1 /* $OpenBSD: subr_hibernate.c,v 1.140 2024/06/04 20:31:35 krw Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* Make sure the signature can fit in one block */ 39 CTASSERT((offsetof(union hibernate_info, sec_size) + sizeof(u_int32_t)) <= DEV_BSIZE); 40 41 /* 42 * Hibernate piglet layout information 43 * 44 * The piglet is a scratch area of memory allocated by the suspending kernel. 45 * Its phys and virt addrs are recorded in the signature block. The piglet is 46 * used to guarantee an unused area of memory that can be used by the resuming 47 * kernel for various things. The piglet is excluded during unpack operations. 48 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 49 * 50 * Offset from piglet_base Purpose 51 * ---------------------------------------------------------------------------- 52 * 0 Private page for suspend I/O write functions 53 * 1*PAGE_SIZE I/O page used during hibernate suspend 54 * 2*PAGE_SIZE I/O page used during hibernate suspend 55 * 3*PAGE_SIZE copy page used during hibernate suspend 56 * 4*PAGE_SIZE final chunk ordering list (24 pages) 57 * 28*PAGE_SIZE RLE utility page 58 * 29*PAGE_SIZE start of hiballoc area 59 * 30*PAGE_SIZE preserved entropy 60 * 110*PAGE_SIZE end of hiballoc area (80 pages) 61 * 366*PAGE_SIZE end of retguard preservation region (256 pages) 62 * ... unused 63 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 64 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 65 * 4*HIBERNATE_CHUNK_SIZE end of piglet 66 */ 67 68 /* Temporary vaddr ranges used during hibernate */ 69 vaddr_t hibernate_temp_page; 70 vaddr_t hibernate_copy_page; 71 vaddr_t hibernate_rle_page; 72 73 /* Hibernate info as read from disk during resume */ 74 union hibernate_info disk_hib; 75 76 /* 77 * Global copy of the pig start address. This needs to be a global as we 78 * switch stacks after computing it - it can't be stored on the stack. 79 */ 80 paddr_t global_pig_start; 81 82 /* 83 * Global copies of the piglet start addresses (PA/VA). We store these 84 * as globals to avoid having to carry them around as parameters, as the 85 * piglet is allocated early and freed late - its lifecycle extends beyond 86 * that of the hibernate info union which is calculated on suspend/resume. 87 */ 88 vaddr_t global_piglet_va; 89 paddr_t global_piglet_pa; 90 91 /* #define HIB_DEBUG */ 92 #ifdef HIB_DEBUG 93 int hib_debug = 99; 94 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 95 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 96 #else 97 #define DPRINTF(x...) 98 #define DNPRINTF(n,x...) 99 #endif 100 101 #define ROUNDUP(_x, _y) ((((_x)+(_y)-1)/(_y))*(_y)) 102 103 #ifndef NO_PROPOLICE 104 extern long __guard_local; 105 #endif /* ! NO_PROPOLICE */ 106 107 /* Retguard phys address (need to skip this region during unpack) */ 108 paddr_t retguard_start_phys, retguard_end_phys; 109 extern char __retguard_start, __retguard_end; 110 111 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 112 int hibernate_calc_rle(paddr_t, paddr_t); 113 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 114 size_t *); 115 116 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 117 118 /* 119 * Hib alloc enforced alignment. 120 */ 121 #define HIB_ALIGN 8 /* bytes alignment */ 122 123 /* 124 * sizeof builtin operation, but with alignment constraint. 125 */ 126 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 127 128 struct hiballoc_entry { 129 size_t hibe_use; 130 size_t hibe_space; 131 RBT_ENTRY(hiballoc_entry) hibe_entry; 132 }; 133 134 /* 135 * Sort hibernate memory ranges by ascending PA 136 */ 137 void 138 hibernate_sort_ranges(union hibernate_info *hib_info) 139 { 140 int i, j; 141 struct hibernate_memory_range *ranges; 142 paddr_t base, end; 143 144 ranges = hib_info->ranges; 145 146 for (i = 1; i < hib_info->nranges; i++) { 147 j = i; 148 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 149 base = ranges[j].base; 150 end = ranges[j].end; 151 ranges[j].base = ranges[j - 1].base; 152 ranges[j].end = ranges[j - 1].end; 153 ranges[j - 1].base = base; 154 ranges[j - 1].end = end; 155 j--; 156 } 157 } 158 } 159 160 /* 161 * Compare hiballoc entries based on the address they manage. 162 * 163 * Since the address is fixed, relative to struct hiballoc_entry, 164 * we just compare the hiballoc_entry pointers. 165 */ 166 static __inline int 167 hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r) 168 { 169 vaddr_t vl = (vaddr_t)l; 170 vaddr_t vr = (vaddr_t)r; 171 172 return vl < vr ? -1 : (vl > vr); 173 } 174 175 RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 176 177 /* 178 * Given a hiballoc entry, return the address it manages. 179 */ 180 static __inline void * 181 hib_entry_to_addr(struct hiballoc_entry *entry) 182 { 183 caddr_t addr; 184 185 addr = (caddr_t)entry; 186 addr += HIB_SIZEOF(struct hiballoc_entry); 187 return addr; 188 } 189 190 /* 191 * Given an address, find the hiballoc that corresponds. 192 */ 193 static __inline struct hiballoc_entry* 194 hib_addr_to_entry(void *addr_param) 195 { 196 caddr_t addr; 197 198 addr = (caddr_t)addr_param; 199 addr -= HIB_SIZEOF(struct hiballoc_entry); 200 return (struct hiballoc_entry*)addr; 201 } 202 203 RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp); 204 205 /* 206 * Allocate memory from the arena. 207 * 208 * Returns NULL if no memory is available. 209 */ 210 void * 211 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 212 { 213 struct hiballoc_entry *entry, *new_entry; 214 size_t find_sz; 215 216 /* 217 * Enforce alignment of HIB_ALIGN bytes. 218 * 219 * Note that, because the entry is put in front of the allocation, 220 * 0-byte allocations are guaranteed a unique address. 221 */ 222 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 223 224 /* 225 * Find an entry with hibe_space >= find_sz. 226 * 227 * If the root node is not large enough, we switch to tree traversal. 228 * Because all entries are made at the bottom of the free space, 229 * traversal from the end has a slightly better chance of yielding 230 * a sufficiently large space. 231 */ 232 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 233 entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs); 234 if (entry != NULL && entry->hibe_space < find_sz) { 235 RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 236 if (entry->hibe_space >= find_sz) 237 break; 238 } 239 } 240 241 /* 242 * Insufficient or too fragmented memory. 243 */ 244 if (entry == NULL) 245 return NULL; 246 247 /* 248 * Create new entry in allocated space. 249 */ 250 new_entry = (struct hiballoc_entry*)( 251 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 252 new_entry->hibe_space = entry->hibe_space - find_sz; 253 new_entry->hibe_use = alloc_sz; 254 255 /* 256 * Insert entry. 257 */ 258 if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 259 panic("hib_alloc: insert failure"); 260 entry->hibe_space = 0; 261 262 /* Return address managed by entry. */ 263 return hib_entry_to_addr(new_entry); 264 } 265 266 void 267 hib_getentropy(char **bufp, size_t *bufplen) 268 { 269 if (!bufp || !bufplen) 270 return; 271 272 *bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE)); 273 *bufplen = PAGE_SIZE; 274 } 275 276 /* 277 * Free a pointer previously allocated from this arena. 278 * 279 * If addr is NULL, this will be silently accepted. 280 */ 281 void 282 hib_free(struct hiballoc_arena *arena, void *addr) 283 { 284 struct hiballoc_entry *entry, *prev; 285 286 if (addr == NULL) 287 return; 288 289 /* 290 * Derive entry from addr and check it is really in this arena. 291 */ 292 entry = hib_addr_to_entry(addr); 293 if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 294 panic("hib_free: freed item %p not in hib arena", addr); 295 296 /* 297 * Give the space in entry to its predecessor. 298 * 299 * If entry has no predecessor, change its used space into free space 300 * instead. 301 */ 302 prev = RBT_PREV(hiballoc_addr, entry); 303 if (prev != NULL && 304 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 305 prev->hibe_use + prev->hibe_space) == entry) { 306 /* Merge entry. */ 307 RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 308 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 309 entry->hibe_use + entry->hibe_space; 310 } else { 311 /* Flip used memory to free space. */ 312 entry->hibe_space += entry->hibe_use; 313 entry->hibe_use = 0; 314 } 315 } 316 317 /* 318 * Initialize hiballoc. 319 * 320 * The allocator will manage memory at ptr, which is len bytes. 321 */ 322 int 323 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 324 { 325 struct hiballoc_entry *entry; 326 caddr_t ptr; 327 size_t len; 328 329 RBT_INIT(hiballoc_addr, &arena->hib_addrs); 330 331 /* 332 * Hib allocator enforces HIB_ALIGN alignment. 333 * Fixup ptr and len. 334 */ 335 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 336 len = p_len - ((size_t)ptr - (size_t)p_ptr); 337 len &= ~((size_t)HIB_ALIGN - 1); 338 339 /* 340 * Insufficient memory to be able to allocate and also do bookkeeping. 341 */ 342 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 343 return ENOMEM; 344 345 /* 346 * Create entry describing space. 347 */ 348 entry = (struct hiballoc_entry*)ptr; 349 entry->hibe_use = 0; 350 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 351 RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 352 353 return 0; 354 } 355 356 /* 357 * Zero all free memory. 358 */ 359 void 360 uvm_pmr_zero_everything(void) 361 { 362 struct uvm_pmemrange *pmr; 363 struct vm_page *pg; 364 int i; 365 366 uvm_lock_fpageq(); 367 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 368 /* Zero single pages. */ 369 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 370 != NULL) { 371 uvm_pmr_remove(pmr, pg); 372 uvm_pagezero(pg); 373 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 374 uvmexp.zeropages++; 375 uvm_pmr_insert(pmr, pg, 0); 376 } 377 378 /* Zero multi page ranges. */ 379 while ((pg = RBT_ROOT(uvm_pmr_size, 380 &pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { 381 pg--; /* Size tree always has second page. */ 382 uvm_pmr_remove(pmr, pg); 383 for (i = 0; i < pg->fpgsz; i++) { 384 uvm_pagezero(&pg[i]); 385 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 386 uvmexp.zeropages++; 387 } 388 uvm_pmr_insert(pmr, pg, 0); 389 } 390 } 391 uvm_unlock_fpageq(); 392 } 393 394 /* 395 * Mark all memory as dirty. 396 * 397 * Used to inform the system that the clean memory isn't clean for some 398 * reason, for example because we just came back from hibernate. 399 */ 400 void 401 uvm_pmr_dirty_everything(void) 402 { 403 struct uvm_pmemrange *pmr; 404 struct vm_page *pg; 405 int i; 406 407 uvm_lock_fpageq(); 408 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 409 /* Dirty single pages. */ 410 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 411 != NULL) { 412 uvm_pmr_remove(pmr, pg); 413 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 414 uvm_pmr_insert(pmr, pg, 0); 415 } 416 417 /* Dirty multi page ranges. */ 418 while ((pg = RBT_ROOT(uvm_pmr_size, 419 &pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { 420 pg--; /* Size tree always has second page. */ 421 uvm_pmr_remove(pmr, pg); 422 for (i = 0; i < pg->fpgsz; i++) 423 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 424 uvm_pmr_insert(pmr, pg, 0); 425 } 426 } 427 428 uvmexp.zeropages = 0; 429 uvm_unlock_fpageq(); 430 } 431 432 /* 433 * Allocate an area that can hold sz bytes and doesn't overlap with 434 * the piglet at piglet_pa. 435 */ 436 int 437 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 438 { 439 struct uvm_constraint_range pig_constraint; 440 struct kmem_pa_mode kp_pig = { 441 .kp_constraint = &pig_constraint, 442 .kp_maxseg = 1 443 }; 444 vaddr_t va; 445 446 sz = round_page(sz); 447 448 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 449 pig_constraint.ucr_high = -1; 450 451 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 452 if (va == 0) { 453 pig_constraint.ucr_low = 0; 454 pig_constraint.ucr_high = piglet_pa - 1; 455 456 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 457 if (va == 0) 458 return ENOMEM; 459 } 460 461 pmap_extract(pmap_kernel(), va, pa); 462 return 0; 463 } 464 465 /* 466 * Allocate a piglet area. 467 * 468 * This needs to be in DMA-safe memory. 469 * Piglets are aligned. 470 * 471 * sz and align in bytes. 472 * 473 * The call will sleep for the pagedaemon to attempt to free memory. 474 * The pagedaemon may decide its not possible to free enough memory, causing 475 * the allocation to fail. 476 */ 477 int 478 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 479 { 480 struct kmem_pa_mode kp_piglet = { 481 .kp_constraint = &dma_constraint, 482 .kp_align = align, 483 .kp_maxseg = 1 484 }; 485 486 /* Ensure align is a power of 2 */ 487 KASSERT((align & (align - 1)) == 0); 488 489 /* 490 * Fixup arguments: align must be at least PAGE_SIZE, 491 * sz will be converted to pagecount, since that is what 492 * pmemrange uses internally. 493 */ 494 if (align < PAGE_SIZE) 495 kp_piglet.kp_align = PAGE_SIZE; 496 497 sz = round_page(sz); 498 499 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 500 if (*va == 0) 501 return ENOMEM; 502 503 pmap_extract(pmap_kernel(), *va, pa); 504 return 0; 505 } 506 507 /* 508 * Free a piglet area. 509 */ 510 void 511 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 512 { 513 /* 514 * Fix parameters. 515 */ 516 sz = round_page(sz); 517 518 /* 519 * Free the physical and virtual memory. 520 */ 521 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 522 } 523 524 /* 525 * Physmem RLE compression support. 526 * 527 * Given a physical page address, return the number of pages starting at the 528 * address that are free. Clamps to the number of pages in 529 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 530 */ 531 int 532 uvm_page_rle(paddr_t addr) 533 { 534 struct vm_page *pg, *pg_end; 535 struct vm_physseg *vmp; 536 int pseg_idx, off_idx; 537 538 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 539 if (pseg_idx == -1) 540 return 0; 541 542 vmp = &vm_physmem[pseg_idx]; 543 pg = &vmp->pgs[off_idx]; 544 if (!(pg->pg_flags & PQ_FREE)) 545 return 0; 546 547 /* 548 * Search for the first non-free page after pg. 549 * Note that the page may not be the first page in a free pmemrange, 550 * therefore pg->fpgsz cannot be used. 551 */ 552 for (pg_end = pg; pg_end <= vmp->lastpg && 553 (pg_end->pg_flags & PQ_FREE) == PQ_FREE && 554 (pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++) 555 ; 556 return pg_end - pg; 557 } 558 559 /* 560 * Fills out the hibernate_info union pointed to by hib 561 * with information about this machine (swap signature block 562 * offsets, number of memory ranges, kernel in use, etc) 563 */ 564 int 565 get_hibernate_info(union hibernate_info *hib, int suspend) 566 { 567 struct disklabel dl; 568 char err_string[128], *dl_ret; 569 int part; 570 SHA2_CTX ctx; 571 void *fn; 572 573 #ifndef NO_PROPOLICE 574 /* Save propolice guard */ 575 hib->guard = __guard_local; 576 #endif /* ! NO_PROPOLICE */ 577 578 /* Determine I/O function to use */ 579 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 580 if (hib->io_func == NULL) 581 return (1); 582 583 /* Calculate hibernate device */ 584 hib->dev = swdevt[0].sw_dev; 585 586 /* Read disklabel (used to calculate signature and image offsets) */ 587 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 588 589 if (dl_ret) { 590 printf("Hibernate error reading disklabel: %s\n", dl_ret); 591 return (1); 592 } 593 594 /* Make sure we have a swap partition. */ 595 part = DISKPART(hib->dev); 596 if (dl.d_npartitions <= part || 597 dl.d_secsize > sizeof(union hibernate_info) || 598 dl.d_partitions[part].p_fstype != FS_SWAP || 599 DL_GETPSIZE(&dl.d_partitions[part]) == 0) 600 return (1); 601 602 /* Magic number */ 603 hib->magic = HIBERNATE_MAGIC; 604 605 /* Calculate signature block location */ 606 hib->sec_size = dl.d_secsize; 607 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part]) - 1; 608 hib->sig_offset = DL_SECTOBLK(&dl, hib->sig_offset); 609 610 SHA256Init(&ctx); 611 SHA256Update(&ctx, version, strlen(version)); 612 fn = printf; 613 SHA256Update(&ctx, &fn, sizeof(fn)); 614 fn = malloc; 615 SHA256Update(&ctx, &fn, sizeof(fn)); 616 fn = km_alloc; 617 SHA256Update(&ctx, &fn, sizeof(fn)); 618 fn = strlen; 619 SHA256Update(&ctx, &fn, sizeof(fn)); 620 SHA256Final((u_int8_t *)&hib->kern_hash, &ctx); 621 622 if (suspend) { 623 /* Grab the previously-allocated piglet addresses */ 624 hib->piglet_va = global_piglet_va; 625 hib->piglet_pa = global_piglet_pa; 626 hib->io_page = (void *)hib->piglet_va; 627 628 /* 629 * Initialization of the hibernate IO function for drivers 630 * that need to do prep work (such as allocating memory or 631 * setting up data structures that cannot safely be done 632 * during suspend without causing side effects). There is 633 * a matching HIB_DONE call performed after the write is 634 * completed. 635 */ 636 if (hib->io_func(hib->dev, 637 DL_SECTOBLK(&dl, DL_GETPOFFSET(&dl.d_partitions[part])), 638 (vaddr_t)NULL, 639 DL_SECTOBLK(&dl, DL_GETPSIZE(&dl.d_partitions[part])), 640 HIB_INIT, hib->io_page)) 641 goto fail; 642 643 } else { 644 /* 645 * Resuming kernels use a regular private page for the driver 646 * No need to free this I/O page as it will vanish as part of 647 * the resume. 648 */ 649 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 650 if (!hib->io_page) 651 goto fail; 652 } 653 654 if (get_hibernate_info_md(hib)) 655 goto fail; 656 657 return (0); 658 659 fail: 660 return (1); 661 } 662 663 /* 664 * Allocate nitems*size bytes from the hiballoc area presently in use 665 */ 666 void * 667 hibernate_zlib_alloc(void *unused, int nitems, int size) 668 { 669 struct hibernate_zlib_state *hibernate_state; 670 671 hibernate_state = 672 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 673 674 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 675 } 676 677 /* 678 * Free the memory pointed to by addr in the hiballoc area presently in 679 * use 680 */ 681 void 682 hibernate_zlib_free(void *unused, void *addr) 683 { 684 struct hibernate_zlib_state *hibernate_state; 685 686 hibernate_state = 687 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 688 689 hib_free(&hibernate_state->hiballoc_arena, addr); 690 } 691 692 /* 693 * Inflate next page of data from the image stream. 694 * The rle parameter is modified on exit to contain the number of pages to 695 * skip in the output stream (or 0 if this page was inflated into). 696 * 697 * Returns 0 if the stream contains additional data, or 1 if the stream is 698 * finished. 699 */ 700 int 701 hibernate_inflate_page(int *rle) 702 { 703 struct hibernate_zlib_state *hibernate_state; 704 int i; 705 706 hibernate_state = 707 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 708 709 /* Set up the stream for RLE code inflate */ 710 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 711 hibernate_state->hib_stream.avail_out = sizeof(*rle); 712 713 /* Inflate RLE code */ 714 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 715 if (i != Z_OK && i != Z_STREAM_END) { 716 /* 717 * XXX - this will likely reboot/hang most machines 718 * since the console output buffer will be unmapped, 719 * but there's not much else we can do here. 720 */ 721 panic("rle inflate stream error"); 722 } 723 724 if (hibernate_state->hib_stream.avail_out != 0) { 725 /* 726 * XXX - this will likely reboot/hang most machines 727 * since the console output buffer will be unmapped, 728 * but there's not much else we can do here. 729 */ 730 panic("rle short inflate error"); 731 } 732 733 if (*rle < 0 || *rle > 1024) { 734 /* 735 * XXX - this will likely reboot/hang most machines 736 * since the console output buffer will be unmapped, 737 * but there's not much else we can do here. 738 */ 739 panic("invalid rle count"); 740 } 741 742 if (i == Z_STREAM_END) 743 return (1); 744 745 if (*rle != 0) 746 return (0); 747 748 /* Set up the stream for page inflate */ 749 hibernate_state->hib_stream.next_out = 750 (unsigned char *)HIBERNATE_INFLATE_PAGE; 751 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 752 753 /* Process next block of data */ 754 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 755 if (i != Z_OK && i != Z_STREAM_END) { 756 /* 757 * XXX - this will likely reboot/hang most machines 758 * since the console output buffer will be unmapped, 759 * but there's not much else we can do here. 760 */ 761 panic("inflate error"); 762 } 763 764 /* We should always have extracted a full page ... */ 765 if (hibernate_state->hib_stream.avail_out != 0) { 766 /* 767 * XXX - this will likely reboot/hang most machines 768 * since the console output buffer will be unmapped, 769 * but there's not much else we can do here. 770 */ 771 panic("incomplete page"); 772 } 773 774 return (i == Z_STREAM_END); 775 } 776 777 /* 778 * Inflate size bytes from src into dest, skipping any pages in 779 * [src..dest] that are special (see hibernate_inflate_skip) 780 * 781 * This function executes while using the resume-time stack 782 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 783 * will likely hang or reset the machine since the console output buffer 784 * will be unmapped. 785 */ 786 void 787 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 788 paddr_t src, size_t size) 789 { 790 int end_stream = 0, rle, skip; 791 struct hibernate_zlib_state *hibernate_state; 792 793 hibernate_state = 794 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 795 796 hibernate_state->hib_stream.next_in = (unsigned char *)src; 797 hibernate_state->hib_stream.avail_in = size; 798 799 do { 800 /* 801 * Is this a special page? If yes, redirect the 802 * inflate output to a scratch page (eg, discard it) 803 */ 804 skip = hibernate_inflate_skip(hib, dest); 805 if (skip == HIB_SKIP) { 806 hibernate_enter_resume_mapping( 807 HIBERNATE_INFLATE_PAGE, 808 HIBERNATE_INFLATE_PAGE, 0); 809 } else if (skip == HIB_MOVE) { 810 /* 811 * Special case : retguard region. This gets moved 812 * temporarily into the piglet region and copied into 813 * place immediately before resume 814 */ 815 hibernate_enter_resume_mapping( 816 HIBERNATE_INFLATE_PAGE, 817 hib->piglet_pa + (110 * PAGE_SIZE) + 818 hib->retguard_ofs, 0); 819 hib->retguard_ofs += PAGE_SIZE; 820 if (hib->retguard_ofs > 255 * PAGE_SIZE) { 821 /* 822 * XXX - this will likely reboot/hang most 823 * machines since the console output 824 * buffer will be unmapped, but there's 825 * not much else we can do here. 826 */ 827 panic("retguard move error, out of space"); 828 } 829 } else { 830 hibernate_enter_resume_mapping( 831 HIBERNATE_INFLATE_PAGE, dest, 0); 832 } 833 834 hibernate_flush(); 835 end_stream = hibernate_inflate_page(&rle); 836 837 if (rle == 0) 838 dest += PAGE_SIZE; 839 else 840 dest += (rle * PAGE_SIZE); 841 } while (!end_stream); 842 } 843 844 /* 845 * deflate from src into the I/O page, up to 'remaining' bytes 846 * 847 * Returns number of input bytes consumed, and may reset 848 * the 'remaining' parameter if not all the output space was consumed 849 * (this information is needed to know how much to write to disk) 850 */ 851 size_t 852 hibernate_deflate(union hibernate_info *hib, paddr_t src, 853 size_t *remaining) 854 { 855 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 856 struct hibernate_zlib_state *hibernate_state; 857 858 hibernate_state = 859 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 860 861 /* Set up the stream for deflate */ 862 hibernate_state->hib_stream.next_in = (unsigned char *)src; 863 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 864 hibernate_state->hib_stream.next_out = 865 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 866 hibernate_state->hib_stream.avail_out = *remaining; 867 868 /* Process next block of data */ 869 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 870 panic("hibernate zlib deflate error"); 871 872 /* Update pointers and return number of bytes consumed */ 873 *remaining = hibernate_state->hib_stream.avail_out; 874 return (PAGE_SIZE - (src & PAGE_MASK)) - 875 hibernate_state->hib_stream.avail_in; 876 } 877 878 /* 879 * Write the hibernation information specified in hiber_info 880 * to the location in swap previously calculated (last block of 881 * swap), called the "signature block". 882 */ 883 int 884 hibernate_write_signature(union hibernate_info *hib) 885 { 886 memset(&disk_hib, 0, hib->sec_size); 887 memcpy(&disk_hib, hib, DEV_BSIZE); 888 889 /* Write hibernate info to disk */ 890 return (hib->io_func(hib->dev, hib->sig_offset, 891 (vaddr_t)&disk_hib, hib->sec_size, HIB_W, 892 hib->io_page)); 893 } 894 895 /* 896 * Write the memory chunk table to the area in swap immediately 897 * preceding the signature block. The chunk table is stored 898 * in the piglet when this function is called. Returns errno. 899 */ 900 int 901 hibernate_write_chunktable(union hibernate_info *hib) 902 { 903 vaddr_t hibernate_chunk_table_start; 904 size_t hibernate_chunk_table_size; 905 int i, err; 906 907 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 908 909 hibernate_chunk_table_start = hib->piglet_va + 910 HIBERNATE_CHUNK_SIZE; 911 912 /* Write chunk table */ 913 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 914 if ((err = hib->io_func(hib->dev, 915 hib->chunktable_offset + (i/DEV_BSIZE), 916 (vaddr_t)(hibernate_chunk_table_start + i), 917 MAXPHYS, HIB_W, hib->io_page))) { 918 DPRINTF("chunktable write error: %d\n", err); 919 return (err); 920 } 921 } 922 923 return (0); 924 } 925 926 /* 927 * Write an empty hiber_info to the swap signature block, which is 928 * guaranteed to not match any valid hib. 929 */ 930 int 931 hibernate_clear_signature(union hibernate_info *hib) 932 { 933 uint8_t buf[DEV_BSIZE]; 934 935 /* Zero out a blank hiber_info */ 936 memcpy(&buf, &disk_hib, sizeof(buf)); 937 memset(&disk_hib, 0, hib->sec_size); 938 939 /* Write (zeroed) hibernate info to disk */ 940 DPRINTF("clearing hibernate signature block location: %lld\n", 941 hib->sig_offset); 942 if (hibernate_block_io(hib, 943 hib->sig_offset, 944 hib->sec_size, (vaddr_t)&disk_hib, 1)) 945 printf("Warning: could not clear hibernate signature\n"); 946 947 memcpy(&disk_hib, buf, sizeof(buf)); 948 return (0); 949 } 950 951 /* 952 * Compare two hibernate_infos to determine if they are the same (eg, 953 * we should be performing a hibernate resume on this machine. 954 * Not all fields are checked - just enough to verify that the machine 955 * has the same memory configuration and kernel as the one that 956 * wrote the signature previously. 957 */ 958 int 959 hibernate_compare_signature(union hibernate_info *mine, 960 union hibernate_info *disk) 961 { 962 u_int i; 963 964 if (mine->nranges != disk->nranges) { 965 printf("unhibernate failed: memory layout changed\n"); 966 return (1); 967 } 968 969 if (bcmp(mine->kern_hash, disk->kern_hash, SHA256_DIGEST_LENGTH) != 0) { 970 printf("unhibernate failed: original kernel changed\n"); 971 return (1); 972 } 973 974 for (i = 0; i < mine->nranges; i++) { 975 if ((mine->ranges[i].base != disk->ranges[i].base) || 976 (mine->ranges[i].end != disk->ranges[i].end) ) { 977 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 978 i, 979 (void *)mine->ranges[i].base, 980 (void *)mine->ranges[i].end, 981 (void *)disk->ranges[i].base, 982 (void *)disk->ranges[i].end); 983 printf("unhibernate failed: memory size changed\n"); 984 return (1); 985 } 986 } 987 988 return (0); 989 } 990 991 /* 992 * Transfers xfer_size bytes between the hibernate device specified in 993 * hib_info at offset blkctr and the vaddr specified at dest. 994 * 995 * Separate offsets and pages are used to handle misaligned reads (reads 996 * that span a page boundary). 997 * 998 * blkctr specifies a relative offset (relative to the start of swap), 999 * not an absolute disk offset 1000 * 1001 */ 1002 int 1003 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1004 size_t xfer_size, vaddr_t dest, int iswrite) 1005 { 1006 struct buf *bp; 1007 struct bdevsw *bdsw; 1008 int error; 1009 1010 bp = geteblk(xfer_size); 1011 bdsw = &bdevsw[major(hib->dev)]; 1012 1013 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1014 if (error) { 1015 printf("hibernate_block_io open failed\n"); 1016 return (1); 1017 } 1018 1019 if (iswrite) 1020 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1021 1022 bp->b_bcount = xfer_size; 1023 bp->b_blkno = blkctr; 1024 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1025 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1026 bp->b_dev = hib->dev; 1027 (*bdsw->d_strategy)(bp); 1028 1029 error = biowait(bp); 1030 if (error) { 1031 printf("hib block_io biowait error %d blk %lld size %zu\n", 1032 error, (long long)blkctr, xfer_size); 1033 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1034 curproc); 1035 if (error) 1036 printf("hibernate_block_io error close failed\n"); 1037 return (1); 1038 } 1039 1040 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1041 if (error) { 1042 printf("hibernate_block_io close failed\n"); 1043 return (1); 1044 } 1045 1046 if (!iswrite) 1047 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1048 1049 bp->b_flags |= B_INVAL; 1050 brelse(bp); 1051 1052 return (0); 1053 } 1054 1055 /* 1056 * Preserve one page worth of random data, generated from the resuming 1057 * kernel's arc4random. After resume, this preserved entropy can be used 1058 * to further improve the un-hibernated machine's entropy pool. This 1059 * random data is stored in the piglet, which is preserved across the 1060 * unpack operation, and is restored later in the resume process (see 1061 * hib_getentropy) 1062 */ 1063 void 1064 hibernate_preserve_entropy(union hibernate_info *hib) 1065 { 1066 void *entropy; 1067 1068 entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1069 1070 if (!entropy) 1071 return; 1072 1073 pmap_activate(curproc); 1074 pmap_kenter_pa((vaddr_t)entropy, 1075 (paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)), 1076 PROT_READ | PROT_WRITE); 1077 1078 arc4random_buf((void *)entropy, PAGE_SIZE); 1079 pmap_kremove((vaddr_t)entropy, PAGE_SIZE); 1080 km_free(entropy, PAGE_SIZE, &kv_any, &kp_none); 1081 } 1082 1083 #ifndef NO_PROPOLICE 1084 vaddr_t 1085 hibernate_unprotect_ssp(void) 1086 { 1087 struct kmem_dyn_mode kd_avoidalias; 1088 vaddr_t va = trunc_page((vaddr_t)&__guard_local); 1089 paddr_t pa; 1090 1091 pmap_extract(pmap_kernel(), va, &pa); 1092 1093 memset(&kd_avoidalias, 0, sizeof kd_avoidalias); 1094 kd_avoidalias.kd_prefer = pa; 1095 kd_avoidalias.kd_waitok = 1; 1096 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias); 1097 if (!va) 1098 panic("hibernate_unprotect_ssp"); 1099 1100 pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE); 1101 pmap_update(pmap_kernel()); 1102 1103 return va; 1104 } 1105 1106 void 1107 hibernate_reprotect_ssp(vaddr_t va) 1108 { 1109 pmap_kremove(va, PAGE_SIZE); 1110 km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none); 1111 } 1112 #endif /* NO_PROPOLICE */ 1113 1114 /* 1115 * Reads the signature block from swap, checks against the current machine's 1116 * information. If the information matches, perform a resume by reading the 1117 * saved image into the pig area, and unpacking. 1118 * 1119 * Must be called with interrupts enabled. 1120 */ 1121 void 1122 hibernate_resume(void) 1123 { 1124 uint8_t buf[DEV_BSIZE]; 1125 union hibernate_info *hib = (union hibernate_info *)&buf; 1126 int s; 1127 #ifndef NO_PROPOLICE 1128 vsize_t off = (vaddr_t)&__guard_local - 1129 trunc_page((vaddr_t)&__guard_local); 1130 vaddr_t guard_va; 1131 #endif 1132 1133 /* Get current running machine's hibernate info */ 1134 memset(buf, 0, sizeof(buf)); 1135 if (get_hibernate_info(hib, 0)) { 1136 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1137 return; 1138 } 1139 1140 /* Read hibernate info from disk */ 1141 s = splbio(); 1142 1143 DPRINTF("reading hibernate signature block location: %lld\n", 1144 hib->sig_offset); 1145 1146 if (hibernate_block_io(hib, 1147 hib->sig_offset, 1148 hib->sec_size, (vaddr_t)&disk_hib, 0)) { 1149 DPRINTF("error in hibernate read\n"); 1150 splx(s); 1151 return; 1152 } 1153 1154 /* Check magic number */ 1155 if (disk_hib.magic != HIBERNATE_MAGIC) { 1156 DPRINTF("wrong magic number in hibernate signature: %x\n", 1157 disk_hib.magic); 1158 splx(s); 1159 return; 1160 } 1161 1162 /* 1163 * We (possibly) found a hibernate signature. Clear signature first, 1164 * to prevent accidental resume or endless resume cycles later. 1165 */ 1166 if (hibernate_clear_signature(hib)) { 1167 DPRINTF("error clearing hibernate signature block\n"); 1168 splx(s); 1169 return; 1170 } 1171 1172 /* 1173 * If on-disk and in-memory hibernate signatures match, 1174 * this means we should do a resume from hibernate. 1175 */ 1176 if (hibernate_compare_signature(hib, &disk_hib)) { 1177 DPRINTF("mismatched hibernate signature block\n"); 1178 splx(s); 1179 return; 1180 } 1181 disk_hib.dev = hib->dev; 1182 1183 #ifdef MULTIPROCESSOR 1184 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1185 DPRINTF("hibernate: quiescing APs\n"); 1186 hibernate_quiesce_cpus(); 1187 #endif /* MULTIPROCESSOR */ 1188 1189 /* Read the image from disk into the image (pig) area */ 1190 if (hibernate_read_image(&disk_hib)) 1191 goto fail; 1192 1193 DPRINTF("hibernate: quiescing devices\n"); 1194 if (config_suspend_all(DVACT_QUIESCE) != 0) 1195 goto fail; 1196 1197 #ifndef NO_PROPOLICE 1198 guard_va = hibernate_unprotect_ssp(); 1199 #endif /* NO_PROPOLICE */ 1200 1201 (void) splhigh(); 1202 hibernate_disable_intr_machdep(); 1203 cold = 2; 1204 1205 DPRINTF("hibernate: suspending devices\n"); 1206 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1207 cold = 0; 1208 hibernate_enable_intr_machdep(); 1209 #ifndef NO_PROPOLICE 1210 hibernate_reprotect_ssp(guard_va); 1211 #endif /* ! NO_PROPOLICE */ 1212 goto fail; 1213 } 1214 1215 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1216 &retguard_start_phys); 1217 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1218 &retguard_end_phys); 1219 1220 hibernate_preserve_entropy(&disk_hib); 1221 1222 printf("Unpacking image...\n"); 1223 1224 /* Switch stacks */ 1225 DPRINTF("hibernate: switching stacks\n"); 1226 hibernate_switch_stack_machdep(); 1227 1228 #ifndef NO_PROPOLICE 1229 /* Start using suspended kernel's propolice guard */ 1230 *(long *)(guard_va + off) = disk_hib.guard; 1231 hibernate_reprotect_ssp(guard_va); 1232 #endif /* ! NO_PROPOLICE */ 1233 1234 /* Unpack and resume */ 1235 hibernate_unpack_image(&disk_hib); 1236 1237 fail: 1238 splx(s); 1239 printf("\nUnable to resume hibernated image\n"); 1240 } 1241 1242 /* 1243 * Unpack image from pig area to original location by looping through the 1244 * list of output chunks in the order they should be restored (fchunks). 1245 * 1246 * Note that due to the stack smash protector and the fact that we have 1247 * switched stacks, it is not permitted to return from this function. 1248 */ 1249 void 1250 hibernate_unpack_image(union hibernate_info *hib) 1251 { 1252 uint8_t buf[DEV_BSIZE]; 1253 struct hibernate_disk_chunk *chunks; 1254 union hibernate_info *local_hib = (union hibernate_info *)&buf; 1255 paddr_t image_cur = global_pig_start; 1256 short i, *fchunks; 1257 char *pva; 1258 1259 /* Piglet will be identity mapped (VA == PA) */ 1260 pva = (char *)hib->piglet_pa; 1261 1262 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1263 1264 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1265 1266 /* Can't use hiber_info that's passed in after this point */ 1267 memcpy(buf, hib, sizeof(buf)); 1268 local_hib->retguard_ofs = 0; 1269 1270 /* VA == PA */ 1271 local_hib->piglet_va = local_hib->piglet_pa; 1272 1273 /* 1274 * Point of no return. Once we pass this point, only kernel code can 1275 * be accessed. No global variables or other kernel data structures 1276 * are guaranteed to be coherent after unpack starts. 1277 * 1278 * The image is now in high memory (pig area), we unpack from the pig 1279 * to the correct location in memory. We'll eventually end up copying 1280 * on top of ourself, but we are assured the kernel code here is the 1281 * same between the hibernated and resuming kernel, and we are running 1282 * on our own stack, so the overwrite is ok. 1283 */ 1284 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1285 hibernate_activate_resume_pt_machdep(); 1286 1287 for (i = 0; i < local_hib->chunk_ctr; i++) { 1288 /* Reset zlib for inflate */ 1289 if (hibernate_zlib_reset(local_hib, 0) != Z_OK) 1290 panic("hibernate failed to reset zlib for inflate"); 1291 1292 hibernate_process_chunk(local_hib, &chunks[fchunks[i]], 1293 image_cur); 1294 1295 image_cur += chunks[fchunks[i]].compressed_size; 1296 } 1297 1298 /* 1299 * Resume the loaded kernel by jumping to the MD resume vector. 1300 * We won't be returning from this call. We pass the location of 1301 * the retguard save area so the MD code can replace it before 1302 * resuming. See the piglet layout at the top of this file for 1303 * more information on the layout of the piglet area. 1304 * 1305 * We use 'global_piglet_va' here since by the time we are at 1306 * this point, we have already unpacked the image, and we want 1307 * the suspended kernel's view of what the piglet was, before 1308 * suspend occurred (since we will need to use that in the retguard 1309 * copy code in hibernate_resume_machdep.) 1310 */ 1311 hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE)); 1312 } 1313 1314 /* 1315 * Bounce a compressed image chunk to the piglet, entering mappings for the 1316 * copied pages as needed 1317 */ 1318 void 1319 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1320 { 1321 size_t ct, ofs; 1322 paddr_t src = img_cur; 1323 vaddr_t dest = piglet; 1324 1325 /* Copy first partial page */ 1326 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1327 ofs = (src & PAGE_MASK); 1328 1329 if (ct < PAGE_SIZE) { 1330 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1331 (src - ofs), 0); 1332 hibernate_flush(); 1333 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1334 src += ct; 1335 dest += ct; 1336 } 1337 1338 /* Copy remaining pages */ 1339 while (src < size + img_cur) { 1340 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1341 hibernate_flush(); 1342 ct = PAGE_SIZE; 1343 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1344 hibernate_flush(); 1345 src += ct; 1346 dest += ct; 1347 } 1348 } 1349 1350 /* 1351 * Process a chunk by bouncing it to the piglet, followed by unpacking 1352 */ 1353 void 1354 hibernate_process_chunk(union hibernate_info *hib, 1355 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1356 { 1357 char *pva = (char *)hib->piglet_va; 1358 1359 hibernate_copy_chunk_to_piglet(img_cur, 1360 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1361 hibernate_inflate_region(hib, chunk->base, 1362 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1363 chunk->compressed_size); 1364 } 1365 1366 /* 1367 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1368 * inaddr and range_end. 1369 */ 1370 int 1371 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1372 { 1373 int rle; 1374 1375 rle = uvm_page_rle(inaddr); 1376 KASSERT(rle >= 0 && rle <= MAX_RLE); 1377 1378 /* Clamp RLE to range end */ 1379 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1380 rle = (range_end - inaddr) / PAGE_SIZE; 1381 1382 return (rle); 1383 } 1384 1385 /* 1386 * Write the RLE byte for page at 'inaddr' to the output stream. 1387 * Returns the number of pages to be skipped at 'inaddr'. 1388 */ 1389 int 1390 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1391 paddr_t range_end, daddr_t *blkctr, 1392 size_t *out_remaining) 1393 { 1394 int rle, err, *rleloc; 1395 struct hibernate_zlib_state *hibernate_state; 1396 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1397 1398 hibernate_state = 1399 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1400 1401 rle = hibernate_calc_rle(inaddr, range_end); 1402 1403 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1404 *rleloc = rle; 1405 1406 /* Deflate the RLE byte into the stream */ 1407 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1408 1409 /* Did we fill the output page? If so, flush to disk */ 1410 if (*out_remaining == 0) { 1411 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1412 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1413 hib->io_page))) { 1414 DPRINTF("hib write error %d\n", err); 1415 return (err); 1416 } 1417 1418 *blkctr += PAGE_SIZE / DEV_BSIZE; 1419 *out_remaining = PAGE_SIZE; 1420 1421 /* If we didn't deflate the entire RLE byte, finish it now */ 1422 if (hibernate_state->hib_stream.avail_in != 0) 1423 hibernate_deflate(hib, 1424 (vaddr_t)hibernate_state->hib_stream.next_in, 1425 out_remaining); 1426 } 1427 1428 return (rle); 1429 } 1430 1431 /* 1432 * Write a compressed version of this machine's memory to disk, at the 1433 * precalculated swap offset: 1434 * 1435 * end of swap - signature block size - chunk table size - memory size 1436 * 1437 * The function begins by looping through each phys mem range, cutting each 1438 * one into MD sized chunks. These chunks are then compressed individually 1439 * and written out to disk, in phys mem order. Some chunks might compress 1440 * more than others, and for this reason, each chunk's size is recorded 1441 * in the chunk table, which is written to disk after the image has 1442 * properly been compressed and written (in hibernate_write_chunktable). 1443 * 1444 * When this function is called, the machine is nearly suspended - most 1445 * devices are quiesced/suspended, interrupts are off, and cold has 1446 * been set. This means that there can be no side effects once the 1447 * write has started, and the write function itself can also have no 1448 * side effects. This also means no printfs are permitted (since printf 1449 * has side effects.) 1450 * 1451 * Return values : 1452 * 1453 * 0 - success 1454 * EIO - I/O error occurred writing the chunks 1455 * EINVAL - Failed to write a complete range 1456 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1457 */ 1458 int 1459 hibernate_write_chunks(union hibernate_info *hib) 1460 { 1461 paddr_t range_base, range_end, inaddr, temp_inaddr; 1462 size_t out_remaining, used; 1463 struct hibernate_disk_chunk *chunks; 1464 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1465 daddr_t blkctr = 0; 1466 int i, rle, err; 1467 struct hibernate_zlib_state *hibernate_state; 1468 1469 hibernate_state = 1470 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1471 1472 hib->chunk_ctr = 0; 1473 1474 /* 1475 * Map the utility VAs to the piglet. See the piglet map at the 1476 * top of this file for piglet layout information. 1477 */ 1478 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1479 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1480 1481 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1482 HIBERNATE_CHUNK_SIZE); 1483 1484 /* Calculate the chunk regions */ 1485 for (i = 0; i < hib->nranges; i++) { 1486 range_base = hib->ranges[i].base; 1487 range_end = hib->ranges[i].end; 1488 1489 inaddr = range_base; 1490 1491 while (inaddr < range_end) { 1492 chunks[hib->chunk_ctr].base = inaddr; 1493 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1494 chunks[hib->chunk_ctr].end = inaddr + 1495 HIBERNATE_CHUNK_SIZE; 1496 else 1497 chunks[hib->chunk_ctr].end = range_end; 1498 1499 inaddr += HIBERNATE_CHUNK_SIZE; 1500 hib->chunk_ctr ++; 1501 } 1502 } 1503 1504 uvm_pmr_dirty_everything(); 1505 uvm_pmr_zero_everything(); 1506 1507 /* Compress and write the chunks in the chunktable */ 1508 for (i = 0; i < hib->chunk_ctr; i++) { 1509 range_base = chunks[i].base; 1510 range_end = chunks[i].end; 1511 1512 chunks[i].offset = blkctr + hib->image_offset; 1513 1514 /* Reset zlib for deflate */ 1515 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1516 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1517 return (ENOMEM); 1518 } 1519 1520 inaddr = range_base; 1521 1522 /* 1523 * For each range, loop through its phys mem region 1524 * and write out the chunks (the last chunk might be 1525 * smaller than the chunk size). 1526 */ 1527 while (inaddr < range_end) { 1528 out_remaining = PAGE_SIZE; 1529 while (out_remaining > 0 && inaddr < range_end) { 1530 /* 1531 * Adjust for regions that are not evenly 1532 * divisible by PAGE_SIZE or overflowed 1533 * pages from the previous iteration. 1534 */ 1535 temp_inaddr = (inaddr & PAGE_MASK) + 1536 hibernate_copy_page; 1537 1538 /* Deflate from temp_inaddr to IO page */ 1539 if (inaddr != range_end) { 1540 if (inaddr % PAGE_SIZE == 0) { 1541 rle = hibernate_write_rle(hib, 1542 inaddr, 1543 range_end, 1544 &blkctr, 1545 &out_remaining); 1546 } 1547 1548 if (rle == 0) { 1549 pmap_kenter_pa(hibernate_temp_page, 1550 inaddr & PMAP_PA_MASK, 1551 PROT_READ); 1552 1553 bcopy((caddr_t)hibernate_temp_page, 1554 (caddr_t)hibernate_copy_page, 1555 PAGE_SIZE); 1556 inaddr += hibernate_deflate(hib, 1557 temp_inaddr, 1558 &out_remaining); 1559 } else { 1560 inaddr += rle * PAGE_SIZE; 1561 if (inaddr > range_end) 1562 inaddr = range_end; 1563 } 1564 1565 } 1566 1567 if (out_remaining == 0) { 1568 /* Filled up the page */ 1569 if ((err = hib->io_func(hib->dev, 1570 blkctr + hib->image_offset, 1571 (vaddr_t)hibernate_io_page, 1572 PAGE_SIZE, HIB_W, hib->io_page))) { 1573 DPRINTF("hib write error %d\n", 1574 err); 1575 return (err); 1576 } 1577 blkctr += PAGE_SIZE / DEV_BSIZE; 1578 } 1579 } 1580 } 1581 1582 if (inaddr != range_end) { 1583 DPRINTF("deflate range ended prematurely\n"); 1584 return (EINVAL); 1585 } 1586 1587 /* 1588 * End of range. Round up to next secsize bytes 1589 * after finishing compress 1590 */ 1591 if (out_remaining == 0) 1592 out_remaining = PAGE_SIZE; 1593 1594 /* Finish compress */ 1595 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1596 hibernate_state->hib_stream.avail_in = 0; 1597 hibernate_state->hib_stream.next_out = 1598 (unsigned char *)hibernate_io_page + 1599 (PAGE_SIZE - out_remaining); 1600 1601 /* We have an extra output page available for finalize */ 1602 hibernate_state->hib_stream.avail_out = 1603 out_remaining + PAGE_SIZE; 1604 1605 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1606 Z_STREAM_END) { 1607 DPRINTF("deflate error in output stream: %d\n", err); 1608 return (err); 1609 } 1610 1611 out_remaining = hibernate_state->hib_stream.avail_out; 1612 1613 /* Round up to next sector if needed */ 1614 used = ROUNDUP(2 * PAGE_SIZE - out_remaining, hib->sec_size); 1615 1616 /* Write final block(s) for this chunk */ 1617 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1618 (vaddr_t)hibernate_io_page, used, 1619 HIB_W, hib->io_page))) { 1620 DPRINTF("hib final write error %d\n", err); 1621 return (err); 1622 } 1623 1624 blkctr += used / DEV_BSIZE; 1625 1626 chunks[i].compressed_size = (blkctr + hib->image_offset - 1627 chunks[i].offset) * DEV_BSIZE; 1628 } 1629 1630 hib->chunktable_offset = hib->image_offset + blkctr; 1631 return (0); 1632 } 1633 1634 /* 1635 * Reset the zlib stream state and allocate a new hiballoc area for either 1636 * inflate or deflate. This function is called once for each hibernate chunk. 1637 * Calling hiballoc_init multiple times is acceptable since the memory it is 1638 * provided is unmanaged memory (stolen). We use the memory provided to us 1639 * by the piglet allocated via the supplied hib. 1640 */ 1641 int 1642 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1643 { 1644 vaddr_t hibernate_zlib_start; 1645 size_t hibernate_zlib_size; 1646 char *pva = (char *)hib->piglet_va; 1647 struct hibernate_zlib_state *hibernate_state; 1648 1649 hibernate_state = 1650 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1651 1652 if (!deflate) 1653 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1654 1655 /* 1656 * See piglet layout information at the start of this file for 1657 * information on the zlib page assignments. 1658 */ 1659 hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE)); 1660 hibernate_zlib_size = 80 * PAGE_SIZE; 1661 1662 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1663 memset(hibernate_state, 0, PAGE_SIZE); 1664 1665 /* Set up stream structure */ 1666 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1667 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1668 1669 /* Initialize the hiballoc arena for zlib allocs/frees */ 1670 hiballoc_init(&hibernate_state->hiballoc_arena, 1671 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1672 1673 if (deflate) { 1674 return deflateInit(&hibernate_state->hib_stream, 1675 Z_BEST_SPEED); 1676 } else 1677 return inflateInit(&hibernate_state->hib_stream); 1678 } 1679 1680 /* 1681 * Reads the hibernated memory image from disk, whose location and 1682 * size are recorded in hib. Begin by reading the persisted 1683 * chunk table, which records the original chunk placement location 1684 * and compressed size for each. Next, allocate a pig region of 1685 * sufficient size to hold the compressed image. Next, read the 1686 * chunks into the pig area (calling hibernate_read_chunks to do this), 1687 * and finally, if all of the above succeeds, clear the hibernate signature. 1688 * The function will then return to hibernate_resume, which will proceed 1689 * to unpack the pig image to the correct place in memory. 1690 */ 1691 int 1692 hibernate_read_image(union hibernate_info *hib) 1693 { 1694 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1695 paddr_t image_start, image_end, pig_start, pig_end; 1696 struct hibernate_disk_chunk *chunks; 1697 daddr_t blkctr; 1698 vaddr_t chunktable = (vaddr_t)NULL; 1699 paddr_t piglet_chunktable = hib->piglet_pa + 1700 HIBERNATE_CHUNK_SIZE; 1701 int i, status; 1702 1703 status = 0; 1704 pmap_activate(curproc); 1705 1706 /* Calculate total chunk table size in disk blocks */ 1707 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1708 1709 blkctr = hib->chunktable_offset; 1710 1711 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1712 &kp_none, &kd_nowait); 1713 1714 if (!chunktable) 1715 return (1); 1716 1717 /* Map chunktable pages */ 1718 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1719 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1720 PROT_READ | PROT_WRITE); 1721 pmap_update(pmap_kernel()); 1722 1723 /* Read the chunktable from disk into the piglet chunktable */ 1724 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1725 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1726 hibernate_block_io(hib, blkctr, MAXPHYS, 1727 chunktable + i, 0); 1728 1729 blkctr = hib->image_offset; 1730 compressed_size = 0; 1731 1732 chunks = (struct hibernate_disk_chunk *)chunktable; 1733 1734 for (i = 0; i < hib->chunk_ctr; i++) 1735 compressed_size += chunks[i].compressed_size; 1736 1737 disk_size = compressed_size; 1738 1739 printf("unhibernating @ block %lld length %luMB\n", 1740 hib->sig_offset - chunktable_size, 1741 compressed_size / (1024 * 1024)); 1742 1743 /* Allocate the pig area */ 1744 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1745 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1746 status = 1; 1747 goto unmap; 1748 } 1749 1750 pig_end = pig_start + pig_sz; 1751 1752 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1753 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1754 image_start = image_end - disk_size; 1755 1756 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1757 chunks); 1758 1759 /* Prepare the resume time pmap/page table */ 1760 hibernate_populate_resume_pt(hib, image_start, image_end); 1761 1762 unmap: 1763 /* Unmap chunktable pages */ 1764 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1765 pmap_update(pmap_kernel()); 1766 1767 return (status); 1768 } 1769 1770 /* 1771 * Read the hibernated memory chunks from disk (chunk information at this 1772 * point is stored in the piglet) into the pig area specified by 1773 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1774 * only chunk with overlap possibilities. 1775 */ 1776 int 1777 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1778 paddr_t pig_end, size_t image_compr_size, 1779 struct hibernate_disk_chunk *chunks) 1780 { 1781 paddr_t img_cur, piglet_base; 1782 daddr_t blkctr; 1783 size_t processed, compressed_size, read_size; 1784 int nchunks, nfchunks, num_io_pages; 1785 vaddr_t tempva, hibernate_fchunk_area; 1786 short *fchunks, i, j; 1787 1788 tempva = (vaddr_t)NULL; 1789 hibernate_fchunk_area = (vaddr_t)NULL; 1790 nfchunks = 0; 1791 piglet_base = hib->piglet_pa; 1792 global_pig_start = pig_start; 1793 1794 /* 1795 * These mappings go into the resuming kernel's page table, and are 1796 * used only during image read. They disappear from existence 1797 * when the suspended kernel is unpacked on top of us. 1798 */ 1799 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1800 &kd_nowait); 1801 if (!tempva) 1802 return (1); 1803 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1804 &kp_none, &kd_nowait); 1805 if (!hibernate_fchunk_area) 1806 return (1); 1807 1808 /* Final output chunk ordering VA */ 1809 fchunks = (short *)hibernate_fchunk_area; 1810 1811 /* Map the chunk ordering region */ 1812 for(i = 0; i < 24 ; i++) 1813 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1814 piglet_base + ((4 + i) * PAGE_SIZE), 1815 PROT_READ | PROT_WRITE); 1816 pmap_update(pmap_kernel()); 1817 1818 nchunks = hib->chunk_ctr; 1819 1820 /* Initially start all chunks as unplaced */ 1821 for (i = 0; i < nchunks; i++) 1822 chunks[i].flags = 0; 1823 1824 /* 1825 * Search the list for chunks that are outside the pig area. These 1826 * can be placed first in the final output list. 1827 */ 1828 for (i = 0; i < nchunks; i++) { 1829 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1830 fchunks[nfchunks] = i; 1831 nfchunks++; 1832 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1833 } 1834 } 1835 1836 /* 1837 * Walk the ordering, place the chunks in ascending memory order. 1838 */ 1839 for (i = 0; i < nchunks; i++) { 1840 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1841 fchunks[nfchunks] = i; 1842 nfchunks++; 1843 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1844 } 1845 } 1846 1847 img_cur = pig_start; 1848 1849 for (i = 0; i < nfchunks; i++) { 1850 blkctr = chunks[fchunks[i]].offset; 1851 processed = 0; 1852 compressed_size = chunks[fchunks[i]].compressed_size; 1853 1854 while (processed < compressed_size) { 1855 if (compressed_size - processed >= MAXPHYS) 1856 read_size = MAXPHYS; 1857 else 1858 read_size = compressed_size - processed; 1859 1860 /* 1861 * We're reading read_size bytes, offset from the 1862 * start of a page by img_cur % PAGE_SIZE, so the 1863 * end will be read_size + (img_cur % PAGE_SIZE) 1864 * from the start of the first page. Round that 1865 * up to the next page size. 1866 */ 1867 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1868 + PAGE_SIZE - 1) / PAGE_SIZE; 1869 1870 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1871 1872 /* Map pages for this read */ 1873 for (j = 0; j < num_io_pages; j ++) 1874 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1875 img_cur + j * PAGE_SIZE, 1876 PROT_READ | PROT_WRITE); 1877 1878 pmap_update(pmap_kernel()); 1879 1880 hibernate_block_io(hib, blkctr, read_size, 1881 tempva + (img_cur & PAGE_MASK), 0); 1882 1883 blkctr += (read_size / DEV_BSIZE); 1884 1885 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1886 pmap_update(pmap_kernel()); 1887 1888 processed += read_size; 1889 img_cur += read_size; 1890 } 1891 } 1892 1893 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1894 pmap_update(pmap_kernel()); 1895 1896 return (0); 1897 } 1898 1899 /* 1900 * Hibernating a machine comprises the following operations: 1901 * 1. Calculating this machine's hibernate_info information 1902 * 2. Allocating a piglet and saving the piglet's physaddr 1903 * 3. Calculating the memory chunks 1904 * 4. Writing the compressed chunks to disk 1905 * 5. Writing the chunk table 1906 * 6. Writing the signature block (hibernate_info) 1907 * 1908 * On most architectures, the function calling hibernate_suspend would 1909 * then power off the machine using some MD-specific implementation. 1910 */ 1911 int 1912 hibernate_suspend(void) 1913 { 1914 uint8_t buf[DEV_BSIZE]; 1915 union hibernate_info *hib = (union hibernate_info *)&buf; 1916 u_long start, end; 1917 1918 /* 1919 * Calculate memory ranges, swap offsets, etc. 1920 * This also allocates a piglet whose physaddr is stored in 1921 * hib->piglet_pa and vaddr stored in hib->piglet_va 1922 */ 1923 if (get_hibernate_info(hib, 1)) { 1924 DPRINTF("failed to obtain hibernate info\n"); 1925 return (1); 1926 } 1927 1928 /* Find a page-addressed region in swap [start,end] */ 1929 if (uvm_hibswap(hib->dev, &start, &end)) { 1930 printf("hibernate: cannot find any swap\n"); 1931 return (1); 1932 } 1933 1934 if (end - start < 1000) { 1935 printf("hibernate: insufficient swap (%lu is too small)\n", 1936 end - start + 1); 1937 return (1); 1938 } 1939 1940 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start, 1941 &retguard_start_phys); 1942 pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end, 1943 &retguard_end_phys); 1944 1945 /* Calculate block offsets in swap */ 1946 hib->image_offset = ctod(start); 1947 1948 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1949 hib->image_offset, ctod(end) - ctod(start) + 1); 1950 1951 pmap_activate(curproc); 1952 DPRINTF("hibernate: writing chunks\n"); 1953 if (hibernate_write_chunks(hib)) { 1954 DPRINTF("hibernate_write_chunks failed\n"); 1955 return (1); 1956 } 1957 1958 DPRINTF("hibernate: writing chunktable\n"); 1959 if (hibernate_write_chunktable(hib)) { 1960 DPRINTF("hibernate_write_chunktable failed\n"); 1961 return (1); 1962 } 1963 1964 DPRINTF("hibernate: writing signature\n"); 1965 if (hibernate_write_signature(hib)) { 1966 DPRINTF("hibernate_write_signature failed\n"); 1967 return (1); 1968 } 1969 1970 /* Allow the disk to settle */ 1971 delay(500000); 1972 1973 /* 1974 * Give the device-specific I/O function a notification that we're 1975 * done, and that it can clean up or shutdown as needed. 1976 */ 1977 hib->io_func(hib->dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib->io_page); 1978 return (0); 1979 } 1980 1981 int 1982 hibernate_alloc(void) 1983 { 1984 KASSERT(global_piglet_va == 0); 1985 KASSERT(hibernate_temp_page == 0); 1986 1987 pmap_activate(curproc); 1988 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1989 PROT_READ | PROT_WRITE); 1990 1991 /* Allocate a piglet, store its addresses in the supplied globals */ 1992 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1993 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1994 goto unmap; 1995 1996 /* 1997 * Allocate VA for the temp page. 1998 * 1999 * This will become part of the suspended kernel and will 2000 * be freed in hibernate_free, upon resume (or hibernate 2001 * failure) 2002 */ 2003 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 2004 &kp_none, &kd_nowait); 2005 if (!hibernate_temp_page) { 2006 uvm_pmr_free_piglet(global_piglet_va, 4 * HIBERNATE_CHUNK_SIZE); 2007 global_piglet_va = 0; 2008 goto unmap; 2009 } 2010 return (0); 2011 unmap: 2012 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2013 pmap_update(pmap_kernel()); 2014 return (ENOMEM); 2015 } 2016 2017 /* 2018 * Free items allocated by hibernate_alloc() 2019 */ 2020 void 2021 hibernate_free(void) 2022 { 2023 pmap_activate(curproc); 2024 2025 if (global_piglet_va) 2026 uvm_pmr_free_piglet(global_piglet_va, 2027 4 * HIBERNATE_CHUNK_SIZE); 2028 2029 if (hibernate_temp_page) { 2030 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 2031 km_free((void *)hibernate_temp_page, PAGE_SIZE, 2032 &kv_any, &kp_none); 2033 } 2034 2035 global_piglet_va = 0; 2036 hibernate_temp_page = 0; 2037 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 2038 pmap_update(pmap_kernel()); 2039 } 2040