pool(%p:%s): page inconsistency: page %p;" 1338 " %d on list, %d missing, %d expected\n", pp, 1339 pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing, 1340 expected); 1341 return 1; 1342 } 1343 return 0; 1344 } 1345 1346 int 1347 pool_chk(struct pool *pp) 1348 { 1349 struct pool_item_header *ph; 1350 int r = 0; 1351 1352 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) 1353 r += pool_chk_page(pp, ph, pp->pr_itemsperpage); 1354 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) 1355 r += pool_chk_page(pp, ph, 0); 1356 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) 1357 r += pool_chk_page(pp, ph, -1); 1358 1359 return (r); 1360 } 1361 1362 void 1363 pool_walk(struct pool *pp, int full, int (*pr)(const char *, ...), 1364 void (*func)(void *, int, int (*)(const char *, ...))) 1365 { 1366 struct pool_item_header *ph; 1367 struct pool_item *pi; 1368 caddr_t cp; 1369 int n; 1370 1371 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1372 cp = ph->ph_colored; 1373 n = ph->ph_nmissing; 1374 1375 while (n--) { 1376 func(cp, full, pr); 1377 cp += pp->pr_size; 1378 } 1379 } 1380 1381 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1382 cp = ph->ph_colored; 1383 n = ph->ph_nmissing; 1384 1385 do { 1386 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1387 if (cp == (caddr_t)pi) 1388 break; 1389 } 1390 if (cp != (caddr_t)pi) { 1391 func(cp, full, pr); 1392 n--; 1393 } 1394 1395 cp += pp->pr_size; 1396 } while (n > 0); 1397 } 1398 } 1399 #endif 1400 1401 /* 1402 * We have three different sysctls. 1403 * kern.pool.npools - the number of pools. 1404 * kern.pool.pool.<pool#> - the pool struct for the pool#. 1405 * kern.pool.name.<pool#> - the name for pool#. 1406 */ 1407 int 1408 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep) 1409 { 1410 struct pool *pp, *foundpool = NULL; 1411 size_t buflen = where != NULL ? *sizep : 0; 1412 int npools = 0, s; 1413 unsigned int lookfor; 1414 size_t len; 1415 1416 switch (*name) { 1417 case KERN_POOL_NPOOLS: 1418 if (namelen != 1 || buflen != sizeof(int)) 1419 return (EINVAL); 1420 lookfor = 0; 1421 break; 1422 case KERN_POOL_NAME: 1423 if (namelen != 2 || buflen < 1) 1424 return (EINVAL); 1425 lookfor = name[1]; 1426 break; 1427 case KERN_POOL_POOL: 1428 if (namelen != 2 || buflen != sizeof(struct pool)) 1429 return (EINVAL); 1430 lookfor = name[1]; 1431 break; 1432 default: 1433 return (EINVAL); 1434 } 1435 1436 s = splvm(); 1437 1438 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1439 npools++; 1440 if (lookfor == pp->pr_serial) { 1441 foundpool = pp; 1442 break; 1443 } 1444 } 1445 1446 splx(s); 1447 1448 if (*name != KERN_POOL_NPOOLS && foundpool == NULL) 1449 return (ENOENT); 1450 1451 switch (*name) { 1452 case KERN_POOL_NPOOLS: 1453 return copyout(&npools, where, buflen); 1454 case KERN_POOL_NAME: 1455 len = strlen(foundpool->pr_wchan) + 1; 1456 if (*sizep < len) 1457 return (ENOMEM); 1458 *sizep = len; 1459 return copyout(foundpool->pr_wchan, where, len); 1460 case KERN_POOL_POOL: 1461 return copyout(foundpool, where, buflen); 1462 } 1463 /* NOTREACHED */ 1464 return (0); /* XXX - Stupid gcc */ 1465 } 1466 1467 /* 1468 * Pool backend allocators. 1469 * 1470 * Each pool has a backend allocator that handles allocation, deallocation 1471 */ 1472 void *pool_page_alloc(struct pool *, int, int *); 1473 void pool_page_free(struct pool *, void *); 1474 1475 /* 1476 * safe for interrupts, name preserved for compat this is the default 1477 * allocator 1478 */ 1479 struct pool_allocator pool_allocator_nointr = { 1480 pool_page_alloc, pool_page_free, 0, 1481 }; 1482 1483 /* 1484 * XXX - we have at least three different resources for the same allocation 1485 * and each resource can be depleted. First we have the ready elements in 1486 * the pool. Then we have the resource (typically a vm_map) for this 1487 * allocator, then we have physical memory. Waiting for any of these can 1488 * be unnecessary when any other is freed, but the kernel doesn't support 1489 * sleeping on multiple addresses, so we have to fake. The caller sleeps on 1490 * the pool (so that we can be awakened when an item is returned to the pool), 1491 * but we set PA_WANT on the allocator. When a page is returned to 1492 * the allocator and PA_WANT is set pool_allocator_free will wakeup all 1493 * sleeping pools belonging to this allocator. (XXX - thundering herd). 1494 * We also wake up the allocator in case someone without a pool (malloc) 1495 * is sleeping waiting for this allocator. 1496 */ 1497 1498 void * 1499 pool_allocator_alloc(struct pool *pp, int flags, int *slowdown) 1500 { 1501 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE; 1502 void *v; 1503 1504 if (waitok) 1505 mtx_leave(&pp->pr_mtx); 1506 v = pp->pr_alloc->pa_alloc(pp, flags, slowdown); 1507 if (waitok) 1508 mtx_enter(&pp->pr_mtx); 1509 1510 return (v); 1511 } 1512 1513 void 1514 pool_allocator_free(struct pool *pp, void *v) 1515 { 1516 struct pool_allocator *pa = pp->pr_alloc; 1517 1518 (*pa->pa_free)(pp, v); 1519 } 1520 1521 void * 1522 pool_page_alloc(struct pool *pp, int flags, int *slowdown) 1523 { 1524 struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; 1525 1526 kd.kd_waitok = (flags & PR_WAITOK); 1527 kd.kd_slowdown = slowdown; 1528 1529 return (km_alloc(PAGE_SIZE, &kv_page, pp->pr_crange, &kd)); 1530 } 1531 1532 void 1533 pool_page_free(struct pool *pp, void *v) 1534 { 1535 km_free(v, PAGE_SIZE, &kv_page, pp->pr_crange); 1536 } 1537 1538 void * 1539 pool_large_alloc(struct pool *pp, int flags, int *slowdown) 1540 { 1541 struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; 1542 void *v; 1543 int s; 1544 1545 kd.kd_waitok = (flags & PR_WAITOK); 1546 kd.kd_slowdown = slowdown; 1547 1548 s = splvm(); 1549 v = km_alloc(pp->pr_alloc->pa_pagesz, &kv_intrsafe, pp->pr_crange, 1550 &kd); 1551 splx(s); 1552 1553 return (v); 1554 } 1555 1556 void 1557 pool_large_free(struct pool *pp, void *v) 1558 { 1559 int s; 1560 1561 s = splvm(); 1562 km_free(v, pp->pr_alloc->pa_pagesz, &kv_intrsafe, pp->pr_crange); 1563 splx(s); 1564 } 1565 1566 void * 1567 pool_large_alloc_ni(struct pool *pp, int flags, int *slowdown) 1568 { 1569 struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER; 1570 1571 kd.kd_waitok = (flags & PR_WAITOK); 1572 kd.kd_slowdown = slowdown; 1573 1574 return (km_alloc(pp->pr_alloc->pa_pagesz, &kv_any, pp->pr_crange, &kd)); 1575 } 1576 1577 void 1578 pool_large_free_ni(struct pool *pp, void *v) 1579 { 1580 km_free(v, pp->pr_alloc->pa_pagesz, &kv_any, pp->pr_crange); 1581 } 1582