xref: /openbsd-src/sys/kern/subr_pool.c (revision 0eea0d082377cb9c3ec583313dc4d52b7b6a4d6d)
1 /*	$OpenBSD: subr_pool.c,v 1.45 2004/07/29 09:18:17 mickey Exp $	*/
2 /*	$NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10  * Simulation Facility, NASA Ames Research Center.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the NetBSD
23  *	Foundation, Inc. and its contributors.
24  * 4. Neither the name of The NetBSD Foundation nor the names of its
25  *    contributors may be used to endorse or promote products derived
26  *    from this software without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/lock.h>
48 #include <sys/pool.h>
49 #include <sys/syslog.h>
50 #include <sys/sysctl.h>
51 
52 #include <uvm/uvm.h>
53 
54 /*
55  * XXX - for now.
56  */
57 #ifdef LOCKDEBUG
58 #define simple_lock_freecheck(a, s) do { /* nothing */ } while (0)
59 #define simple_lock_only_held(lkp, str) do { /* nothing */ } while (0)
60 #endif
61 
62 /*
63  * Pool resource management utility.
64  *
65  * Memory is allocated in pages which are split into pieces according to
66  * the pool item size. Each page is kept on one of three lists in the
67  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
68  * for empty, full and partially-full pages respectively. The individual
69  * pool items are on a linked list headed by `ph_itemlist' in each page
70  * header. The memory for building the page list is either taken from
71  * the allocated pages themselves (for small pool items) or taken from
72  * an internal pool of page headers (`phpool').
73  */
74 
75 /* List of all pools */
76 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
77 
78 /* Private pool for page header structures */
79 static struct pool phpool;
80 
81 /* # of seconds to retain page after last use */
82 int pool_inactive_time = 10;
83 
84 /* Next candidate for drainage (see pool_drain()) */
85 static struct pool	*drainpp;
86 
87 /* This spin lock protects both pool_head and drainpp. */
88 struct simplelock pool_head_slock;
89 
90 struct pool_item_header {
91 	/* Page headers */
92 	LIST_ENTRY(pool_item_header)
93 				ph_pagelist;	/* pool page list */
94 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
95 	SPLAY_ENTRY(pool_item_header)
96 				ph_node;	/* Off-page page headers */
97 	int			ph_nmissing;	/* # of chunks in use */
98 	caddr_t			ph_page;	/* this page's address */
99 	struct timeval		ph_time;	/* last referenced */
100 };
101 
102 struct pool_item {
103 #ifdef DIAGNOSTIC
104 	int pi_magic;
105 #endif
106 #define	PI_MAGIC 0xdeafbeef
107 	/* Other entries use only this list entry */
108 	TAILQ_ENTRY(pool_item)	pi_list;
109 };
110 
111 #define	POOL_NEEDS_CATCHUP(pp)						\
112 	((pp)->pr_nitems < (pp)->pr_minitems)
113 
114 /*
115  * Every pool get a unique serial number assigned to it. If this counter
116  * wraps, we're screwed, but we shouldn't create so many pools anyway.
117  */
118 unsigned int pool_serial;
119 
120 /*
121  * Pool cache management.
122  *
123  * Pool caches provide a way for constructed objects to be cached by the
124  * pool subsystem.  This can lead to performance improvements by avoiding
125  * needless object construction/destruction; it is deferred until absolutely
126  * necessary.
127  *
128  * Caches are grouped into cache groups.  Each cache group references
129  * up to 16 constructed objects.  When a cache allocates an object
130  * from the pool, it calls the object's constructor and places it into
131  * a cache group.  When a cache group frees an object back to the pool,
132  * it first calls the object's destructor.  This allows the object to
133  * persist in constructed form while freed to the cache.
134  *
135  * Multiple caches may exist for each pool.  This allows a single
136  * object type to have multiple constructed forms.  The pool references
137  * each cache, so that when a pool is drained by the pagedaemon, it can
138  * drain each individual cache as well.  Each time a cache is drained,
139  * the most idle cache group is freed to the pool in its entirety.
140  *
141  * Pool caches are layed on top of pools.  By layering them, we can avoid
142  * the complexity of cache management for pools which would not benefit
143  * from it.
144  */
145 
146 /* The cache group pool. */
147 static struct pool pcgpool;
148 
149 /* The pool cache group. */
150 #define	PCG_NOBJECTS		16
151 struct pool_cache_group {
152 	TAILQ_ENTRY(pool_cache_group)
153 		pcg_list;	/* link in the pool cache's group list */
154 	u_int	pcg_avail;	/* # available objects */
155 				/* pointers to the objects */
156 	void	*pcg_objects[PCG_NOBJECTS];
157 };
158 
159 void	pool_cache_reclaim(struct pool_cache *);
160 void	pool_cache_do_invalidate(struct pool_cache *, int,
161     void (*)(struct pool *, void *));
162 
163 int	pool_catchup(struct pool *);
164 void	pool_prime_page(struct pool *, caddr_t, struct pool_item_header *);
165 void	pool_update_curpage(struct pool *);
166 void	pool_do_put(struct pool *, void *);
167 void	pr_rmpage(struct pool *, struct pool_item_header *,
168     struct pool_pagelist *);
169 int	pool_chk_page(struct pool *, const char *, struct pool_item_header *);
170 
171 void	*pool_allocator_alloc(struct pool *, int);
172 void	pool_allocator_free(struct pool *, void *);
173 
174 #ifdef DDB
175 void pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...));
176 void pool_print1(struct pool *, const char *, int (*)(const char *, ...));
177 #endif
178 
179 
180 /*
181  * Pool log entry. An array of these is allocated in pool_init().
182  */
183 struct pool_log {
184 	const char	*pl_file;
185 	long		pl_line;
186 	int		pl_action;
187 #define	PRLOG_GET	1
188 #define	PRLOG_PUT	2
189 	void		*pl_addr;
190 };
191 
192 /* Number of entries in pool log buffers */
193 #ifndef POOL_LOGSIZE
194 #define	POOL_LOGSIZE	10
195 #endif
196 
197 int pool_logsize = POOL_LOGSIZE;
198 
199 #ifdef POOL_DIAGNOSTIC
200 static __inline void
201 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
202 {
203 	int n = pp->pr_curlogentry;
204 	struct pool_log *pl;
205 
206 	if ((pp->pr_roflags & PR_LOGGING) == 0)
207 		return;
208 
209 	/*
210 	 * Fill in the current entry. Wrap around and overwrite
211 	 * the oldest entry if necessary.
212 	 */
213 	pl = &pp->pr_log[n];
214 	pl->pl_file = file;
215 	pl->pl_line = line;
216 	pl->pl_action = action;
217 	pl->pl_addr = v;
218 	if (++n >= pp->pr_logsize)
219 		n = 0;
220 	pp->pr_curlogentry = n;
221 }
222 
223 static void
224 pr_printlog(struct pool *pp, struct pool_item *pi,
225     int (*pr)(const char *, ...))
226 {
227 	int i = pp->pr_logsize;
228 	int n = pp->pr_curlogentry;
229 
230 	if ((pp->pr_roflags & PR_LOGGING) == 0)
231 		return;
232 
233 	/*
234 	 * Print all entries in this pool's log.
235 	 */
236 	while (i-- > 0) {
237 		struct pool_log *pl = &pp->pr_log[n];
238 		if (pl->pl_action != 0) {
239 			if (pi == NULL || pi == pl->pl_addr) {
240 				(*pr)("\tlog entry %d:\n", i);
241 				(*pr)("\t\taction = %s, addr = %p\n",
242 				    pl->pl_action == PRLOG_GET ? "get" : "put",
243 				    pl->pl_addr);
244 				(*pr)("\t\tfile: %s at line %lu\n",
245 				    pl->pl_file, pl->pl_line);
246 			}
247 		}
248 		if (++n >= pp->pr_logsize)
249 			n = 0;
250 	}
251 }
252 
253 static __inline void
254 pr_enter(struct pool *pp, const char *file, long line)
255 {
256 
257 	if (__predict_false(pp->pr_entered_file != NULL)) {
258 		printf("pool %s: reentrancy at file %s line %ld\n",
259 		    pp->pr_wchan, file, line);
260 		printf("         previous entry at file %s line %ld\n",
261 		    pp->pr_entered_file, pp->pr_entered_line);
262 		panic("pr_enter");
263 	}
264 
265 	pp->pr_entered_file = file;
266 	pp->pr_entered_line = line;
267 }
268 
269 static __inline void
270 pr_leave(struct pool *pp)
271 {
272 
273 	if (__predict_false(pp->pr_entered_file == NULL)) {
274 		printf("pool %s not entered?\n", pp->pr_wchan);
275 		panic("pr_leave");
276 	}
277 
278 	pp->pr_entered_file = NULL;
279 	pp->pr_entered_line = 0;
280 }
281 
282 static __inline void
283 pr_enter_check(struct pool *pp, int (*pr)(const char *, ...))
284 {
285 
286 	if (pp->pr_entered_file != NULL)
287 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
288 		    pp->pr_entered_file, pp->pr_entered_line);
289 }
290 #else
291 #define	pr_log(pp, v, action, file, line)
292 #define	pr_printlog(pp, pi, pr)
293 #define	pr_enter(pp, file, line)
294 #define	pr_leave(pp)
295 #define	pr_enter_check(pp, pr)
296 #endif /* POOL_DIAGNOSTIC */
297 
298 static __inline int
299 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
300 {
301 	if (a->ph_page < b->ph_page)
302 		return (-1);
303 	else if (a->ph_page > b->ph_page)
304 		return (1);
305 	else
306 		return (0);
307 }
308 
309 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
310 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
311 
312 /*
313  * Return the pool page header based on page address.
314  */
315 static __inline struct pool_item_header *
316 pr_find_pagehead(struct pool *pp, caddr_t page)
317 {
318 	struct pool_item_header *ph, tmp;
319 
320 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
321 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
322 
323 	tmp.ph_page = page;
324 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
325 	return ph;
326 }
327 
328 /*
329  * Remove a page from the pool.
330  */
331 void
332 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
333      struct pool_pagelist *pq)
334 {
335 	int s;
336 
337 	/*
338 	 * If the page was idle, decrement the idle page count.
339 	 */
340 	if (ph->ph_nmissing == 0) {
341 #ifdef DIAGNOSTIC
342 		if (pp->pr_nidle == 0)
343 			panic("pr_rmpage: nidle inconsistent");
344 		if (pp->pr_nitems < pp->pr_itemsperpage)
345 			panic("pr_rmpage: nitems inconsistent");
346 #endif
347 		pp->pr_nidle--;
348 	}
349 
350 	pp->pr_nitems -= pp->pr_itemsperpage;
351 
352 	/*
353 	 * Unlink a page from the pool and release it (or queue it for release).
354 	 */
355 	LIST_REMOVE(ph, ph_pagelist);
356 	if (pq) {
357 		LIST_INSERT_HEAD(pq, ph, ph_pagelist);
358 	} else {
359 		pool_allocator_free(pp, ph->ph_page);
360 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
361 			SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
362 			s = splhigh();
363 			pool_put(&phpool, ph);
364 			splx(s);
365 		}
366 	}
367 	pp->pr_npages--;
368 	pp->pr_npagefree++;
369 
370 	pool_update_curpage(pp);
371 }
372 
373 /*
374  * Initialize the given pool resource structure.
375  *
376  * We export this routine to allow other kernel parts to declare
377  * static pools that must be initialized before malloc() is available.
378  */
379 void
380 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
381     const char *wchan, struct pool_allocator *palloc)
382 {
383 	int off, slack;
384 
385 #ifdef POOL_DIAGNOSTIC
386 	/*
387 	 * Always log if POOL_DIAGNOSTIC is defined.
388 	 */
389 	if (pool_logsize != 0)
390 		flags |= PR_LOGGING;
391 #endif
392 
393 #ifdef MALLOC_DEBUG
394 	if ((flags & PR_DEBUG) && (ioff != 0 || align != 0))
395 		flags &= ~PR_DEBUG;
396 #endif
397 	/*
398 	 * Check arguments and construct default values.
399 	 */
400 	if (palloc == NULL)
401 		palloc = &pool_allocator_nointr;
402 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
403 		if (palloc->pa_pagesz == 0)
404 			palloc->pa_pagesz = PAGE_SIZE;
405 
406 		TAILQ_INIT(&palloc->pa_list);
407 
408 		simple_lock_init(&palloc->pa_slock);
409 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
410 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
411 		palloc->pa_flags |= PA_INITIALIZED;
412 	}
413 
414 	if (align == 0)
415 		align = ALIGN(1);
416 
417 	if (size < sizeof(struct pool_item))
418 		size = sizeof(struct pool_item);
419 
420 	size = roundup(size, align);
421 #ifdef DIAGNOSTIC
422 	if (size > palloc->pa_pagesz)
423 		panic("pool_init: pool item size (%lu) too large",
424 		      (u_long)size);
425 #endif
426 
427 	/*
428 	 * Initialize the pool structure.
429 	 */
430 	LIST_INIT(&pp->pr_emptypages);
431 	LIST_INIT(&pp->pr_fullpages);
432 	LIST_INIT(&pp->pr_partpages);
433 	TAILQ_INIT(&pp->pr_cachelist);
434 	pp->pr_curpage = NULL;
435 	pp->pr_npages = 0;
436 	pp->pr_minitems = 0;
437 	pp->pr_minpages = 0;
438 	pp->pr_maxpages = 8;
439 	pp->pr_roflags = flags;
440 	pp->pr_flags = 0;
441 	pp->pr_size = size;
442 	pp->pr_align = align;
443 	pp->pr_wchan = wchan;
444 	pp->pr_alloc = palloc;
445 	pp->pr_nitems = 0;
446 	pp->pr_nout = 0;
447 	pp->pr_hardlimit = UINT_MAX;
448 	pp->pr_hardlimit_warning = NULL;
449 	pp->pr_hardlimit_ratecap.tv_sec = 0;
450 	pp->pr_hardlimit_ratecap.tv_usec = 0;
451 	pp->pr_hardlimit_warning_last.tv_sec = 0;
452 	pp->pr_hardlimit_warning_last.tv_usec = 0;
453 	pp->pr_drain_hook = NULL;
454 	pp->pr_drain_hook_arg = NULL;
455 	pp->pr_serial = ++pool_serial;
456 	if (pool_serial == 0)
457 		panic("pool_init: too much uptime");
458 
459 	/*
460 	 * Decide whether to put the page header off page to avoid
461 	 * wasting too large a part of the page. Off-page page headers
462 	 * go on a hash table, so we can match a returned item
463 	 * with its header based on the page address.
464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
465 	 */
466 	if (pp->pr_size < palloc->pa_pagesz/16) {
467 		/* Use the end of the page for the page header */
468 		pp->pr_roflags |= PR_PHINPAGE;
469 		pp->pr_phoffset = off = palloc->pa_pagesz -
470 		    ALIGN(sizeof(struct pool_item_header));
471 	} else {
472 		/* The page header will be taken from our page header pool */
473 		pp->pr_phoffset = 0;
474 		off = palloc->pa_pagesz;
475 		SPLAY_INIT(&pp->pr_phtree);
476 	}
477 
478 	/*
479 	 * Alignment is to take place at `ioff' within the item. This means
480 	 * we must reserve up to `align - 1' bytes on the page to allow
481 	 * appropriate positioning of each item.
482 	 *
483 	 * Silently enforce `0 <= ioff < align'.
484 	 */
485 	pp->pr_itemoffset = ioff = ioff % align;
486 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
487 	KASSERT(pp->pr_itemsperpage != 0);
488 
489 	/*
490 	 * Use the slack between the chunks and the page header
491 	 * for "cache coloring".
492 	 */
493 	slack = off - pp->pr_itemsperpage * pp->pr_size;
494 	pp->pr_maxcolor = (slack / align) * align;
495 	pp->pr_curcolor = 0;
496 
497 	pp->pr_nget = 0;
498 	pp->pr_nfail = 0;
499 	pp->pr_nput = 0;
500 	pp->pr_npagealloc = 0;
501 	pp->pr_npagefree = 0;
502 	pp->pr_hiwat = 0;
503 	pp->pr_nidle = 0;
504 
505 #ifdef POOL_DIAGNOSTIC
506 	if (flags & PR_LOGGING) {
507 		if (kmem_map == NULL ||
508 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
509 		     M_TEMP, M_NOWAIT)) == NULL)
510 			pp->pr_roflags &= ~PR_LOGGING;
511 		pp->pr_curlogentry = 0;
512 		pp->pr_logsize = pool_logsize;
513 	}
514 #endif
515 
516 	pp->pr_entered_file = NULL;
517 	pp->pr_entered_line = 0;
518 
519 	simple_lock_init(&pp->pr_slock);
520 
521 	/*
522 	 * Initialize private page header pool and cache magazine pool if we
523 	 * haven't done so yet.
524 	 * XXX LOCKING.
525 	 */
526 	if (phpool.pr_size == 0) {
527 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
528 		    0, "phpool", NULL);
529 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
530 		    0, "pcgpool", NULL);
531 	}
532 
533 	simple_lock_init(&pool_head_slock);
534 
535 	/* Insert this into the list of all pools. */
536 	simple_lock(&pool_head_slock);
537 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
538 	simple_unlock(&pool_head_slock);
539 
540 	/* Insert into the list of pools using this allocator. */
541 	simple_lock(&palloc->pa_slock);
542 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
543 	simple_unlock(&palloc->pa_slock);
544 }
545 
546 /*
547  * De-commision a pool resource.
548  */
549 void
550 pool_destroy(struct pool *pp)
551 {
552 	struct pool_item_header *ph;
553 	struct pool_cache *pc;
554 
555 	/* Locking order: pool_allocator -> pool */
556 	simple_lock(&pp->pr_alloc->pa_slock);
557 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
558 	simple_unlock(&pp->pr_alloc->pa_slock);
559 
560 	/* Destroy all caches for this pool. */
561 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
562 		pool_cache_destroy(pc);
563 
564 #ifdef DIAGNOSTIC
565 	if (pp->pr_nout != 0) {
566 		pr_printlog(pp, NULL, printf);
567 		panic("pool_destroy: pool busy: still out: %u",
568 		    pp->pr_nout);
569 	}
570 #endif
571 
572 	/* Remove all pages */
573 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
574 		pr_rmpage(pp, ph, NULL);
575 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
576 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
577 
578 	/* Remove from global pool list */
579 	simple_lock(&pool_head_slock);
580 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
581 	if (drainpp == pp) {
582 		drainpp = NULL;
583 	}
584 	simple_unlock(&pool_head_slock);
585 
586 #ifdef POOL_DIAGNOSTIC
587 	if ((pp->pr_roflags & PR_LOGGING) != 0)
588 		free(pp->pr_log, M_TEMP);
589 #endif
590 }
591 
592 void
593 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
594 {
595 	/* XXX no locking -- must be used just after pool_init() */
596 #ifdef DIAGNOSTIC
597 	if (pp->pr_drain_hook != NULL)
598 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
599 #endif
600 	pp->pr_drain_hook = fn;
601 	pp->pr_drain_hook_arg = arg;
602 }
603 
604 static struct pool_item_header *
605 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
606 {
607 	struct pool_item_header *ph;
608 	int s;
609 
610 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
611 
612 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
613 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
614 	else {
615 		s = splhigh();
616 		ph = pool_get(&phpool, flags);
617 		splx(s);
618 	}
619 
620 	return (ph);
621 }
622 
623 /*
624  * Grab an item from the pool; must be called at appropriate spl level
625  */
626 void *
627 #ifdef POOL_DIAGNOSTIC
628 _pool_get(struct pool *pp, int flags, const char *file, long line)
629 #else
630 pool_get(struct pool *pp, int flags)
631 #endif
632 {
633 	struct pool_item *pi;
634 	struct pool_item_header *ph;
635 	void *v;
636 
637 #ifdef DIAGNOSTIC
638 	if ((flags & PR_WAITOK) != 0)
639 		splassert(IPL_NONE);
640 	if (__predict_false(curproc == NULL && /* doing_shutdown == 0 && XXX*/
641 			    (flags & PR_WAITOK) != 0))
642 		panic("pool_get: %s:must have NOWAIT", pp->pr_wchan);
643 
644 #ifdef LOCKDEBUG
645 	if (flags & PR_WAITOK)
646 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
647 #endif
648 #endif /* DIAGNOSTIC */
649 
650 #ifdef MALLOC_DEBUG
651 	if (pp->pr_roflags & PR_DEBUG) {
652 		void *addr;
653 
654 		addr = NULL;
655 		debug_malloc(pp->pr_size, M_DEBUG,
656 		    (flags & PR_WAITOK) ? M_WAITOK : M_NOWAIT, &addr);
657 		return (addr);
658 	}
659 #endif
660 
661 	simple_lock(&pp->pr_slock);
662 	pr_enter(pp, file, line);
663 
664  startover:
665 	/*
666 	 * Check to see if we've reached the hard limit.  If we have,
667 	 * and we can wait, then wait until an item has been returned to
668 	 * the pool.
669 	 */
670 #ifdef DIAGNOSTIC
671 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
672 		pr_leave(pp);
673 		simple_unlock(&pp->pr_slock);
674 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
675 	}
676 #endif
677 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
678 		if (pp->pr_drain_hook != NULL) {
679 			/*
680 			 * Since the drain hook is going to free things
681 			 * back to the pool, unlock, call hook, re-lock
682 			 * and check hardlimit condition again.
683 			 */
684 			pr_leave(pp);
685 			simple_unlock(&pp->pr_slock);
686 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
687 			simple_lock(&pp->pr_slock);
688 			pr_enter(pp, file, line);
689 			if (pp->pr_nout < pp->pr_hardlimit)
690 				goto startover;
691 		}
692 
693 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
694 			/*
695 			 * XXX: A warning isn't logged in this case.  Should
696 			 * it be?
697 			 */
698 			pp->pr_flags |= PR_WANTED;
699 			pr_leave(pp);
700 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
701 			pr_enter(pp, file, line);
702 			goto startover;
703 		}
704 
705 		/*
706 		 * Log a message that the hard limit has been hit.
707 		 */
708 		if (pp->pr_hardlimit_warning != NULL &&
709 		    ratecheck(&pp->pr_hardlimit_warning_last,
710 			      &pp->pr_hardlimit_ratecap))
711 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
712 
713 		pp->pr_nfail++;
714 
715 		pr_leave(pp);
716 		simple_unlock(&pp->pr_slock);
717 		return (NULL);
718 	}
719 
720 	/*
721 	 * The convention we use is that if `curpage' is not NULL, then
722 	 * it points at a non-empty bucket. In particular, `curpage'
723 	 * never points at a page header which has PR_PHINPAGE set and
724 	 * has no items in its bucket.
725 	 */
726 	if ((ph = pp->pr_curpage) == NULL) {
727 #ifdef DIAGNOSTIC
728 		if (pp->pr_nitems != 0) {
729 			simple_unlock(&pp->pr_slock);
730 			printf("pool_get: %s: curpage NULL, nitems %u\n",
731 			    pp->pr_wchan, pp->pr_nitems);
732 			panic("pool_get: nitems inconsistent");
733 		}
734 #endif
735 
736 		/*
737 		 * Call the back-end page allocator for more memory.
738 		 * Release the pool lock, as the back-end page allocator
739 		 * may block.
740 		 */
741 		pr_leave(pp);
742 		simple_unlock(&pp->pr_slock);
743 		v = pool_allocator_alloc(pp, flags);
744 		if (__predict_true(v != NULL))
745 			ph = pool_alloc_item_header(pp, v, flags);
746 		simple_lock(&pp->pr_slock);
747 		pr_enter(pp, file, line);
748 
749 		if (__predict_false(v == NULL || ph == NULL)) {
750 			if (v != NULL)
751 				pool_allocator_free(pp, v);
752 
753 			/*
754 			 * We were unable to allocate a page or item
755 			 * header, but we released the lock during
756 			 * allocation, so perhaps items were freed
757 			 * back to the pool.  Check for this case.
758 			 */
759 			if (pp->pr_curpage != NULL)
760 				goto startover;
761 
762 			if ((flags & PR_WAITOK) == 0) {
763 				pp->pr_nfail++;
764 				pr_leave(pp);
765 				simple_unlock(&pp->pr_slock);
766 				return (NULL);
767 			}
768 
769 			/*
770 			 * Wait for items to be returned to this pool.
771 			 *
772 			 * XXX: maybe we should wake up once a second and
773 			 * try again?
774 			 */
775 			pp->pr_flags |= PR_WANTED;
776 			/* PA_WANTED is already set on the allocator. */
777 			pr_leave(pp);
778 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
779 			pr_enter(pp, file, line);
780 			goto startover;
781 		}
782 
783 		/* We have more memory; add it to the pool */
784 		pool_prime_page(pp, v, ph);
785 		pp->pr_npagealloc++;
786 
787 		/* Start the allocation process over. */
788 		goto startover;
789 	}
790 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
791 		pr_leave(pp);
792 		simple_unlock(&pp->pr_slock);
793 		panic("pool_get: %s: page empty", pp->pr_wchan);
794 	}
795 #ifdef DIAGNOSTIC
796 	if (__predict_false(pp->pr_nitems == 0)) {
797 		pr_leave(pp);
798 		simple_unlock(&pp->pr_slock);
799 		printf("pool_get: %s: items on itemlist, nitems %u\n",
800 		    pp->pr_wchan, pp->pr_nitems);
801 		panic("pool_get: nitems inconsistent");
802 	}
803 #endif
804 
805 #ifdef POOL_DIAGNOSTIC
806 	pr_log(pp, v, PRLOG_GET, file, line);
807 #endif
808 
809 #ifdef DIAGNOSTIC
810 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
811 		pr_printlog(pp, pi, printf);
812 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
813 		       " item addr %p",
814 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
815 	}
816 #endif
817 
818 	/*
819 	 * Remove from item list.
820 	 */
821 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
822 	pp->pr_nitems--;
823 	pp->pr_nout++;
824 	if (ph->ph_nmissing == 0) {
825 #ifdef DIAGNOSTIC
826 		if (__predict_false(pp->pr_nidle == 0))
827 			panic("pool_get: nidle inconsistent");
828 #endif
829 		pp->pr_nidle--;
830 
831 		/*
832 		 * This page was previously empty.  Move it to the list of
833 		 * partially-full pages.  This page is already curpage.
834 		 */
835 		LIST_REMOVE(ph, ph_pagelist);
836 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
837 	}
838 	ph->ph_nmissing++;
839 	if (TAILQ_EMPTY(&ph->ph_itemlist)) {
840 #ifdef DIAGNOSTIC
841 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
842 			pr_leave(pp);
843 			simple_unlock(&pp->pr_slock);
844 			panic("pool_get: %s: nmissing inconsistent",
845 			    pp->pr_wchan);
846 		}
847 #endif
848 		/*
849 		 * This page is now full.  Move it to the full list
850 		 * and select a new current page.
851 		 */
852 		LIST_REMOVE(ph, ph_pagelist);
853 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
854 		pool_update_curpage(pp);
855 	}
856 
857 	pp->pr_nget++;
858 
859 	/*
860 	 * If we have a low water mark and we are now below that low
861 	 * water mark, add more items to the pool.
862 	 */
863 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
864 		/*
865 		 * XXX: Should we log a warning?  Should we set up a timeout
866 		 * to try again in a second or so?  The latter could break
867 		 * a caller's assumptions about interrupt protection, etc.
868 		 */
869 	}
870 
871 	pr_leave(pp);
872 	simple_unlock(&pp->pr_slock);
873 	return (v);
874 }
875 
876 /*
877  * Internal version of pool_put().  Pool is already locked/entered.
878  */
879 void
880 pool_do_put(struct pool *pp, void *v)
881 {
882 	struct pool_item *pi = v;
883 	struct pool_item_header *ph;
884 	caddr_t page;
885 
886 #ifdef MALLOC_DEBUG
887 	if (pp->pr_roflags & PR_DEBUG) {
888 		debug_free(v, M_DEBUG);
889 		return;
890 	}
891 #endif
892 
893 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
894 
895 	page = (caddr_t)((vaddr_t)v & pp->pr_alloc->pa_pagemask);
896 
897 #ifdef DIAGNOSTIC
898 	if (__predict_false(pp->pr_nout == 0)) {
899 		printf("pool %s: putting with none out\n",
900 		    pp->pr_wchan);
901 		panic("pool_put");
902 	}
903 #endif
904 
905 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
906 		pr_printlog(pp, NULL, printf);
907 		panic("pool_put: %s: page header missing", pp->pr_wchan);
908 	}
909 
910 #ifdef LOCKDEBUG
911 	/*
912 	 * Check if we're freeing a locked simple lock.
913 	 */
914 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
915 #endif
916 
917 	/*
918 	 * Return to item list.
919 	 */
920 #ifdef DIAGNOSTIC
921 	pi->pi_magic = PI_MAGIC;
922 #endif
923 #ifdef DEBUG
924 	{
925 		int i, *ip = v;
926 
927 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
928 			*ip++ = PI_MAGIC;
929 		}
930 	}
931 #endif
932 
933 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
934 	ph->ph_nmissing--;
935 	pp->pr_nput++;
936 	pp->pr_nitems++;
937 	pp->pr_nout--;
938 
939 	/* Cancel "pool empty" condition if it exists */
940 	if (pp->pr_curpage == NULL)
941 		pp->pr_curpage = ph;
942 
943 	if (pp->pr_flags & PR_WANTED) {
944 		pp->pr_flags &= ~PR_WANTED;
945 		if (ph->ph_nmissing == 0)
946 			pp->pr_nidle++;
947 		wakeup((caddr_t)pp);
948 		return;
949 	}
950 
951 	/*
952 	 * If this page is now empty, do one of two things:
953 	 *
954 	 *	(1) If we have more pages than the page high water mark,
955 	 *	    free the page back to the system.
956 	 *
957 	 *	(2) Otherwise, move the page to the empty page list.
958 	 *
959 	 * Either way, select a new current page (so we use a partially-full
960 	 * page if one is available).
961 	 */
962 	if (ph->ph_nmissing == 0) {
963 		pp->pr_nidle++;
964 		if (pp->pr_nidle > pp->pr_maxpages ||
965 		    (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
966 			pr_rmpage(pp, ph, NULL);
967 		} else {
968 			LIST_REMOVE(ph, ph_pagelist);
969 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
970 
971 			/*
972 			 * Update the timestamp on the page.  A page must
973 			 * be idle for some period of time before it can
974 			 * be reclaimed by the pagedaemon.  This minimizes
975 			 * ping-pong'ing for memory.
976 			 */
977 			microuptime(&ph->ph_time);
978 		}
979 		pool_update_curpage(pp);
980 	}
981 
982 	/*
983 	 * If the page was previously completely full, move it to the
984 	 * partially-full list and make it the current page.  The next
985 	 * allocation will get the item from this page, instead of
986 	 * further fragmenting the pool.
987 	 */
988 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
989 		LIST_REMOVE(ph, ph_pagelist);
990 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
991 		pp->pr_curpage = ph;
992 	}
993 }
994 
995 /*
996  * Return resource to the pool; must be called at appropriate spl level
997  */
998 #ifdef POOL_DIAGNOSTIC
999 void
1000 _pool_put(struct pool *pp, void *v, const char *file, long line)
1001 {
1002 
1003 	simple_lock(&pp->pr_slock);
1004 	pr_enter(pp, file, line);
1005 
1006 	pr_log(pp, v, PRLOG_PUT, file, line);
1007 
1008 	pool_do_put(pp, v);
1009 
1010 	pr_leave(pp);
1011 	simple_unlock(&pp->pr_slock);
1012 }
1013 #undef pool_put
1014 #endif /* POOL_DIAGNOSTIC */
1015 
1016 void
1017 pool_put(struct pool *pp, void *v)
1018 {
1019 
1020 	simple_lock(&pp->pr_slock);
1021 
1022 	pool_do_put(pp, v);
1023 
1024 	simple_unlock(&pp->pr_slock);
1025 }
1026 
1027 #ifdef POOL_DIAGNOSTIC
1028 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
1029 #endif
1030 
1031 /*
1032  * Add N items to the pool.
1033  */
1034 int
1035 pool_prime(struct pool *pp, int n)
1036 {
1037 	struct pool_item_header *ph;
1038 	caddr_t cp;
1039 	int newpages;
1040 
1041 	simple_lock(&pp->pr_slock);
1042 
1043 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1044 
1045 	while (newpages-- > 0) {
1046 		simple_unlock(&pp->pr_slock);
1047 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1048 		if (__predict_true(cp != NULL))
1049 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1050 		simple_lock(&pp->pr_slock);
1051 
1052 		if (__predict_false(cp == NULL || ph == NULL)) {
1053 			if (cp != NULL)
1054 				pool_allocator_free(pp, cp);
1055 			break;
1056 		}
1057 
1058 		pool_prime_page(pp, cp, ph);
1059 		pp->pr_npagealloc++;
1060 		pp->pr_minpages++;
1061 	}
1062 
1063 	if (pp->pr_minpages >= pp->pr_maxpages)
1064 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
1065 
1066 	simple_unlock(&pp->pr_slock);
1067 	return (0);
1068 }
1069 
1070 /*
1071  * Add a page worth of items to the pool.
1072  *
1073  * Note, we must be called with the pool descriptor LOCKED.
1074  */
1075 void
1076 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1077 {
1078 	struct pool_item *pi;
1079 	caddr_t cp = storage;
1080 	unsigned int align = pp->pr_align;
1081 	unsigned int ioff = pp->pr_itemoffset;
1082 	int n;
1083 
1084 #ifdef DIAGNOSTIC
1085 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1086 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1087 #endif
1088 
1089 	/*
1090 	 * Insert page header.
1091 	 */
1092 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1093 	TAILQ_INIT(&ph->ph_itemlist);
1094 	ph->ph_page = storage;
1095 	ph->ph_nmissing = 0;
1096 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1097 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1098 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1099 
1100 	pp->pr_nidle++;
1101 
1102 	/*
1103 	 * Color this page.
1104 	 */
1105 	cp = (caddr_t)(cp + pp->pr_curcolor);
1106 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1107 		pp->pr_curcolor = 0;
1108 
1109 	/*
1110 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1111 	 */
1112 	if (ioff != 0)
1113 		cp = (caddr_t)(cp + (align - ioff));
1114 
1115 	/*
1116 	 * Insert remaining chunks on the bucket list.
1117 	 */
1118 	n = pp->pr_itemsperpage;
1119 	pp->pr_nitems += n;
1120 
1121 	while (n--) {
1122 		pi = (struct pool_item *)cp;
1123 
1124 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1125 
1126 		/* Insert on page list */
1127 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1128 #ifdef DIAGNOSTIC
1129 		pi->pi_magic = PI_MAGIC;
1130 #endif
1131 		cp = (caddr_t)(cp + pp->pr_size);
1132 	}
1133 
1134 	/*
1135 	 * If the pool was depleted, point at the new page.
1136 	 */
1137 	if (pp->pr_curpage == NULL)
1138 		pp->pr_curpage = ph;
1139 
1140 	if (++pp->pr_npages > pp->pr_hiwat)
1141 		pp->pr_hiwat = pp->pr_npages;
1142 }
1143 
1144 /*
1145  * Used by pool_get() when nitems drops below the low water mark.  This
1146  * is used to catch up pr_nitems with the low water mark.
1147  *
1148  * Note 1, we never wait for memory here, we let the caller decide what to do.
1149  *
1150  * Note 2, we must be called with the pool already locked, and we return
1151  * with it locked.
1152  */
1153 int
1154 pool_catchup(struct pool *pp)
1155 {
1156 	struct pool_item_header *ph;
1157 	caddr_t cp;
1158 	int error = 0;
1159 
1160 	while (POOL_NEEDS_CATCHUP(pp)) {
1161 		/*
1162 		 * Call the page back-end allocator for more memory.
1163 		 *
1164 		 * XXX: We never wait, so should we bother unlocking
1165 		 * the pool descriptor?
1166 		 */
1167 		simple_unlock(&pp->pr_slock);
1168 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
1169 		if (__predict_true(cp != NULL))
1170 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1171 		simple_lock(&pp->pr_slock);
1172 		if (__predict_false(cp == NULL || ph == NULL)) {
1173 			if (cp != NULL)
1174 				pool_allocator_free(pp, cp);
1175 			error = ENOMEM;
1176 			break;
1177 		}
1178 		pool_prime_page(pp, cp, ph);
1179 		pp->pr_npagealloc++;
1180 	}
1181 
1182 	return (error);
1183 }
1184 
1185 void
1186 pool_update_curpage(struct pool *pp)
1187 {
1188 
1189 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1190 	if (pp->pr_curpage == NULL) {
1191 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1192 	}
1193 }
1194 
1195 void
1196 pool_setlowat(struct pool *pp, int n)
1197 {
1198 
1199 	simple_lock(&pp->pr_slock);
1200 
1201 	pp->pr_minitems = n;
1202 	pp->pr_minpages = (n == 0)
1203 		? 0
1204 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1205 
1206 	/* Make sure we're caught up with the newly-set low water mark. */
1207 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1208 		/*
1209 		 * XXX: Should we log a warning?  Should we set up a timeout
1210 		 * to try again in a second or so?  The latter could break
1211 		 * a caller's assumptions about interrupt protection, etc.
1212 		 */
1213 	}
1214 
1215 	simple_unlock(&pp->pr_slock);
1216 }
1217 
1218 void
1219 pool_sethiwat(struct pool *pp, int n)
1220 {
1221 
1222 	simple_lock(&pp->pr_slock);
1223 
1224 	pp->pr_maxpages = (n == 0)
1225 		? 0
1226 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1227 
1228 	simple_unlock(&pp->pr_slock);
1229 }
1230 
1231 int
1232 pool_sethardlimit(struct pool *pp, unsigned n, const char *warnmess, int ratecap)
1233 {
1234 	int error = 0;
1235 
1236 	simple_lock(&pp->pr_slock);
1237 
1238 	if (n < pp->pr_nout) {
1239 		error = EINVAL;
1240 		goto done;
1241 	}
1242 
1243 	pp->pr_hardlimit = n;
1244 	pp->pr_hardlimit_warning = warnmess;
1245 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1246 	pp->pr_hardlimit_warning_last.tv_sec = 0;
1247 	pp->pr_hardlimit_warning_last.tv_usec = 0;
1248 
1249 	/*
1250 	 * In-line version of pool_sethiwat(), because we don't want to
1251 	 * release the lock.
1252 	 */
1253 	pp->pr_maxpages = (n == 0 || n == UINT_MAX)
1254 		? n
1255 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1256 
1257  done:
1258 	simple_unlock(&pp->pr_slock);
1259 
1260 	return (error);
1261 }
1262 
1263 /*
1264  * Release all complete pages that have not been used recently.
1265  *
1266  * Returns non-zero if any pages have been reclaimed.
1267  */
1268 int
1269 #ifdef POOL_DIAGNOSTIC
1270 _pool_reclaim(struct pool *pp, const char *file, long line)
1271 #else
1272 pool_reclaim(struct pool *pp)
1273 #endif
1274 {
1275 	struct pool_item_header *ph, *phnext;
1276 	struct pool_cache *pc;
1277 	struct timeval curtime;
1278 	struct pool_pagelist pq;
1279 	struct timeval diff;
1280 	int s;
1281 
1282 	if (pp->pr_drain_hook != NULL) {
1283 		/*
1284 		 * The drain hook must be called with the pool unlocked.
1285 		 */
1286 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1287 	}
1288 
1289 	if (simple_lock_try(&pp->pr_slock) == 0)
1290 		return (0);
1291 	pr_enter(pp, file, line);
1292 
1293 	LIST_INIT(&pq);
1294 
1295 	/*
1296 	 * Reclaim items from the pool's caches.
1297 	 */
1298 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1299 		pool_cache_reclaim(pc);
1300 
1301 	microuptime(&curtime);
1302 
1303 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1304 		phnext = LIST_NEXT(ph, ph_pagelist);
1305 
1306 		/* Check our minimum page claim */
1307 		if (pp->pr_npages <= pp->pr_minpages)
1308 			break;
1309 
1310 		KASSERT(ph->ph_nmissing == 0);
1311 		timersub(&curtime, &ph->ph_time, &diff);
1312 		if (diff.tv_sec < pool_inactive_time)
1313 			continue;
1314 
1315 		/*
1316 		 * If freeing this page would put us below
1317 		 * the low water mark, stop now.
1318 		 */
1319 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
1320 		    pp->pr_minitems)
1321 			break;
1322 
1323 		pr_rmpage(pp, ph, &pq);
1324 	}
1325 
1326 	pr_leave(pp);
1327 	simple_unlock(&pp->pr_slock);
1328 	if (LIST_EMPTY(&pq))
1329 		return (0);
1330 	while ((ph = LIST_FIRST(&pq)) != NULL) {
1331 		LIST_REMOVE(ph, ph_pagelist);
1332 		pool_allocator_free(pp, ph->ph_page);
1333 		if (pp->pr_roflags & PR_PHINPAGE) {
1334 			continue;
1335 		}
1336 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
1337 		s = splhigh();
1338 		pool_put(&phpool, ph);
1339 		splx(s);
1340 	}
1341 
1342 	return (1);
1343 }
1344 
1345 
1346 /*
1347  * Drain pools, one at a time.
1348  *
1349  * Note, we must never be called from an interrupt context.
1350  */
1351 void
1352 pool_drain(void *arg)
1353 {
1354 	struct pool *pp;
1355 	int s;
1356 
1357 	pp = NULL;
1358 	s = splvm();
1359 	simple_lock(&pool_head_slock);
1360 	if (drainpp == NULL) {
1361 		drainpp = TAILQ_FIRST(&pool_head);
1362 	}
1363 	if (drainpp) {
1364 		pp = drainpp;
1365 		drainpp = TAILQ_NEXT(pp, pr_poollist);
1366 	}
1367 	simple_unlock(&pool_head_slock);
1368 	pool_reclaim(pp);
1369 	splx(s);
1370 }
1371 
1372 #ifdef DDB
1373 /*
1374  * Diagnostic helpers.
1375  */
1376 void
1377 pool_printit(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1378 {
1379 	int s;
1380 
1381 	s = splvm();
1382 	if (simple_lock_try(&pp->pr_slock) == 0) {
1383 		pr("pool %s is locked; try again later\n",
1384 		    pp->pr_wchan);
1385 		splx(s);
1386 		return;
1387 	}
1388 	pool_print1(pp, modif, pr);
1389 	simple_unlock(&pp->pr_slock);
1390 	splx(s);
1391 }
1392 
1393 void
1394 pool_print_pagelist(struct pool_pagelist *pl, int (*pr)(const char *, ...))
1395 {
1396 	struct pool_item_header *ph;
1397 #ifdef DIAGNOSTIC
1398 	struct pool_item *pi;
1399 #endif
1400 
1401 	LIST_FOREACH(ph, pl, ph_pagelist) {
1402 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1403 		    ph->ph_page, ph->ph_nmissing,
1404 		    (u_long)ph->ph_time.tv_sec,
1405 		    (u_long)ph->ph_time.tv_usec);
1406 #ifdef DIAGNOSTIC
1407 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1408 			if (pi->pi_magic != PI_MAGIC) {
1409 				(*pr)("\t\t\titem %p, magic 0x%x\n",
1410 				    pi, pi->pi_magic);
1411 			}
1412 		}
1413 #endif
1414 	}
1415 }
1416 
1417 void
1418 pool_print1(struct pool *pp, const char *modif, int (*pr)(const char *, ...))
1419 {
1420 	struct pool_item_header *ph;
1421 	struct pool_cache *pc;
1422 	struct pool_cache_group *pcg;
1423 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1424 	char c;
1425 
1426 	while ((c = *modif++) != '\0') {
1427 		if (c == 'l')
1428 			print_log = 1;
1429 		if (c == 'p')
1430 			print_pagelist = 1;
1431 		if (c == 'c')
1432 			print_cache = 1;
1433 		modif++;
1434 	}
1435 
1436 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1437 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1438 	    pp->pr_roflags);
1439 	(*pr)("\talloc %p\n", pp->pr_alloc);
1440 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1441 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1442 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1443 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1444 
1445 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1446 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1447 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1448 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1449 
1450 	if (print_pagelist == 0)
1451 		goto skip_pagelist;
1452 
1453 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1454 		(*pr)("\n\tempty page list:\n");
1455 	pool_print_pagelist(&pp->pr_emptypages, pr);
1456 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1457 		(*pr)("\n\tfull page list:\n");
1458 	pool_print_pagelist(&pp->pr_fullpages, pr);
1459 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1460 		(*pr)("\n\tpartial-page list:\n");
1461 	pool_print_pagelist(&pp->pr_partpages, pr);
1462 
1463 	if (pp->pr_curpage == NULL)
1464 		(*pr)("\tno current page\n");
1465 	else
1466 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1467 
1468 skip_pagelist:
1469 	if (print_log == 0)
1470 		goto skip_log;
1471 
1472 	(*pr)("\n");
1473 	if ((pp->pr_roflags & PR_LOGGING) == 0)
1474 		(*pr)("\tno log\n");
1475 	else
1476 		pr_printlog(pp, NULL, pr);
1477 
1478 skip_log:
1479 	if (print_cache == 0)
1480 		goto skip_cache;
1481 
1482 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1483 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1484 		    pc->pc_allocfrom, pc->pc_freeto);
1485 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
1486 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1487 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1488 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1489 			for (i = 0; i < PCG_NOBJECTS; i++)
1490 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1491 		}
1492 	}
1493 
1494 skip_cache:
1495 	pr_enter_check(pp, pr);
1496 }
1497 
1498 int
1499 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1500 {
1501 	struct pool_item *pi;
1502 	caddr_t page;
1503 	int n;
1504 
1505 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1506 	if (page != ph->ph_page &&
1507 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
1508 		if (label != NULL)
1509 			printf("%s: ", label);
1510 		printf("pool(%p:%s): page inconsistency: page %p;"
1511 		       " at page head addr %p (p %p)\n", pp,
1512 			pp->pr_wchan, ph->ph_page,
1513 			ph, page);
1514 		return 1;
1515 	}
1516 
1517 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1518 	     pi != NULL;
1519 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
1520 
1521 #ifdef DIAGNOSTIC
1522 		if (pi->pi_magic != PI_MAGIC) {
1523 			if (label != NULL)
1524 				printf("%s: ", label);
1525 			printf("pool(%s): free list modified: magic=%x;"
1526 			       " page %p; item ordinal %d;"
1527 			       " addr %p (p %p)\n",
1528 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
1529 				n, pi, page);
1530 			panic("pool");
1531 		}
1532 #endif
1533 		page =
1534 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1535 		if (page == ph->ph_page)
1536 			continue;
1537 
1538 		if (label != NULL)
1539 			printf("%s: ", label);
1540 		printf("pool(%p:%s): page inconsistency: page %p;"
1541 		       " item ordinal %d; addr %p (p %p)\n", pp,
1542 			pp->pr_wchan, ph->ph_page,
1543 			n, pi, page);
1544 		return 1;
1545 	}
1546 	return 0;
1547 }
1548 
1549 int
1550 pool_chk(struct pool *pp, const char *label)
1551 {
1552 	struct pool_item_header *ph;
1553 	int r = 0;
1554 
1555 	simple_lock(&pp->pr_slock);
1556 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1557 		r = pool_chk_page(pp, label, ph);
1558 		if (r) {
1559 			goto out;
1560 		}
1561 	}
1562 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1563 		r = pool_chk_page(pp, label, ph);
1564 		if (r) {
1565 			goto out;
1566 		}
1567 	}
1568 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1569 		r = pool_chk_page(pp, label, ph);
1570 		if (r) {
1571 			goto out;
1572 		}
1573 	}
1574 
1575 out:
1576 	simple_unlock(&pp->pr_slock);
1577 	return (r);
1578 }
1579 #endif
1580 
1581 /*
1582  * pool_cache_init:
1583  *
1584  *	Initialize a pool cache.
1585  *
1586  *	NOTE: If the pool must be protected from interrupts, we expect
1587  *	to be called at the appropriate interrupt priority level.
1588  */
1589 void
1590 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1591     int (*ctor)(void *, void *, int),
1592     void (*dtor)(void *, void *),
1593     void *arg)
1594 {
1595 
1596 	TAILQ_INIT(&pc->pc_grouplist);
1597 	simple_lock_init(&pc->pc_slock);
1598 
1599 	pc->pc_allocfrom = NULL;
1600 	pc->pc_freeto = NULL;
1601 	pc->pc_pool = pp;
1602 
1603 	pc->pc_ctor = ctor;
1604 	pc->pc_dtor = dtor;
1605 	pc->pc_arg  = arg;
1606 
1607 	pc->pc_hits   = 0;
1608 	pc->pc_misses = 0;
1609 
1610 	pc->pc_ngroups = 0;
1611 
1612 	pc->pc_nitems = 0;
1613 
1614 	simple_lock(&pp->pr_slock);
1615 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1616 	simple_unlock(&pp->pr_slock);
1617 }
1618 
1619 /*
1620  * pool_cache_destroy:
1621  *
1622  *	Destroy a pool cache.
1623  */
1624 void
1625 pool_cache_destroy(struct pool_cache *pc)
1626 {
1627 	struct pool *pp = pc->pc_pool;
1628 
1629 	/* First, invalidate the entire cache. */
1630 	pool_cache_invalidate(pc);
1631 
1632 	/* ...and remove it from the pool's cache list. */
1633 	simple_lock(&pp->pr_slock);
1634 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1635 	simple_unlock(&pp->pr_slock);
1636 }
1637 
1638 static __inline void *
1639 pcg_get(struct pool_cache_group *pcg)
1640 {
1641 	void *object;
1642 	u_int idx;
1643 
1644 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1645 	KASSERT(pcg->pcg_avail != 0);
1646 	idx = --pcg->pcg_avail;
1647 
1648 	KASSERT(pcg->pcg_objects[idx] != NULL);
1649 	object = pcg->pcg_objects[idx];
1650 	pcg->pcg_objects[idx] = NULL;
1651 
1652 	return (object);
1653 }
1654 
1655 static __inline void
1656 pcg_put(struct pool_cache_group *pcg, void *object)
1657 {
1658 	u_int idx;
1659 
1660 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1661 	idx = pcg->pcg_avail++;
1662 
1663 	KASSERT(pcg->pcg_objects[idx] == NULL);
1664 	pcg->pcg_objects[idx] = object;
1665 }
1666 
1667 /*
1668  * pool_cache_get:
1669  *
1670  *	Get an object from a pool cache.
1671  */
1672 void *
1673 pool_cache_get(struct pool_cache *pc, int flags)
1674 {
1675 	struct pool_cache_group *pcg;
1676 	void *object;
1677 
1678 #ifdef LOCKDEBUG
1679 	if (flags & PR_WAITOK)
1680 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1681 #endif
1682 
1683 	simple_lock(&pc->pc_slock);
1684 
1685 	if ((pcg = pc->pc_allocfrom) == NULL) {
1686 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1687 			if (pcg->pcg_avail != 0) {
1688 				pc->pc_allocfrom = pcg;
1689 				goto have_group;
1690 			}
1691 		}
1692 
1693 		/*
1694 		 * No groups with any available objects.  Allocate
1695 		 * a new object, construct it, and return it to
1696 		 * the caller.  We will allocate a group, if necessary,
1697 		 * when the object is freed back to the cache.
1698 		 */
1699 		pc->pc_misses++;
1700 		simple_unlock(&pc->pc_slock);
1701 		object = pool_get(pc->pc_pool, flags);
1702 		if (object != NULL && pc->pc_ctor != NULL) {
1703 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1704 				pool_put(pc->pc_pool, object);
1705 				return (NULL);
1706 			}
1707 		}
1708 		return (object);
1709 	}
1710 
1711  have_group:
1712 	pc->pc_hits++;
1713 	pc->pc_nitems--;
1714 	object = pcg_get(pcg);
1715 
1716 	if (pcg->pcg_avail == 0)
1717 		pc->pc_allocfrom = NULL;
1718 
1719 	simple_unlock(&pc->pc_slock);
1720 
1721 	return (object);
1722 }
1723 
1724 /*
1725  * pool_cache_put:
1726  *
1727  *	Put an object back to the pool cache.
1728  */
1729 void
1730 pool_cache_put(struct pool_cache *pc, void *object)
1731 {
1732 	struct pool_cache_group *pcg;
1733 	int s;
1734 
1735 	simple_lock(&pc->pc_slock);
1736 
1737 	if ((pcg = pc->pc_freeto) == NULL) {
1738 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1739 			if (pcg->pcg_avail != PCG_NOBJECTS) {
1740 				pc->pc_freeto = pcg;
1741 				goto have_group;
1742 			}
1743 		}
1744 
1745 		/*
1746 		 * No empty groups to free the object to.  Attempt to
1747 		 * allocate one.
1748 		 */
1749 		simple_unlock(&pc->pc_slock);
1750 		s = splvm();
1751 		pcg = pool_get(&pcgpool, PR_NOWAIT);
1752 		splx(s);
1753 		if (pcg != NULL) {
1754 			memset(pcg, 0, sizeof(*pcg));
1755 			simple_lock(&pc->pc_slock);
1756 			pc->pc_ngroups++;
1757 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1758 			if (pc->pc_freeto == NULL)
1759 				pc->pc_freeto = pcg;
1760 			goto have_group;
1761 		}
1762 
1763 		/*
1764 		 * Unable to allocate a cache group; destruct the object
1765 		 * and free it back to the pool.
1766 		 */
1767 		pool_cache_destruct_object(pc, object);
1768 		return;
1769 	}
1770 
1771  have_group:
1772 	pc->pc_nitems++;
1773 	pcg_put(pcg, object);
1774 
1775 	if (pcg->pcg_avail == PCG_NOBJECTS)
1776 		pc->pc_freeto = NULL;
1777 
1778 	simple_unlock(&pc->pc_slock);
1779 }
1780 
1781 /*
1782  * pool_cache_destruct_object:
1783  *
1784  *	Force destruction of an object and its release back into
1785  *	the pool.
1786  */
1787 void
1788 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1789 {
1790 
1791 	if (pc->pc_dtor != NULL)
1792 		(*pc->pc_dtor)(pc->pc_arg, object);
1793 	pool_put(pc->pc_pool, object);
1794 }
1795 
1796 /*
1797  * pool_cache_do_invalidate:
1798  *
1799  *	This internal function implements pool_cache_invalidate() and
1800  *	pool_cache_reclaim().
1801  */
1802 void
1803 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1804     void (*putit)(struct pool *, void *))
1805 {
1806 	struct pool_cache_group *pcg, *npcg;
1807 	void *object;
1808 	int s;
1809 
1810 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1811 	     pcg = npcg) {
1812 		npcg = TAILQ_NEXT(pcg, pcg_list);
1813 		while (pcg->pcg_avail != 0) {
1814 			pc->pc_nitems--;
1815 			object = pcg_get(pcg);
1816 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1817 				pc->pc_allocfrom = NULL;
1818 			if (pc->pc_dtor != NULL)
1819 				(*pc->pc_dtor)(pc->pc_arg, object);
1820 			(*putit)(pc->pc_pool, object);
1821 		}
1822 		if (free_groups) {
1823 			pc->pc_ngroups--;
1824 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1825 			if (pc->pc_freeto == pcg)
1826 				pc->pc_freeto = NULL;
1827 			s = splvm();
1828 			pool_put(&pcgpool, pcg);
1829 			splx(s);
1830 		}
1831 	}
1832 }
1833 
1834 /*
1835  * pool_cache_invalidate:
1836  *
1837  *	Invalidate a pool cache (destruct and release all of the
1838  *	cached objects).
1839  */
1840 void
1841 pool_cache_invalidate(struct pool_cache *pc)
1842 {
1843 
1844 	simple_lock(&pc->pc_slock);
1845 	pool_cache_do_invalidate(pc, 0, pool_put);
1846 	simple_unlock(&pc->pc_slock);
1847 }
1848 
1849 /*
1850  * pool_cache_reclaim:
1851  *
1852  *	Reclaim a pool cache for pool_reclaim().
1853  */
1854 void
1855 pool_cache_reclaim(struct pool_cache *pc)
1856 {
1857 
1858 	simple_lock(&pc->pc_slock);
1859 	pool_cache_do_invalidate(pc, 1, pool_do_put);
1860 	simple_unlock(&pc->pc_slock);
1861 }
1862 
1863 /*
1864  * We have three different sysctls.
1865  * kern.pool.npools - the number of pools.
1866  * kern.pool.pool.<pool#> - the pool struct for the pool#.
1867  * kern.pool.name.<pool#> - the name for pool#.[6~
1868  */
1869 int
1870 sysctl_dopool(int *name, u_int namelen, char *where, size_t *sizep)
1871 {
1872 	struct pool *pp, *foundpool = NULL;
1873 	size_t buflen = where != NULL ? *sizep : 0;
1874 	int npools = 0, s;
1875 	unsigned int lookfor;
1876 	size_t len;
1877 
1878 	switch (*name) {
1879 	case KERN_POOL_NPOOLS:
1880 		if (namelen != 1 || buflen != sizeof(int))
1881 			return (EINVAL);
1882 		lookfor = 0;
1883 		break;
1884 	case KERN_POOL_NAME:
1885 		if (namelen != 2 || buflen < 1)
1886 			return (EINVAL);
1887 		lookfor = name[1];
1888 		break;
1889 	case KERN_POOL_POOL:
1890 		if (namelen != 2 || buflen != sizeof(struct pool))
1891 			return (EINVAL);
1892 		lookfor = name[1];
1893 		break;
1894 	default:
1895 		return (EINVAL);
1896 	}
1897 
1898 	s = splvm();
1899 	simple_lock(&pool_head_slock);
1900 
1901 	TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1902 		npools++;
1903 		if (lookfor == pp->pr_serial) {
1904 			foundpool = pp;
1905 			break;
1906 		}
1907 	}
1908 
1909 	simple_unlock(&pool_head_slock);
1910 	splx(s);
1911 
1912 	if (lookfor != 0 && foundpool == NULL)
1913 		return (ENOENT);
1914 
1915 	switch (*name) {
1916 	case KERN_POOL_NPOOLS:
1917 		return copyout(&npools, where, buflen);
1918 	case KERN_POOL_NAME:
1919 		len = strlen(foundpool->pr_wchan) + 1;
1920 		if (*sizep < len)
1921 			return (ENOMEM);
1922 		*sizep = len;
1923 		return copyout(foundpool->pr_wchan, where, len);
1924 	case KERN_POOL_POOL:
1925 		return copyout(foundpool, where, buflen);
1926 	}
1927 	/* NOTREACHED */
1928 	return (0); /* XXX - Stupid gcc */
1929 }
1930 
1931 /*
1932  * Pool backend allocators.
1933  *
1934  * Each pool has a backend allocator that handles allocation, deallocation
1935  * and any additional draining that might be needed.
1936  */
1937 void	*pool_page_alloc_kmem(struct pool *, int);
1938 void	pool_page_free_kmem(struct pool *, void *);
1939 void	*pool_page_alloc_oldnointr(struct pool *, int);
1940 void	pool_page_free_oldnointr(struct pool *, void *);
1941 void	*pool_page_alloc(struct pool *, int);
1942 void	pool_page_free(struct pool *, void *);
1943 
1944 /* old default allocator, interrupt safe */
1945 struct pool_allocator pool_allocator_kmem = {
1946 	pool_page_alloc_kmem, pool_page_free_kmem, 0,
1947 };
1948 /* previous nointr.  handles large allocations safely */
1949 struct pool_allocator pool_allocator_oldnointr = {
1950 	pool_page_alloc_oldnointr, pool_page_free_oldnointr, 0,
1951 };
1952 /* safe for interrupts, name preserved for compat
1953  * this is the default allocator */
1954 struct pool_allocator pool_allocator_nointr = {
1955 	pool_page_alloc, pool_page_free, 0,
1956 };
1957 
1958 /*
1959  * XXX - we have at least three different resources for the same allocation
1960  *  and each resource can be depleted. First we have the ready elements in
1961  *  the pool. Then we have the resource (typically a vm_map) for this
1962  *  allocator, then we have physical memory. Waiting for any of these can
1963  *  be unnecessary when any other is freed, but the kernel doesn't support
1964  *  sleeping on multiple addresses, so we have to fake. The caller sleeps on
1965  *  the pool (so that we can be awakened when an item is returned to the pool),
1966  *  but we set PA_WANT on the allocator. When a page is returned to
1967  *  the allocator and PA_WANT is set pool_allocator_free will wakeup all
1968  *  sleeping pools belonging to this allocator. (XXX - thundering herd).
1969  *  We also wake up the allocator in case someone without a pool (malloc)
1970  *  is sleeping waiting for this allocator.
1971  */
1972 
1973 void *
1974 pool_allocator_alloc(struct pool *org, int flags)
1975 {
1976 	struct pool_allocator *pa = org->pr_alloc;
1977 	int freed;
1978 	void *res;
1979 	int s;
1980 
1981 	do {
1982 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1983 			return (res);
1984 		if ((flags & PR_WAITOK) == 0) {
1985 			/*
1986 			 * We only run the drain hook here if PR_NOWAIT.
1987 			 * In other cases the hook will be run in
1988 			 * pool_reclaim.
1989 			 */
1990 			if (org->pr_drain_hook != NULL) {
1991 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
1992 				    flags);
1993 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1994 					return (res);
1995 			}
1996 			break;
1997 		}
1998 		s = splvm();
1999 		simple_lock(&pa->pa_slock);
2000 		freed = pool_allocator_drain(pa, org, 1);
2001 		simple_unlock(&pa->pa_slock);
2002 		splx(s);
2003 	} while (freed);
2004 	return (NULL);
2005 }
2006 
2007 void
2008 pool_allocator_free(struct pool *pp, void *v)
2009 {
2010 	struct pool_allocator *pa = pp->pr_alloc;
2011 	int s;
2012 
2013 	(*pa->pa_free)(pp, v);
2014 
2015 	s = splvm();
2016 	simple_lock(&pa->pa_slock);
2017 	if ((pa->pa_flags & PA_WANT) == 0) {
2018 		simple_unlock(&pa->pa_slock);
2019 		splx(s);
2020 		return;
2021 	}
2022 
2023 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2024 		simple_lock(&pp->pr_slock);
2025 		if ((pp->pr_flags & PR_WANTED) != 0) {
2026 			pp->pr_flags &= ~PR_WANTED;
2027 			wakeup(pp);
2028 		}
2029 		simple_unlock(&pp->pr_slock);
2030 	}
2031 	pa->pa_flags &= ~PA_WANT;
2032 	simple_unlock(&pa->pa_slock);
2033 	splx(s);
2034 }
2035 
2036 /*
2037  * Drain all pools, except 'org', that use this allocator.
2038  *
2039  * Must be called at appropriate spl level and with the allocator locked.
2040  *
2041  * We do this to reclaim va space. pa_alloc is responsible
2042  * for waiting for physical memory.
2043  * XXX - we risk looping forever if start if someone calls
2044  *  pool_destroy on 'start'. But there is no other way to
2045  *  have potentially sleeping pool_reclaim, non-sleeping
2046  *  locks on pool_allocator and some stirring of drained
2047  *  pools in the allocator.
2048  * XXX - maybe we should use pool_head_slock for locking
2049  *  the allocators?
2050  */
2051 int
2052 pool_allocator_drain(struct pool_allocator *pa, struct pool *org, int need)
2053 {
2054 	struct pool *pp, *start;
2055 	int freed;
2056 
2057 	freed = 0;
2058 
2059 	pp = start = TAILQ_FIRST(&pa->pa_list);
2060 	do {
2061 		TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2062 		TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2063 		if (pp == org)
2064 			continue;
2065 		simple_unlock(&pa->pa_slock);
2066 		freed = pool_reclaim(pp);
2067 		simple_lock(&pa->pa_slock);
2068 	} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start && (freed < need));
2069 
2070 	if (!freed) {
2071 		/*
2072 		 * We set PA_WANT here, the caller will most likely
2073 		 * sleep waiting for pages (if not, this won't hurt
2074 		 * that much) and there is no way to set this in the
2075 		 * caller without violating locking order.
2076 		 */
2077 		pa->pa_flags |= PA_WANT;
2078 	}
2079 
2080 	return (freed);
2081 }
2082 
2083 void *
2084 pool_page_alloc(struct pool *pp, int flags)
2085 {
2086 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2087 
2088 	return (uvm_km_getpage(waitok));
2089 }
2090 
2091 void
2092 pool_page_free(struct pool *pp, void *v)
2093 {
2094 
2095 	uvm_km_putpage(v);
2096 }
2097 
2098 void *
2099 pool_page_alloc_kmem(struct pool *pp, int flags)
2100 {
2101 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2102 
2103 	return ((void *)uvm_km_alloc_poolpage1(kmem_map, uvmexp.kmem_object,
2104 	    waitok));
2105 }
2106 
2107 void
2108 pool_page_free_kmem(struct pool *pp, void *v)
2109 {
2110 
2111 	uvm_km_free_poolpage1(kmem_map, (vaddr_t)v);
2112 }
2113 
2114 void *
2115 pool_page_alloc_oldnointr(struct pool *pp, int flags)
2116 {
2117 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2118 
2119 	splassert(IPL_NONE);
2120 
2121 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
2122 	    waitok));
2123 }
2124 
2125 void
2126 pool_page_free_oldnointr(struct pool *pp, void *v)
2127 {
2128 	splassert(IPL_NONE);
2129 
2130 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
2131 }
2132