xref: /openbsd-src/sys/kern/subr_hibernate.c (revision ea368e9e7ca42df820dc45b911a3d6c2b64f15ee)
1 /*	$OpenBSD: subr_hibernate.c,v 1.76 2013/11/06 19:48:37 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
5  * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/hibernate.h>
21 #include <sys/malloc.h>
22 #include <sys/param.h>
23 #include <sys/tree.h>
24 #include <sys/systm.h>
25 #include <sys/disklabel.h>
26 #include <sys/disk.h>
27 #include <sys/conf.h>
28 #include <sys/buf.h>
29 #include <sys/fcntl.h>
30 #include <sys/stat.h>
31 #include <uvm/uvm.h>
32 #include <uvm/uvm_swap.h>
33 #include <machine/hibernate.h>
34 
35 /*
36  * Hibernate piglet layout information
37  *
38  * The piglet is a scratch area of memory allocated by the suspending kernel.
39  * Its phys and virt addrs are recorded in the signature block. The piglet is
40  * used to guarantee an unused area of memory that can be used by the resuming
41  * kernel for various things. The piglet is excluded during unpack operations.
42  * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB).
43  *
44  * Offset from piglet_base	Purpose
45  * ----------------------------------------------------------------------------
46  * 0				I/O page used during resume
47  * 1*PAGE_SIZE		 	I/O page used during hibernate suspend
48  * 2*PAGE_SIZE		 	I/O page used during hibernate suspend
49  * 3*PAGE_SIZE			copy page used during hibernate suspend
50  * 4*PAGE_SIZE			final chunk ordering list (8 pages)
51  * 12*PAGE_SIZE			piglet chunk ordering list (8 pages)
52  * 20*PAGE_SIZE			temp chunk ordering list (8 pages)
53  * 28*PAGE_SIZE			start of hiballoc area
54  * 108*PAGE_SIZE		end of hiballoc area (80 pages)
55  * ...				unused
56  * HIBERNATE_CHUNK_SIZE		start of hibernate chunk table
57  * 2*HIBERNATE_CHUNK_SIZE	bounce area for chunks being unpacked
58  * 3*HIBERNATE_CHUNK_SIZE	end of piglet
59  */
60 
61 /* Temporary vaddr ranges used during hibernate */
62 vaddr_t hibernate_temp_page;
63 vaddr_t hibernate_copy_page;
64 
65 /* Hibernate info as read from disk during resume */
66 union hibernate_info disk_hib;
67 paddr_t global_pig_start;
68 vaddr_t global_piglet_va;
69 
70 /* #define HIB_DEBUG */
71 #ifdef HIB_DEBUG
72 int	hib_debug = 99;
73 #define DPRINTF(x...)     do { if (hib_debug) printf(x); } while (0)
74 #define DNPRINTF(n,x...)  do { if (hib_debug > (n)) printf(x); } while (0)
75 #else
76 #define DPRINTF(x...)
77 #define DNPRINTF(n,x...)
78 #endif
79 
80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
81 
82 /*
83  * Hib alloc enforced alignment.
84  */
85 #define HIB_ALIGN		8 /* bytes alignment */
86 
87 /*
88  * sizeof builtin operation, but with alignment constraint.
89  */
90 #define HIB_SIZEOF(_type)	roundup(sizeof(_type), HIB_ALIGN)
91 
92 struct hiballoc_entry {
93 	size_t			hibe_use;
94 	size_t			hibe_space;
95 	RB_ENTRY(hiballoc_entry) hibe_entry;
96 };
97 
98 /*
99  * Compare hiballoc entries based on the address they manage.
100  *
101  * Since the address is fixed, relative to struct hiballoc_entry,
102  * we just compare the hiballoc_entry pointers.
103  */
104 static __inline int
105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r)
106 {
107 	return l < r ? -1 : (l > r);
108 }
109 
110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
111 
112 /*
113  * Given a hiballoc entry, return the address it manages.
114  */
115 static __inline void *
116 hib_entry_to_addr(struct hiballoc_entry *entry)
117 {
118 	caddr_t addr;
119 
120 	addr = (caddr_t)entry;
121 	addr += HIB_SIZEOF(struct hiballoc_entry);
122 	return addr;
123 }
124 
125 /*
126  * Given an address, find the hiballoc that corresponds.
127  */
128 static __inline struct hiballoc_entry*
129 hib_addr_to_entry(void *addr_param)
130 {
131 	caddr_t addr;
132 
133 	addr = (caddr_t)addr_param;
134 	addr -= HIB_SIZEOF(struct hiballoc_entry);
135 	return (struct hiballoc_entry*)addr;
136 }
137 
138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
139 
140 /*
141  * Allocate memory from the arena.
142  *
143  * Returns NULL if no memory is available.
144  */
145 void *
146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
147 {
148 	struct hiballoc_entry *entry, *new_entry;
149 	size_t find_sz;
150 
151 	/*
152 	 * Enforce alignment of HIB_ALIGN bytes.
153 	 *
154 	 * Note that, because the entry is put in front of the allocation,
155 	 * 0-byte allocations are guaranteed a unique address.
156 	 */
157 	alloc_sz = roundup(alloc_sz, HIB_ALIGN);
158 
159 	/*
160 	 * Find an entry with hibe_space >= find_sz.
161 	 *
162 	 * If the root node is not large enough, we switch to tree traversal.
163 	 * Because all entries are made at the bottom of the free space,
164 	 * traversal from the end has a slightly better chance of yielding
165 	 * a sufficiently large space.
166 	 */
167 	find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
168 	entry = RB_ROOT(&arena->hib_addrs);
169 	if (entry != NULL && entry->hibe_space < find_sz) {
170 		RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
171 			if (entry->hibe_space >= find_sz)
172 				break;
173 		}
174 	}
175 
176 	/*
177 	 * Insufficient or too fragmented memory.
178 	 */
179 	if (entry == NULL)
180 		return NULL;
181 
182 	/*
183 	 * Create new entry in allocated space.
184 	 */
185 	new_entry = (struct hiballoc_entry*)(
186 	    (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
187 	new_entry->hibe_space = entry->hibe_space - find_sz;
188 	new_entry->hibe_use = alloc_sz;
189 
190 	/*
191 	 * Insert entry.
192 	 */
193 	if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
194 		panic("hib_alloc: insert failure");
195 	entry->hibe_space = 0;
196 
197 	/* Return address managed by entry. */
198 	return hib_entry_to_addr(new_entry);
199 }
200 
201 /*
202  * Free a pointer previously allocated from this arena.
203  *
204  * If addr is NULL, this will be silently accepted.
205  */
206 void
207 hib_free(struct hiballoc_arena *arena, void *addr)
208 {
209 	struct hiballoc_entry *entry, *prev;
210 
211 	if (addr == NULL)
212 		return;
213 
214 	/*
215 	 * Derive entry from addr and check it is really in this arena.
216 	 */
217 	entry = hib_addr_to_entry(addr);
218 	if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
219 		panic("hib_free: freed item %p not in hib arena", addr);
220 
221 	/*
222 	 * Give the space in entry to its predecessor.
223 	 *
224 	 * If entry has no predecessor, change its used space into free space
225 	 * instead.
226 	 */
227 	prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry);
228 	if (prev != NULL &&
229 	    (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
230 	    prev->hibe_use + prev->hibe_space) == entry) {
231 		/* Merge entry. */
232 		RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
233 		prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
234 		    entry->hibe_use + entry->hibe_space;
235 	} else {
236 		/* Flip used memory to free space. */
237 		entry->hibe_space += entry->hibe_use;
238 		entry->hibe_use = 0;
239 	}
240 }
241 
242 /*
243  * Initialize hiballoc.
244  *
245  * The allocator will manage memmory at ptr, which is len bytes.
246  */
247 int
248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
249 {
250 	struct hiballoc_entry *entry;
251 	caddr_t ptr;
252 	size_t len;
253 
254 	RB_INIT(&arena->hib_addrs);
255 
256 	/*
257 	 * Hib allocator enforces HIB_ALIGN alignment.
258 	 * Fixup ptr and len.
259 	 */
260 	ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
261 	len = p_len - ((size_t)ptr - (size_t)p_ptr);
262 	len &= ~((size_t)HIB_ALIGN - 1);
263 
264 	/*
265 	 * Insufficient memory to be able to allocate and also do bookkeeping.
266 	 */
267 	if (len <= HIB_SIZEOF(struct hiballoc_entry))
268 		return ENOMEM;
269 
270 	/*
271 	 * Create entry describing space.
272 	 */
273 	entry = (struct hiballoc_entry*)ptr;
274 	entry->hibe_use = 0;
275 	entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
276 	RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
277 
278 	return 0;
279 }
280 
281 /*
282  * Zero all free memory.
283  */
284 void
285 uvm_pmr_zero_everything(void)
286 {
287 	struct uvm_pmemrange	*pmr;
288 	struct vm_page		*pg;
289 	int			 i;
290 
291 	uvm_lock_fpageq();
292 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
293 		/* Zero single pages. */
294 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
295 		    != NULL) {
296 			uvm_pmr_remove(pmr, pg);
297 			uvm_pagezero(pg);
298 			atomic_setbits_int(&pg->pg_flags, PG_ZERO);
299 			uvmexp.zeropages++;
300 			uvm_pmr_insert(pmr, pg, 0);
301 		}
302 
303 		/* Zero multi page ranges. */
304 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY]))
305 		    != NULL) {
306 			pg--; /* Size tree always has second page. */
307 			uvm_pmr_remove(pmr, pg);
308 			for (i = 0; i < pg->fpgsz; i++) {
309 				uvm_pagezero(&pg[i]);
310 				atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
311 				uvmexp.zeropages++;
312 			}
313 			uvm_pmr_insert(pmr, pg, 0);
314 		}
315 	}
316 	uvm_unlock_fpageq();
317 }
318 
319 /*
320  * Mark all memory as dirty.
321  *
322  * Used to inform the system that the clean memory isn't clean for some
323  * reason, for example because we just came back from hibernate.
324  */
325 void
326 uvm_pmr_dirty_everything(void)
327 {
328 	struct uvm_pmemrange	*pmr;
329 	struct vm_page		*pg;
330 	int			 i;
331 
332 	uvm_lock_fpageq();
333 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
334 		/* Dirty single pages. */
335 		while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
336 		    != NULL) {
337 			uvm_pmr_remove(pmr, pg);
338 			atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
339 			uvm_pmr_insert(pmr, pg, 0);
340 		}
341 
342 		/* Dirty multi page ranges. */
343 		while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO]))
344 		    != NULL) {
345 			pg--; /* Size tree always has second page. */
346 			uvm_pmr_remove(pmr, pg);
347 			for (i = 0; i < pg->fpgsz; i++)
348 				atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
349 			uvm_pmr_insert(pmr, pg, 0);
350 		}
351 	}
352 
353 	uvmexp.zeropages = 0;
354 	uvm_unlock_fpageq();
355 }
356 
357 /*
358  * Allocate the highest address that can hold sz.
359  *
360  * sz in bytes.
361  */
362 int
363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz)
364 {
365 	struct uvm_pmemrange	*pmr;
366 	struct vm_page		*pig_pg, *pg;
367 
368 	/*
369 	 * Convert sz to pages, since that is what pmemrange uses internally.
370 	 */
371 	sz = atop(round_page(sz));
372 
373 	uvm_lock_fpageq();
374 
375 	TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
376 		RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) {
377 			if (pig_pg->fpgsz >= sz) {
378 				goto found;
379 			}
380 		}
381 	}
382 
383 	/*
384 	 * Allocation failure.
385 	 */
386 	uvm_unlock_fpageq();
387 	return ENOMEM;
388 
389 found:
390 	/* Remove page from freelist. */
391 	uvm_pmr_remove_size(pmr, pig_pg);
392 	pig_pg->fpgsz -= sz;
393 	pg = pig_pg + pig_pg->fpgsz;
394 	if (pig_pg->fpgsz == 0)
395 		uvm_pmr_remove_addr(pmr, pig_pg);
396 	else
397 		uvm_pmr_insert_size(pmr, pig_pg);
398 
399 	uvmexp.free -= sz;
400 	*addr = VM_PAGE_TO_PHYS(pg);
401 
402 	/*
403 	 * Update pg flags.
404 	 *
405 	 * Note that we trash the sz argument now.
406 	 */
407 	while (sz > 0) {
408 		KASSERT(pg->pg_flags & PQ_FREE);
409 
410 		atomic_clearbits_int(&pg->pg_flags,
411 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
412 
413 		if (pg->pg_flags & PG_ZERO)
414 			uvmexp.zeropages -= sz;
415 		atomic_clearbits_int(&pg->pg_flags,
416 		    PG_ZERO|PQ_FREE);
417 
418 		pg->uobject = NULL;
419 		pg->uanon = NULL;
420 		pg->pg_version++;
421 
422 		/*
423 		 * Next.
424 		 */
425 		pg++;
426 		sz--;
427 	}
428 
429 	/* Return. */
430 	uvm_unlock_fpageq();
431 	return 0;
432 }
433 
434 /*
435  * Allocate a piglet area.
436  *
437  * This is as low as possible.
438  * Piglets are aligned.
439  *
440  * sz and align in bytes.
441  *
442  * The call will sleep for the pagedaemon to attempt to free memory.
443  * The pagedaemon may decide its not possible to free enough memory, causing
444  * the allocation to fail.
445  */
446 int
447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
448 {
449 	paddr_t			 pg_addr, piglet_addr;
450 	struct uvm_pmemrange	*pmr;
451 	struct vm_page		*pig_pg, *pg;
452 	struct pglist		 pageq;
453 	int			 pdaemon_woken;
454 	vaddr_t			 piglet_va;
455 
456 	/* Ensure align is a power of 2 */
457 	KASSERT((align & (align - 1)) == 0);
458 
459 	pdaemon_woken = 0; /* Didn't wake the pagedaemon. */
460 
461 	/*
462 	 * Fixup arguments: align must be at least PAGE_SIZE,
463 	 * sz will be converted to pagecount, since that is what
464 	 * pmemrange uses internally.
465 	 */
466 	if (align < PAGE_SIZE)
467 		align = PAGE_SIZE;
468 	sz = round_page(sz);
469 
470 	uvm_lock_fpageq();
471 
472 	TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use,
473 	    pmr_use) {
474 retry:
475 		/*
476 		 * Search for a range with enough space.
477 		 * Use the address tree, to ensure the range is as low as
478 		 * possible.
479 		 */
480 		RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) {
481 			pg_addr = VM_PAGE_TO_PHYS(pig_pg);
482 			piglet_addr = (pg_addr + (align - 1)) & ~(align - 1);
483 
484 			if (atop(pg_addr) + pig_pg->fpgsz >=
485 			    atop(piglet_addr) + atop(sz))
486 				goto found;
487 		}
488 	}
489 
490 	/*
491 	 * Try to coerce the pagedaemon into freeing memory
492 	 * for the piglet.
493 	 *
494 	 * pdaemon_woken is set to prevent the code from
495 	 * falling into an endless loop.
496 	 */
497 	if (!pdaemon_woken) {
498 		pdaemon_woken = 1;
499 		if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1,
500 		    sz, UVM_PLA_FAILOK) == 0)
501 			goto retry;
502 	}
503 
504 	/* Return failure. */
505 	uvm_unlock_fpageq();
506 	return ENOMEM;
507 
508 found:
509 	/*
510 	 * Extract piglet from pigpen.
511 	 */
512 	TAILQ_INIT(&pageq);
513 	uvm_pmr_extract_range(pmr, pig_pg,
514 	    atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq);
515 
516 	*pa = piglet_addr;
517 	uvmexp.free -= atop(sz);
518 
519 	/*
520 	 * Update pg flags.
521 	 *
522 	 * Note that we trash the sz argument now.
523 	 */
524 	TAILQ_FOREACH(pg, &pageq, pageq) {
525 		KASSERT(pg->pg_flags & PQ_FREE);
526 
527 		atomic_clearbits_int(&pg->pg_flags,
528 		    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
529 
530 		if (pg->pg_flags & PG_ZERO)
531 			uvmexp.zeropages--;
532 		atomic_clearbits_int(&pg->pg_flags,
533 		    PG_ZERO|PQ_FREE);
534 
535 		pg->uobject = NULL;
536 		pg->uanon = NULL;
537 		pg->pg_version++;
538 	}
539 
540 	uvm_unlock_fpageq();
541 
542 	/*
543 	 * Now allocate a va.
544 	 * Use direct mappings for the pages.
545 	 */
546 
547 	piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok);
548 	if (!piglet_va) {
549 		uvm_pglistfree(&pageq);
550 		return ENOMEM;
551 	}
552 
553 	/*
554 	 * Map piglet to va.
555 	 */
556 	TAILQ_FOREACH(pg, &pageq, pageq) {
557 		pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW);
558 		piglet_va += PAGE_SIZE;
559 	}
560 	pmap_update(pmap_kernel());
561 
562 	return 0;
563 }
564 
565 /*
566  * Free a piglet area.
567  */
568 void
569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
570 {
571 	paddr_t			 pa;
572 	struct vm_page		*pg;
573 
574 	/*
575 	 * Fix parameters.
576 	 */
577 	sz = round_page(sz);
578 
579 	/*
580 	 * Find the first page in piglet.
581 	 * Since piglets are contiguous, the first pg is all we need.
582 	 */
583 	if (!pmap_extract(pmap_kernel(), va, &pa))
584 		panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va);
585 	pg = PHYS_TO_VM_PAGE(pa);
586 	if (pg == NULL)
587 		panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa);
588 
589 	/*
590 	 * Unmap.
591 	 */
592 	pmap_kremove(va, sz);
593 	pmap_update(pmap_kernel());
594 
595 	/*
596 	 * Free the physical and virtual memory.
597 	 */
598 	uvm_pmr_freepages(pg, atop(sz));
599 	km_free((void *)va, sz, &kv_any, &kp_none);
600 }
601 
602 /*
603  * Physmem RLE compression support.
604  *
605  * Given a physical page address, return the number of pages starting at the
606  * address that are free.  Clamps to the number of pages in
607  * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
608  */
609 int
610 uvm_page_rle(paddr_t addr)
611 {
612 	struct vm_page		*pg, *pg_end;
613 	struct vm_physseg	*vmp;
614 	int			 pseg_idx, off_idx;
615 
616 	pseg_idx = vm_physseg_find(atop(addr), &off_idx);
617 	if (pseg_idx == -1)
618 		return 0;
619 
620 	vmp = &vm_physmem[pseg_idx];
621 	pg = &vmp->pgs[off_idx];
622 	if (!(pg->pg_flags & PQ_FREE))
623 		return 0;
624 
625 	/*
626 	 * Search for the first non-free page after pg.
627 	 * Note that the page may not be the first page in a free pmemrange,
628 	 * therefore pg->fpgsz cannot be used.
629 	 */
630 	for (pg_end = pg; pg_end <= vmp->lastpg &&
631 	    (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++)
632 		;
633 	return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE);
634 }
635 
636 /*
637  * Fills out the hibernate_info union pointed to by hiber_info
638  * with information about this machine (swap signature block
639  * offsets, number of memory ranges, kernel in use, etc)
640  */
641 int
642 get_hibernate_info(union hibernate_info *hib, int suspend)
643 {
644 	int chunktable_size;
645 	struct disklabel dl;
646 	char err_string[128], *dl_ret;
647 
648 	/* Determine I/O function to use */
649 	hib->io_func = get_hibernate_io_function();
650 	if (hib->io_func == NULL)
651 		return (1);
652 
653 	/* Calculate hibernate device */
654 	hib->dev = swdevt[0].sw_dev;
655 
656 	/* Read disklabel (used to calculate signature and image offsets) */
657 	dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128);
658 
659 	if (dl_ret) {
660 		printf("Hibernate error reading disklabel: %s\n", dl_ret);
661 		return (1);
662 	}
663 
664 	/* Make sure we have a swap partition. */
665 	if (dl.d_partitions[1].p_fstype != FS_SWAP ||
666 	    DL_GETPSIZE(&dl.d_partitions[1]) == 0)
667 		return (1);
668 
669 	/* Make sure the signature can fit in one block */
670 	if (sizeof(union hibernate_info) > DEV_BSIZE)
671 		return (1);
672 
673 	/* Magic number */
674 	hib->magic = HIBERNATE_MAGIC;
675 
676 	/* Calculate signature block location */
677 	hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) -
678 	    sizeof(union hibernate_info)/DEV_BSIZE;
679 
680 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
681 
682 	/* Stash kernel version information */
683 	bzero(&hib->kernel_version, 128);
684 	bcopy(version, &hib->kernel_version,
685 	    min(strlen(version), sizeof(hib->kernel_version)-1));
686 
687 	if (suspend) {
688 		/* Allocate piglet region */
689 		if (uvm_pmr_alloc_piglet(&hib->piglet_va,
690 		    &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3,
691 		    HIBERNATE_CHUNK_SIZE)) {
692 			printf("Hibernate failed to allocate the piglet\n");
693 			return (1);
694 		}
695 		hib->io_page = (void *)hib->piglet_va;
696 
697 		/*
698 		 * Initialization of the hibernate IO function for drivers
699 		 * that need to do prep work (such as allocating memory or
700 		 * setting up data structures that cannot safely be done
701 		 * during suspend without causing side effects). There is
702 		 * a matching HIB_DONE call performed after the write is
703 		 * completed.
704 		 */
705 		if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]),
706 		    (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]),
707 		    HIB_INIT, hib->io_page))
708 			goto fail;
709 
710 	} else {
711 		/*
712 		 * Resuming kernels use a regular I/O page since we won't
713 		 * have access to the suspended kernel's piglet VA at this
714 		 * point. No need to free this I/O page as it will vanish
715 		 * as part of the resume.
716 		 */
717 		hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
718 		if (!hib->io_page)
719 			return (1);
720 	}
721 
722 
723 	if (get_hibernate_info_md(hib))
724 		goto fail;
725 
726 
727 	return (0);
728 fail:
729 	if (suspend)
730 		uvm_pmr_free_piglet(hib->piglet_va,
731 		    HIBERNATE_CHUNK_SIZE * 3);
732 
733 	return (1);
734 }
735 
736 /*
737  * Allocate nitems*size bytes from the hiballoc area presently in use
738  */
739 void *
740 hibernate_zlib_alloc(void *unused, int nitems, int size)
741 {
742 	struct hibernate_zlib_state *hibernate_state;
743 
744 	hibernate_state =
745 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
746 
747 	return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
748 }
749 
750 /*
751  * Free the memory pointed to by addr in the hiballoc area presently in
752  * use
753  */
754 void
755 hibernate_zlib_free(void *unused, void *addr)
756 {
757 	struct hibernate_zlib_state *hibernate_state;
758 
759 	hibernate_state =
760 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
761 
762 	hib_free(&hibernate_state->hiballoc_arena, addr);
763 }
764 
765 /*
766  * Gets the next RLE value from the image stream
767  */
768 int
769 hibernate_get_next_rle(void)
770 {
771 	int rle, i;
772 	struct hibernate_zlib_state *hibernate_state;
773 
774 	hibernate_state =
775 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
776 
777 	/* Read RLE code */
778 	hibernate_state->hib_stream.next_out = (char *)&rle;
779 	hibernate_state->hib_stream.avail_out = sizeof(rle);
780 
781 	i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH);
782 	if (i != Z_OK && i != Z_STREAM_END) {
783 		/*
784 		 * XXX - this will likely reboot/hang most machines
785 		 *       since the console output buffer will be unmapped,
786 		 *       but there's not much else we can do here.
787 		 */
788 		panic("inflate rle error");
789 	}
790 
791 	/* Sanity check what RLE value we got */
792 	if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0)
793 		panic("invalid RLE code");
794 
795 	if (i == Z_STREAM_END)
796 		rle = -1;
797 
798 	return rle;
799 }
800 
801 /*
802  * Inflate next page of data from the image stream
803  */
804 int
805 hibernate_inflate_page(void)
806 {
807 	struct hibernate_zlib_state *hibernate_state;
808 	int i;
809 
810 	hibernate_state =
811 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
812 
813 	/* Set up the stream for inflate */
814 	hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE;
815 	hibernate_state->hib_stream.avail_out = PAGE_SIZE;
816 
817 	/* Process next block of data */
818 	i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH);
819 	if (i != Z_OK && i != Z_STREAM_END) {
820 		/*
821 		 * XXX - this will likely reboot/hang most machines
822 		 *       since the console output buffer will be unmapped,
823 		 *       but there's not much else we can do here.
824 		 */
825 		panic("inflate error");
826 	}
827 
828 	/* We should always have extracted a full page ... */
829 	if (hibernate_state->hib_stream.avail_out != 0) {
830 		/*
831 		 * XXX - this will likely reboot/hang most machines
832 		 *       since the console output buffer will be unmapped,
833 		 *       but there's not much else we can do here.
834 		 */
835 		panic("incomplete page");
836 	}
837 
838 	return (i == Z_STREAM_END);
839 }
840 
841 /*
842  * Inflate size bytes from src into dest, skipping any pages in
843  * [src..dest] that are special (see hibernate_inflate_skip)
844  *
845  * This function executes while using the resume-time stack
846  * and pmap, and therefore cannot use ddb/printf/etc. Doing so
847  * will likely hang or reset the machine since the console output buffer
848  * will be unmapped.
849  */
850 void
851 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
852     paddr_t src, size_t size)
853 {
854 	int end_stream = 0 ;
855 	struct hibernate_zlib_state *hibernate_state;
856 
857 	hibernate_state =
858 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
859 
860 	hibernate_state->hib_stream.next_in = (char *)src;
861 	hibernate_state->hib_stream.avail_in = size;
862 
863 	do {
864 		/* Flush cache and TLB */
865 		hibernate_flush();
866 
867 		/*
868 		 * Is this a special page? If yes, redirect the
869 		 * inflate output to a scratch page (eg, discard it)
870 		 */
871 		if (hibernate_inflate_skip(hib, dest)) {
872 			hibernate_enter_resume_mapping(
873 			    HIBERNATE_INFLATE_PAGE,
874 			    HIBERNATE_INFLATE_PAGE, 0);
875 		} else {
876 			hibernate_enter_resume_mapping(
877 			    HIBERNATE_INFLATE_PAGE, dest, 0);
878 		}
879 
880 		hibernate_flush();
881 		end_stream = hibernate_inflate_page();
882 
883 		dest += PAGE_SIZE;
884 	} while (!end_stream);
885 }
886 
887 /*
888  * deflate from src into the I/O page, up to 'remaining' bytes
889  *
890  * Returns number of input bytes consumed, and may reset
891  * the 'remaining' parameter if not all the output space was consumed
892  * (this information is needed to know how much to write to disk
893  */
894 size_t
895 hibernate_deflate(union hibernate_info *hib, paddr_t src,
896     size_t *remaining)
897 {
898 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
899 	struct hibernate_zlib_state *hibernate_state;
900 
901 	hibernate_state =
902 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
903 
904 	/* Set up the stream for deflate */
905 	hibernate_state->hib_stream.next_in = (caddr_t)src;
906 	hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
907 	hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page +
908 	    (PAGE_SIZE - *remaining);
909 	hibernate_state->hib_stream.avail_out = *remaining;
910 
911 	/* Process next block of data */
912 	if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK)
913 		panic("hibernate zlib deflate error");
914 
915 	/* Update pointers and return number of bytes consumed */
916 	*remaining = hibernate_state->hib_stream.avail_out;
917 	return (PAGE_SIZE - (src & PAGE_MASK)) -
918 	    hibernate_state->hib_stream.avail_in;
919 }
920 
921 /*
922  * Write the hibernation information specified in hiber_info
923  * to the location in swap previously calculated (last block of
924  * swap), called the "signature block".
925  */
926 int
927 hibernate_write_signature(union hibernate_info *hib)
928 {
929 	/* Write hibernate info to disk */
930 	return (hib->io_func(hib->dev, hib->sig_offset,
931 	    (vaddr_t)hib, DEV_BSIZE, HIB_W,
932 	    hib->io_page));
933 }
934 
935 /*
936  * Write the memory chunk table to the area in swap immediately
937  * preceding the signature block. The chunk table is stored
938  * in the piglet when this function is called.  Returns errno.
939  */
940 int
941 hibernate_write_chunktable(union hibernate_info *hib)
942 {
943 	struct hibernate_disk_chunk *chunks;
944 	vaddr_t hibernate_chunk_table_start;
945 	size_t hibernate_chunk_table_size;
946 	daddr_t chunkbase;
947 	int i, err;
948 
949 	hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
950 
951 	chunkbase = hib->sig_offset -
952 	    (hibernate_chunk_table_size / DEV_BSIZE);
953 
954 	hibernate_chunk_table_start = hib->piglet_va +
955 	    HIBERNATE_CHUNK_SIZE;
956 
957 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
958 	    HIBERNATE_CHUNK_SIZE);
959 
960 	/* Write chunk table */
961 	for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
962 		if ((err = hib->io_func(hib->dev,
963 		    chunkbase + (i/DEV_BSIZE),
964 		    (vaddr_t)(hibernate_chunk_table_start + i),
965 		    MAXPHYS, HIB_W, hib->io_page))) {
966 			DPRINTF("chunktable write error: %d\n", err);
967 			return (err);
968 		}
969 	}
970 
971 	return (0);
972 }
973 
974 /*
975  * Write an empty hiber_info to the swap signature block, which is
976  * guaranteed to not match any valid hib.
977  */
978 int
979 hibernate_clear_signature(void)
980 {
981 	union hibernate_info blank_hiber_info;
982 	union hibernate_info hib;
983 
984 	/* Zero out a blank hiber_info */
985 	bzero(&blank_hiber_info, sizeof(union hibernate_info));
986 
987 	/* Get the signature block location */
988 	if (get_hibernate_info(&hib, 0))
989 		return (1);
990 
991 	/* Write (zeroed) hibernate info to disk */
992 	DPRINTF("clearing hibernate signature block location: %lld\n",
993 		hib.sig_offset);
994 	if (hibernate_block_io(&hib,
995 	    hib.sig_offset,
996 	    DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
997 		printf("Warning: could not clear hibernate signature\n");
998 
999 	return (0);
1000 }
1001 
1002 /*
1003  * Check chunk range overlap when calculating whether or not to copy a
1004  * compressed chunk to the piglet area before decompressing.
1005  *
1006  * returns zero if the ranges do not overlap, non-zero otherwise.
1007  */
1008 int
1009 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e)
1010 {
1011 	/* case A : end of r1 overlaps start of r2 */
1012 	if (r1s < r2s && r1e > r2s)
1013 		return (1);
1014 
1015 	/* case B : r1 entirely inside r2 */
1016 	if (r1s >= r2s && r1e <= r2e)
1017 		return (1);
1018 
1019 	/* case C : r2 entirely inside r1 */
1020 	if (r2s >= r1s && r2e <= r1e)
1021 		return (1);
1022 
1023 	/* case D : end of r2 overlaps start of r1 */
1024 	if (r2s < r1s && r2e > r1s)
1025 		return (1);
1026 
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Compare two hibernate_infos to determine if they are the same (eg,
1032  * we should be performing a hibernate resume on this machine.
1033  * Not all fields are checked - just enough to verify that the machine
1034  * has the same memory configuration and kernel as the one that
1035  * wrote the signature previously.
1036  */
1037 int
1038 hibernate_compare_signature(union hibernate_info *mine,
1039     union hibernate_info *disk)
1040 {
1041 	u_int i;
1042 
1043 	if (mine->nranges != disk->nranges) {
1044 		DPRINTF("hibernate memory range count mismatch\n");
1045 		return (1);
1046 	}
1047 
1048 	if (strcmp(mine->kernel_version, disk->kernel_version) != 0) {
1049 		DPRINTF("hibernate kernel version mismatch\n");
1050 		return (1);
1051 	}
1052 
1053 	for (i = 0; i < mine->nranges; i++) {
1054 		if ((mine->ranges[i].base != disk->ranges[i].base) ||
1055 		    (mine->ranges[i].end != disk->ranges[i].end) ) {
1056 			DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
1057 				i, mine->ranges[i].base, mine->ranges[i].end,
1058 				disk->ranges[i].base, disk->ranges[i].end);
1059 			return (1);
1060 		}
1061 	}
1062 
1063 	return (0);
1064 }
1065 
1066 /*
1067  * Transfers xfer_size bytes between the hibernate device specified in
1068  * hib_info at offset blkctr and the vaddr specified at dest.
1069  *
1070  * Separate offsets and pages are used to handle misaligned reads (reads
1071  * that span a page boundary).
1072  *
1073  * blkctr specifies a relative offset (relative to the start of swap),
1074  * not an absolute disk offset
1075  *
1076  */
1077 int
1078 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
1079     size_t xfer_size, vaddr_t dest, int iswrite)
1080 {
1081 	struct buf *bp;
1082 	struct bdevsw *bdsw;
1083 	int error;
1084 
1085 	bp = geteblk(xfer_size);
1086 	bdsw = &bdevsw[major(hib->dev)];
1087 
1088 	error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
1089 	if (error) {
1090 		printf("hibernate_block_io open failed\n");
1091 		return (1);
1092 	}
1093 
1094 	if (iswrite)
1095 		bcopy((caddr_t)dest, bp->b_data, xfer_size);
1096 
1097 	bp->b_bcount = xfer_size;
1098 	bp->b_blkno = blkctr;
1099 	CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
1100 	SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
1101 	bp->b_dev = hib->dev;
1102 	bp->b_cylinder = 0;
1103 	(*bdsw->d_strategy)(bp);
1104 
1105 	error = biowait(bp);
1106 	if (error) {
1107 		printf("hib block_io biowait error %d blk %lld size %zu\n",
1108 			error, (long long)blkctr, xfer_size);
1109 		error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
1110 		    curproc);
1111 		if (error)
1112 			printf("hibernate_block_io error close failed\n");
1113 		return (1);
1114 	}
1115 
1116 	error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
1117 	if (error) {
1118 		printf("hibernate_block_io close failed\n");
1119 		return (1);
1120 	}
1121 
1122 	if (!iswrite)
1123 		bcopy(bp->b_data, (caddr_t)dest, xfer_size);
1124 
1125 	bp->b_flags |= B_INVAL;
1126 	brelse(bp);
1127 
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Reads the signature block from swap, checks against the current machine's
1133  * information. If the information matches, perform a resume by reading the
1134  * saved image into the pig area, and unpacking.
1135  */
1136 void
1137 hibernate_resume(void)
1138 {
1139 	union hibernate_info hib;
1140 	int s;
1141 
1142 	/* Get current running machine's hibernate info */
1143 	bzero(&hib, sizeof(hib));
1144 	if (get_hibernate_info(&hib, 0)) {
1145 		DPRINTF("couldn't retrieve machine's hibernate info\n");
1146 		return;
1147 	}
1148 
1149 	/* Read hibernate info from disk */
1150 	s = splbio();
1151 
1152 	DPRINTF("reading hibernate signature block location: %lld\n",
1153 		hib.sig_offset);
1154 
1155 	if (hibernate_block_io(&hib,
1156 	    hib.sig_offset,
1157 	    DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
1158 		DPRINTF("error in hibernate read");
1159 		splx(s);
1160 		return;
1161 	}
1162 
1163 	/* Check magic number */
1164 	if (disk_hib.magic != HIBERNATE_MAGIC) {
1165 		DPRINTF("wrong magic number in hibernate signature: %x\n",
1166 			disk_hib.magic);
1167 		splx(s);
1168 		return;
1169 	}
1170 
1171 	/*
1172 	 * We (possibly) found a hibernate signature. Clear signature first,
1173 	 * to prevent accidental resume or endless resume cycles later.
1174 	 */
1175 	if (hibernate_clear_signature()) {
1176 		DPRINTF("error clearing hibernate signature block\n");
1177 		splx(s);
1178 		return;
1179 	}
1180 
1181 	/*
1182 	 * If on-disk and in-memory hibernate signatures match,
1183 	 * this means we should do a resume from hibernate.
1184 	 */
1185 	if (hibernate_compare_signature(&hib, &disk_hib)) {
1186 		DPRINTF("mismatched hibernate signature block\n");
1187 		splx(s);
1188 		return;
1189 	}
1190 
1191 #ifdef MULTIPROCESSOR
1192 	hibernate_quiesce_cpus();
1193 #endif /* MULTIPROCESSOR */
1194 
1195 	/* Read the image from disk into the image (pig) area */
1196 	if (hibernate_read_image(&disk_hib))
1197 		goto fail;
1198 
1199 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0)
1200 		goto fail;
1201 
1202 	(void) splhigh();
1203 	hibernate_disable_intr_machdep();
1204 	cold = 1;
1205 
1206 	if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) {
1207 		cold = 0;
1208 		hibernate_enable_intr_machdep();
1209 		goto fail;
1210 	}
1211 
1212 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1213 	    VM_PROT_ALL);
1214 	pmap_activate(curproc);
1215 
1216 	printf("Unpacking image...\n");
1217 
1218 	/* Switch stacks */
1219 	hibernate_switch_stack_machdep();
1220 
1221 	/* Unpack and resume */
1222 	hibernate_unpack_image(&disk_hib);
1223 
1224 fail:
1225 	splx(s);
1226 	printf("\nUnable to resume hibernated image\n");
1227 }
1228 
1229 /*
1230  * Unpack image from pig area to original location by looping through the
1231  * list of output chunks in the order they should be restored (fchunks).
1232  *
1233  * Note that due to the stack smash protector and the fact that we have
1234  * switched stacks, it is not permitted to return from this function.
1235  */
1236 void
1237 hibernate_unpack_image(union hibernate_info *hib)
1238 {
1239 	struct hibernate_disk_chunk *chunks;
1240 	union hibernate_info local_hib;
1241 	paddr_t image_cur = global_pig_start;
1242 	short i, *fchunks;
1243 	char *pva = (char *)hib->piglet_va;
1244 	struct hibernate_zlib_state *hibernate_state;
1245 
1246 	hibernate_state =
1247 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1248 
1249 	/* Mask off based on arch-specific piglet page size */
1250 	pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1251 	fchunks = (short *)(pva + (4 * PAGE_SIZE));
1252 
1253 	chunks = (struct hibernate_disk_chunk *)(pva +  HIBERNATE_CHUNK_SIZE);
1254 
1255 	/* Can't use hiber_info that's passed in after this point */
1256 	bcopy(hib, &local_hib, sizeof(union hibernate_info));
1257 
1258 	/*
1259 	 * Point of no return. Once we pass this point, only kernel code can
1260 	 * be accessed. No global variables or other kernel data structures
1261 	 * are guaranteed to be coherent after unpack starts.
1262 	 *
1263 	 * The image is now in high memory (pig area), we unpack from the pig
1264 	 * to the correct location in memory. We'll eventually end up copying
1265 	 * on top of ourself, but we are assured the kernel code here is the
1266 	 * same between the hibernated and resuming kernel, and we are running
1267 	 * on our own stack, so the overwrite is ok.
1268 	 */
1269 	hibernate_activate_resume_pt_machdep();
1270 
1271 	for (i = 0; i < local_hib.chunk_ctr; i++) {
1272 		/* Reset zlib for inflate */
1273 		if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
1274 			panic("hibernate failed to reset zlib for inflate");
1275 
1276 		hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
1277 		    image_cur);
1278 
1279 		image_cur += chunks[fchunks[i]].compressed_size;
1280 
1281 	}
1282 
1283 	/*
1284 	 * Resume the loaded kernel by jumping to the MD resume vector.
1285 	 * We won't be returning from this call.
1286 	 */
1287 	hibernate_resume_machdep();
1288 }
1289 
1290 /*
1291  * Bounce a compressed image chunk to the piglet, entering mappings for the
1292  * copied pages as needed
1293  */
1294 void
1295 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
1296 {
1297 	size_t ct, ofs;
1298 	paddr_t src = img_cur;
1299 	vaddr_t dest = piglet;
1300 
1301 	/* Copy first partial page */
1302 	ct = (PAGE_SIZE) - (src & PAGE_MASK);
1303 	ofs = (src & PAGE_MASK);
1304 
1305 	if (ct < PAGE_SIZE) {
1306 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
1307 			(src - ofs), 0);
1308 		hibernate_flush();
1309 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
1310 		src += ct;
1311 		dest += ct;
1312 	}
1313 	wbinvd();
1314 
1315 	/* Copy remaining pages */
1316 	while (src < size + img_cur) {
1317 		hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
1318 		hibernate_flush();
1319 		ct = PAGE_SIZE;
1320 		bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
1321 		hibernate_flush();
1322 		src += ct;
1323 		dest += ct;
1324 	}
1325 
1326 	hibernate_flush();
1327 	wbinvd();
1328 }
1329 
1330 /*
1331  * Process a chunk by bouncing it to the piglet, followed by unpacking
1332  */
1333 void
1334 hibernate_process_chunk(union hibernate_info *hib,
1335     struct hibernate_disk_chunk *chunk, paddr_t img_cur)
1336 {
1337 	char *pva = (char *)hib->piglet_va;
1338 
1339 	hibernate_copy_chunk_to_piglet(img_cur,
1340 	 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
1341 
1342 	hibernate_inflate_region(hib, chunk->base,
1343 	    (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
1344 	    chunk->compressed_size);
1345 }
1346 
1347 /*
1348  * Write a compressed version of this machine's memory to disk, at the
1349  * precalculated swap offset:
1350  *
1351  * end of swap - signature block size - chunk table size - memory size
1352  *
1353  * The function begins by looping through each phys mem range, cutting each
1354  * one into MD sized chunks. These chunks are then compressed individually
1355  * and written out to disk, in phys mem order. Some chunks might compress
1356  * more than others, and for this reason, each chunk's size is recorded
1357  * in the chunk table, which is written to disk after the image has
1358  * properly been compressed and written (in hibernate_write_chunktable).
1359  *
1360  * When this function is called, the machine is nearly suspended - most
1361  * devices are quiesced/suspended, interrupts are off, and cold has
1362  * been set. This means that there can be no side effects once the
1363  * write has started, and the write function itself can also have no
1364  * side effects. This also means no printfs are permitted (since printf
1365  * has side effects.)
1366  *
1367  * Return values :
1368  *
1369  * 0      - success
1370  * EIO    - I/O error occurred writing the chunks
1371  * EINVAL - Failed to write a complete range
1372  * ENOMEM - Memory allocation failure during preparation of the zlib arena
1373  */
1374 int
1375 hibernate_write_chunks(union hibernate_info *hib)
1376 {
1377 	paddr_t range_base, range_end, inaddr, temp_inaddr;
1378 	size_t nblocks, out_remaining, used;
1379 	struct hibernate_disk_chunk *chunks;
1380 	vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
1381 	daddr_t blkctr = hib->image_offset, offset = 0;
1382 	int i, err;
1383 	struct hibernate_zlib_state *hibernate_state;
1384 
1385 	hibernate_state =
1386 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1387 
1388 	hib->chunk_ctr = 0;
1389 
1390 	/*
1391 	 * Allocate VA for the temp and copy page.
1392 	 *
1393 	 * These will become part of the suspended kernel and will
1394 	 * be freed in hibernate_free, upon resume.
1395 	 */
1396 	hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1397 	    &kp_none, &kd_nowait);
1398 	if (!hibernate_temp_page)
1399 		return (ENOMEM);
1400 
1401 	hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
1402 	    &kp_none, &kd_nowait);
1403 	if (!hibernate_copy_page) {
1404 		DPRINTF("out of memory allocating hibernate_copy_page\n");
1405 		return (ENOMEM);
1406 	}
1407 
1408 	pmap_kenter_pa(hibernate_copy_page,
1409 	    (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL);
1410 
1411 	pmap_activate(curproc);
1412 
1413 	chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
1414 	    HIBERNATE_CHUNK_SIZE);
1415 
1416 	/* Calculate the chunk regions */
1417 	for (i = 0; i < hib->nranges; i++) {
1418 		range_base = hib->ranges[i].base;
1419 		range_end = hib->ranges[i].end;
1420 
1421 		inaddr = range_base;
1422 
1423 		while (inaddr < range_end) {
1424 			chunks[hib->chunk_ctr].base = inaddr;
1425 			if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
1426 				chunks[hib->chunk_ctr].end = inaddr +
1427 				    HIBERNATE_CHUNK_SIZE;
1428 			else
1429 				chunks[hib->chunk_ctr].end = range_end;
1430 
1431 			inaddr += HIBERNATE_CHUNK_SIZE;
1432 			hib->chunk_ctr ++;
1433 		}
1434 	}
1435 
1436 	/* Compress and write the chunks in the chunktable */
1437 	for (i = 0; i < hib->chunk_ctr; i++) {
1438 		range_base = chunks[i].base;
1439 		range_end = chunks[i].end;
1440 
1441 		chunks[i].offset = blkctr;
1442 
1443 		/* Reset zlib for deflate */
1444 		if (hibernate_zlib_reset(hib, 1) != Z_OK) {
1445 			DPRINTF("hibernate_zlib_reset failed for deflate\n");
1446 			return (ENOMEM);
1447 		}
1448 
1449 		inaddr = range_base;
1450 
1451 		/*
1452 		 * For each range, loop through its phys mem region
1453 		 * and write out the chunks (the last chunk might be
1454 		 * smaller than the chunk size).
1455 		 */
1456 		while (inaddr < range_end) {
1457 			out_remaining = PAGE_SIZE;
1458 			while (out_remaining > 0 && inaddr < range_end) {
1459 
1460 				/*
1461 				 * Adjust for regions that are not evenly
1462 				 * divisible by PAGE_SIZE or overflowed
1463 				 * pages from the previous iteration.
1464 				 */
1465 				temp_inaddr = (inaddr & PAGE_MASK) +
1466 				    hibernate_copy_page;
1467 
1468 				/* Deflate from temp_inaddr to IO page */
1469 				if (inaddr != range_end) {
1470 					pmap_kenter_pa(hibernate_temp_page,
1471 					    inaddr & PMAP_PA_MASK, VM_PROT_ALL);
1472 
1473 					pmap_activate(curproc);
1474 
1475 					bcopy((caddr_t)hibernate_temp_page,
1476 					    (caddr_t)hibernate_copy_page,
1477 					    PAGE_SIZE);
1478 					inaddr += hibernate_deflate(hib,
1479 					    temp_inaddr, &out_remaining);
1480 				}
1481 
1482 				if (out_remaining == 0) {
1483 					/* Filled up the page */
1484 					nblocks =
1485 					    PAGE_SIZE / DEV_BSIZE;
1486 
1487 					if ((err = hib->io_func(
1488 					    hib->dev,
1489 					    blkctr, (vaddr_t)hibernate_io_page,
1490 					    PAGE_SIZE, HIB_W,
1491 					    hib->io_page))) {
1492 						DPRINTF("hib write error %d\n",
1493 							err);
1494 						return (err);
1495 					}
1496 
1497 					blkctr += nblocks;
1498 				}
1499 			}
1500 		}
1501 
1502 		if (inaddr != range_end) {
1503 			DPRINTF("deflate range ended prematurely\n");
1504 			return (EINVAL);
1505 		}
1506 
1507 		/*
1508 		 * End of range. Round up to next secsize bytes
1509 		 * after finishing compress
1510 		 */
1511 		if (out_remaining == 0)
1512 			out_remaining = PAGE_SIZE;
1513 
1514 		/* Finish compress */
1515 		hibernate_state->hib_stream.next_in = (caddr_t)inaddr;
1516 		hibernate_state->hib_stream.avail_in = 0;
1517 		hibernate_state->hib_stream.next_out =
1518 		    (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining);
1519 
1520 		/* We have an extra output page available for finalize */
1521 		hibernate_state->hib_stream.avail_out =
1522 			out_remaining + PAGE_SIZE;
1523 
1524 		if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
1525 		    Z_STREAM_END) {
1526 			DPRINTF("deflate error in output stream: %d\n", err);
1527 			return (err);
1528 		}
1529 
1530 		out_remaining = hibernate_state->hib_stream.avail_out;
1531 
1532 		used = 2*PAGE_SIZE - out_remaining;
1533 		nblocks = used / DEV_BSIZE;
1534 
1535 		/* Round up to next block if needed */
1536 		if (used % DEV_BSIZE != 0)
1537 			nblocks ++;
1538 
1539 		/* Write final block(s) for this chunk */
1540 		if ((err = hib->io_func(hib->dev, blkctr,
1541 		    (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
1542 		    HIB_W, hib->io_page))) {
1543 			DPRINTF("hib final write error %d\n", err);
1544 			return (err);
1545 		}
1546 
1547 		blkctr += nblocks;
1548 
1549 		offset = blkctr;
1550 		chunks[i].compressed_size = (offset - chunks[i].offset) *
1551 		    DEV_BSIZE;
1552 	}
1553 
1554 	return (0);
1555 }
1556 
1557 /*
1558  * Reset the zlib stream state and allocate a new hiballoc area for either
1559  * inflate or deflate. This function is called once for each hibernate chunk.
1560  * Calling hiballoc_init multiple times is acceptable since the memory it is
1561  * provided is unmanaged memory (stolen). We use the memory provided to us
1562  * by the piglet allocated via the supplied hib.
1563  */
1564 int
1565 hibernate_zlib_reset(union hibernate_info *hib, int deflate)
1566 {
1567 	vaddr_t hibernate_zlib_start;
1568 	size_t hibernate_zlib_size;
1569 	char *pva = (char *)hib->piglet_va;
1570 	struct hibernate_zlib_state *hibernate_state;
1571 
1572 	hibernate_state =
1573 	    (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
1574 
1575 	if (!deflate)
1576 		pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
1577 
1578 	hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE));
1579 	hibernate_zlib_size = 80 * PAGE_SIZE;
1580 
1581 	bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1582 	bzero((caddr_t)hibernate_state, PAGE_SIZE);
1583 
1584 	/* Set up stream structure */
1585 	hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
1586 	hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
1587 
1588 	/* Initialize the hiballoc arena for zlib allocs/frees */
1589 	hiballoc_init(&hibernate_state->hiballoc_arena,
1590 	    (caddr_t)hibernate_zlib_start, hibernate_zlib_size);
1591 
1592 	if (deflate) {
1593 		return deflateInit(&hibernate_state->hib_stream,
1594 		    Z_BEST_SPEED);
1595 	} else
1596 		return inflateInit(&hibernate_state->hib_stream);
1597 }
1598 
1599 /*
1600  * Reads the hibernated memory image from disk, whose location and
1601  * size are recorded in hib. Begin by reading the persisted
1602  * chunk table, which records the original chunk placement location
1603  * and compressed size for each. Next, allocate a pig region of
1604  * sufficient size to hold the compressed image. Next, read the
1605  * chunks into the pig area (calling hibernate_read_chunks to do this),
1606  * and finally, if all of the above succeeds, clear the hibernate signature.
1607  * The function will then return to hibernate_resume, which will proceed
1608  * to unpack the pig image to the correct place in memory.
1609  */
1610 int
1611 hibernate_read_image(union hibernate_info *hib)
1612 {
1613 	size_t compressed_size, disk_size, chunktable_size, pig_sz;
1614 	paddr_t image_start, image_end, pig_start, pig_end;
1615 	struct hibernate_disk_chunk *chunks;
1616 	daddr_t blkctr;
1617 	vaddr_t chunktable = (vaddr_t)NULL;
1618 	paddr_t piglet_chunktable = hib->piglet_pa +
1619 	    HIBERNATE_CHUNK_SIZE;
1620 	int i;
1621 
1622 	pmap_activate(curproc);
1623 
1624 	/* Calculate total chunk table size in disk blocks */
1625 	chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
1626 
1627 	blkctr = hib->sig_offset - chunktable_size;
1628 
1629 	chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
1630 	    &kp_none, &kd_nowait);
1631 
1632 	if (!chunktable)
1633 		return (1);
1634 
1635 	/* Read the chunktable from disk into the piglet chunktable */
1636 	for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
1637 	    i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) {
1638 		pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
1639 		    VM_PROT_ALL);
1640 		pmap_update(pmap_kernel());
1641 		hibernate_block_io(hib, blkctr, PAGE_SIZE,
1642 		    chunktable + i, 0);
1643 	}
1644 
1645 	blkctr = hib->image_offset;
1646 	compressed_size = 0;
1647 
1648 	chunks = (struct hibernate_disk_chunk *)chunktable;
1649 
1650 	for (i = 0; i < hib->chunk_ctr; i++)
1651 		compressed_size += chunks[i].compressed_size;
1652 
1653 	disk_size = compressed_size;
1654 
1655 	printf("unhibernating @ block %lld length %lu blocks\n",
1656 	    hib->sig_offset - chunktable_size,
1657 	    compressed_size);
1658 
1659 	/* Allocate the pig area */
1660 	pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
1661 	if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM)
1662 		return (1);
1663 
1664 	pig_end = pig_start + pig_sz;
1665 
1666 	/* Calculate image extents. Pig image must end on a chunk boundary. */
1667 	image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
1668 	image_start = image_end - disk_size;
1669 
1670 	hibernate_read_chunks(hib, image_start, image_end, disk_size,
1671 	    chunks);
1672 
1673 	pmap_kremove(chunktable, PAGE_SIZE);
1674 	pmap_update(pmap_kernel());
1675 
1676 	/* Prepare the resume time pmap/page table */
1677 	hibernate_populate_resume_pt(hib, image_start, image_end);
1678 
1679 	return (0);
1680 }
1681 
1682 /*
1683  * Read the hibernated memory chunks from disk (chunk information at this
1684  * point is stored in the piglet) into the pig area specified by
1685  * [pig_start .. pig_end]. Order the chunks so that the final chunk is the
1686  * only chunk with overlap possibilities.
1687  */
1688 int
1689 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
1690     paddr_t pig_end, size_t image_compr_size,
1691     struct hibernate_disk_chunk *chunks)
1692 {
1693 	paddr_t img_index, img_cur, r1s, r1e, r2s, r2e;
1694 	paddr_t copy_start, copy_end, piglet_cur;
1695 	paddr_t piglet_base = hib->piglet_pa;
1696 	paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE;
1697 	daddr_t blkctr;
1698 	size_t processed, compressed_size, read_size;
1699 	int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0;
1700 	short *ochunks, *pchunks, *fchunks, i, j;
1701 	vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL;
1702 
1703 	global_pig_start = pig_start;
1704 
1705 	pmap_activate(curproc);
1706 
1707 	/*
1708 	 * These mappings go into the resuming kernel's page table, and are
1709 	 * used only during image read. They dissappear from existence
1710 	 * when the suspended kernel is unpacked on top of us.
1711 	 */
1712 	tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
1713 	if (!tempva)
1714 		return (1);
1715 	hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any,
1716 	    &kp_none, &kd_nowait);
1717 	if (!hibernate_fchunk_area)
1718 		return (1);
1719 
1720 	/* Final output chunk ordering VA */
1721 	fchunks = (short *)hibernate_fchunk_area;
1722 
1723 	/* Piglet chunk ordering VA */
1724 	pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE));
1725 
1726 	/* Final chunk ordering VA */
1727 	ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE));
1728 
1729 	/* Map the chunk ordering region */
1730 	for(i=0; i<24 ; i++) {
1731 		pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE),
1732 			piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL);
1733 		pmap_update(pmap_kernel());
1734 	}
1735 
1736 	nchunks = hib->chunk_ctr;
1737 
1738 	/* Initially start all chunks as unplaced */
1739 	for (i = 0; i < nchunks; i++)
1740 		chunks[i].flags = 0;
1741 
1742 	/*
1743 	 * Search the list for chunks that are outside the pig area. These
1744 	 * can be placed first in the final output list.
1745 	 */
1746 	for (i = 0; i < nchunks; i++) {
1747 		if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
1748 			ochunks[nochunks] = i;
1749 			fchunks[nfchunks] = i;
1750 			nochunks++;
1751 			nfchunks++;
1752 			chunks[i].flags |= HIBERNATE_CHUNK_USED;
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * Walk the ordering, place the chunks in ascending memory order.
1758 	 * Conflicts might arise, these are handled next.
1759 	 */
1760 	do {
1761 		img_index = -1;
1762 		found = 0;
1763 		j = -1;
1764 		for (i = 0; i < nchunks; i++)
1765 			if (chunks[i].base < img_index &&
1766 			    chunks[i].flags == 0 ) {
1767 				j = i;
1768 				img_index = chunks[i].base;
1769 			}
1770 
1771 		if (j != -1) {
1772 			found = 1;
1773 			ochunks[nochunks] = j;
1774 			nochunks++;
1775 			chunks[j].flags |= HIBERNATE_CHUNK_PLACED;
1776 		}
1777 	} while (found);
1778 
1779 	img_index = pig_start;
1780 
1781 	/*
1782 	 * Identify chunk output conflicts (chunks whose pig load area
1783 	 * corresponds to their original memory placement location)
1784 	 */
1785 	for (i = 0; i < nochunks ; i++) {
1786 		overlap = 0;
1787 		r1s = img_index;
1788 		r1e = img_index + chunks[ochunks[i]].compressed_size;
1789 		r2s = chunks[ochunks[i]].base;
1790 		r2e = chunks[ochunks[i]].end;
1791 
1792 		overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e);
1793 		if (overlap)
1794 			chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT;
1795 		img_index += chunks[ochunks[i]].compressed_size;
1796 	}
1797 
1798 	/*
1799 	 * Prepare the final output chunk list. Calculate an output
1800 	 * inflate strategy for overlapping chunks if needed.
1801 	 */
1802 	img_index = pig_start;
1803 	for (i = 0; i < nochunks ; i++) {
1804 		/*
1805 		 * If a conflict is detected, consume enough compressed
1806 		 * output chunks to fill the piglet
1807 		 */
1808 		if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) {
1809 			copy_start = piglet_base;
1810 			copy_end = piglet_end;
1811 			piglet_cur = piglet_base;
1812 			npchunks = 0;
1813 			j = i;
1814 
1815 			while (copy_start < copy_end && j < nochunks) {
1816 				piglet_cur +=
1817 				    chunks[ochunks[j]].compressed_size;
1818 				pchunks[npchunks] = ochunks[j];
1819 				npchunks++;
1820 				copy_start +=
1821 				    chunks[ochunks[j]].compressed_size;
1822 				img_index += chunks[ochunks[j]].compressed_size;
1823 				i++;
1824 				j++;
1825 			}
1826 
1827 			piglet_cur = piglet_base;
1828 			for (j = 0; j < npchunks; j++) {
1829 				piglet_cur +=
1830 				    chunks[pchunks[j]].compressed_size;
1831 				fchunks[nfchunks] = pchunks[j];
1832 				chunks[pchunks[j]].flags |=
1833 				    HIBERNATE_CHUNK_USED;
1834 				nfchunks++;
1835 			}
1836 		} else {
1837 			/*
1838 			 * No conflict, chunk can be added without copying
1839 			 */
1840 			if ((chunks[ochunks[i]].flags &
1841 			    HIBERNATE_CHUNK_USED) == 0) {
1842 				fchunks[nfchunks] = ochunks[i];
1843 				chunks[ochunks[i]].flags |=
1844 				    HIBERNATE_CHUNK_USED;
1845 				nfchunks++;
1846 			}
1847 			img_index += chunks[ochunks[i]].compressed_size;
1848 		}
1849 	}
1850 
1851 	img_index = pig_start;
1852 	for (i = 0; i < nfchunks; i++) {
1853 		piglet_cur = piglet_base;
1854 		img_index += chunks[fchunks[i]].compressed_size;
1855 	}
1856 
1857 	img_cur = pig_start;
1858 
1859 	for (i = 0; i < nfchunks; i++) {
1860 		blkctr = chunks[fchunks[i]].offset;
1861 		processed = 0;
1862 		compressed_size = chunks[fchunks[i]].compressed_size;
1863 
1864 		while (processed < compressed_size) {
1865 			pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL);
1866 			pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE,
1867 			    VM_PROT_ALL);
1868 			pmap_update(pmap_kernel());
1869 
1870 			if (compressed_size - processed >= PAGE_SIZE)
1871 				read_size = PAGE_SIZE;
1872 			else
1873 				read_size = compressed_size - processed;
1874 
1875 			hibernate_block_io(hib, blkctr, read_size,
1876 			    tempva + (img_cur & PAGE_MASK), 0);
1877 
1878 			blkctr += (read_size / DEV_BSIZE);
1879 
1880 			pmap_kremove(tempva, PAGE_SIZE);
1881 			pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE);
1882 			processed += read_size;
1883 			img_cur += read_size;
1884 		}
1885 	}
1886 
1887 	pmap_kremove(hibernate_fchunk_area, PAGE_SIZE);
1888 	pmap_kremove((vaddr_t)pchunks, PAGE_SIZE);
1889 	pmap_kremove((vaddr_t)fchunks, PAGE_SIZE);
1890 	pmap_update(pmap_kernel());
1891 
1892 	return (0);
1893 }
1894 
1895 /*
1896  * Hibernating a machine comprises the following operations:
1897  *  1. Calculating this machine's hibernate_info information
1898  *  2. Allocating a piglet and saving the piglet's physaddr
1899  *  3. Calculating the memory chunks
1900  *  4. Writing the compressed chunks to disk
1901  *  5. Writing the chunk table
1902  *  6. Writing the signature block (hibernate_info)
1903  *
1904  * On most architectures, the function calling hibernate_suspend would
1905  * then power off the machine using some MD-specific implementation.
1906  */
1907 int
1908 hibernate_suspend(void)
1909 {
1910 	union hibernate_info hib;
1911 	u_long start, end;
1912 
1913 	/*
1914 	 * Calculate memory ranges, swap offsets, etc.
1915 	 * This also allocates a piglet whose physaddr is stored in
1916 	 * hib->piglet_pa and vaddr stored in hib->piglet_va
1917 	 */
1918 	if (get_hibernate_info(&hib, 1)) {
1919 		DPRINTF("failed to obtain hibernate info\n");
1920 		return (1);
1921 	}
1922 
1923 	/* Find a page-addressed region in swap [start,end] */
1924 	if (uvm_hibswap(hib.dev, &start, &end)) {
1925 		printf("cannot find any swap\n");
1926 		return (1);
1927 	}
1928 
1929 	if (end - start < 1000) {
1930 		printf("%lu\n is too small", end - start);
1931 		return (1);
1932 	}
1933 
1934 	/* Calculate block offsets in swap */
1935 	hib.image_offset = ctod(start);
1936 
1937 	/* XXX side effect */
1938 	DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
1939 	    hib.image_offset, ctod(end) - ctod(start));
1940 
1941 	pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
1942 		VM_PROT_ALL);
1943 	pmap_activate(curproc);
1944 
1945 	/* Stash the piglet VA so we can free it in the resuming kernel */
1946 	global_piglet_va = hib.piglet_va;
1947 
1948 	DPRINTF("hibernate: writing chunks\n");
1949 	if (hibernate_write_chunks(&hib)) {
1950 		DPRINTF("hibernate_write_chunks failed\n");
1951 		return (1);
1952 	}
1953 
1954 	DPRINTF("hibernate: writing chunktable\n");
1955 	if (hibernate_write_chunktable(&hib)) {
1956 		DPRINTF("hibernate_write_chunktable failed\n");
1957 		return (1);
1958 	}
1959 
1960 	DPRINTF("hibernate: writing signature\n");
1961 	if (hibernate_write_signature(&hib)) {
1962 		DPRINTF("hibernate_write_signature failed\n");
1963 		return (1);
1964 	}
1965 
1966 	/* Allow the disk to settle */
1967 	delay(500000);
1968 
1969 	/*
1970 	 * Give the device-specific I/O function a notification that we're
1971 	 * done, and that it can clean up or shutdown as needed.
1972 	 */
1973 	hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
1974 
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Free items allocated by hibernate_suspend()
1980  */
1981 void
1982 hibernate_free(void)
1983 {
1984 	if (global_piglet_va)
1985 		uvm_pmr_free_piglet(global_piglet_va,
1986 		    3*HIBERNATE_CHUNK_SIZE);
1987 
1988 	if (hibernate_copy_page)
1989 		pmap_kremove(hibernate_copy_page, PAGE_SIZE);
1990 	if (hibernate_temp_page)
1991 		pmap_kremove(hibernate_temp_page, PAGE_SIZE);
1992 
1993 	pmap_update(pmap_kernel());
1994 
1995 	if (hibernate_copy_page)
1996 		km_free((void *)hibernate_copy_page, PAGE_SIZE,
1997 		    &kv_any, &kp_none);
1998 	if (hibernate_temp_page)
1999 		km_free((void *)hibernate_temp_page, PAGE_SIZE,
2000 		    &kv_any, &kp_none);
2001 
2002 	global_piglet_va = 0;
2003 	hibernate_copy_page = 0;
2004 	hibernate_temp_page = 0;
2005 }
2006