1 /* $OpenBSD: subr_hibernate.c,v 1.58 2013/06/01 17:39:20 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE unused 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hiber_info; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 71 72 /* 73 * Hib alloc enforced alignment. 74 */ 75 #define HIB_ALIGN 8 /* bytes alignment */ 76 77 /* 78 * sizeof builtin operation, but with alignment constraint. 79 */ 80 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 81 82 struct hiballoc_entry { 83 size_t hibe_use; 84 size_t hibe_space; 85 RB_ENTRY(hiballoc_entry) hibe_entry; 86 }; 87 88 /* 89 * Compare hiballoc entries based on the address they manage. 90 * 91 * Since the address is fixed, relative to struct hiballoc_entry, 92 * we just compare the hiballoc_entry pointers. 93 */ 94 static __inline int 95 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 96 { 97 return l < r ? -1 : (l > r); 98 } 99 100 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 101 102 /* 103 * Given a hiballoc entry, return the address it manages. 104 */ 105 static __inline void * 106 hib_entry_to_addr(struct hiballoc_entry *entry) 107 { 108 caddr_t addr; 109 110 addr = (caddr_t)entry; 111 addr += HIB_SIZEOF(struct hiballoc_entry); 112 return addr; 113 } 114 115 /* 116 * Given an address, find the hiballoc that corresponds. 117 */ 118 static __inline struct hiballoc_entry* 119 hib_addr_to_entry(void *addr_param) 120 { 121 caddr_t addr; 122 123 addr = (caddr_t)addr_param; 124 addr -= HIB_SIZEOF(struct hiballoc_entry); 125 return (struct hiballoc_entry*)addr; 126 } 127 128 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 129 130 /* 131 * Allocate memory from the arena. 132 * 133 * Returns NULL if no memory is available. 134 */ 135 void * 136 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 137 { 138 struct hiballoc_entry *entry, *new_entry; 139 size_t find_sz; 140 141 /* 142 * Enforce alignment of HIB_ALIGN bytes. 143 * 144 * Note that, because the entry is put in front of the allocation, 145 * 0-byte allocations are guaranteed a unique address. 146 */ 147 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 148 149 /* 150 * Find an entry with hibe_space >= find_sz. 151 * 152 * If the root node is not large enough, we switch to tree traversal. 153 * Because all entries are made at the bottom of the free space, 154 * traversal from the end has a slightly better chance of yielding 155 * a sufficiently large space. 156 */ 157 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 158 entry = RB_ROOT(&arena->hib_addrs); 159 if (entry != NULL && entry->hibe_space < find_sz) { 160 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 161 if (entry->hibe_space >= find_sz) 162 break; 163 } 164 } 165 166 /* 167 * Insufficient or too fragmented memory. 168 */ 169 if (entry == NULL) 170 return NULL; 171 172 /* 173 * Create new entry in allocated space. 174 */ 175 new_entry = (struct hiballoc_entry*)( 176 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 177 new_entry->hibe_space = entry->hibe_space - find_sz; 178 new_entry->hibe_use = alloc_sz; 179 180 /* 181 * Insert entry. 182 */ 183 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 184 panic("hib_alloc: insert failure"); 185 entry->hibe_space = 0; 186 187 /* Return address managed by entry. */ 188 return hib_entry_to_addr(new_entry); 189 } 190 191 /* 192 * Free a pointer previously allocated from this arena. 193 * 194 * If addr is NULL, this will be silently accepted. 195 */ 196 void 197 hib_free(struct hiballoc_arena *arena, void *addr) 198 { 199 struct hiballoc_entry *entry, *prev; 200 201 if (addr == NULL) 202 return; 203 204 /* 205 * Derive entry from addr and check it is really in this arena. 206 */ 207 entry = hib_addr_to_entry(addr); 208 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 209 panic("hib_free: freed item %p not in hib arena", addr); 210 211 /* 212 * Give the space in entry to its predecessor. 213 * 214 * If entry has no predecessor, change its used space into free space 215 * instead. 216 */ 217 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 218 if (prev != NULL && 219 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 220 prev->hibe_use + prev->hibe_space) == entry) { 221 /* Merge entry. */ 222 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 223 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 224 entry->hibe_use + entry->hibe_space; 225 } else { 226 /* Flip used memory to free space. */ 227 entry->hibe_space += entry->hibe_use; 228 entry->hibe_use = 0; 229 } 230 } 231 232 /* 233 * Initialize hiballoc. 234 * 235 * The allocator will manage memmory at ptr, which is len bytes. 236 */ 237 int 238 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 239 { 240 struct hiballoc_entry *entry; 241 caddr_t ptr; 242 size_t len; 243 244 RB_INIT(&arena->hib_addrs); 245 246 /* 247 * Hib allocator enforces HIB_ALIGN alignment. 248 * Fixup ptr and len. 249 */ 250 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 251 len = p_len - ((size_t)ptr - (size_t)p_ptr); 252 len &= ~((size_t)HIB_ALIGN - 1); 253 254 /* 255 * Insufficient memory to be able to allocate and also do bookkeeping. 256 */ 257 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 258 return ENOMEM; 259 260 /* 261 * Create entry describing space. 262 */ 263 entry = (struct hiballoc_entry*)ptr; 264 entry->hibe_use = 0; 265 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 266 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 267 268 return 0; 269 } 270 271 /* 272 * Zero all free memory. 273 */ 274 void 275 uvm_pmr_zero_everything(void) 276 { 277 struct uvm_pmemrange *pmr; 278 struct vm_page *pg; 279 int i; 280 281 uvm_lock_fpageq(); 282 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 283 /* Zero single pages. */ 284 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 285 != NULL) { 286 uvm_pmr_remove(pmr, pg); 287 uvm_pagezero(pg); 288 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 289 uvmexp.zeropages++; 290 uvm_pmr_insert(pmr, pg, 0); 291 } 292 293 /* Zero multi page ranges. */ 294 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 pg--; /* Size tree always has second page. */ 297 uvm_pmr_remove(pmr, pg); 298 for (i = 0; i < pg->fpgsz; i++) { 299 uvm_pagezero(&pg[i]); 300 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 301 uvmexp.zeropages++; 302 } 303 uvm_pmr_insert(pmr, pg, 0); 304 } 305 } 306 uvm_unlock_fpageq(); 307 } 308 309 /* 310 * Mark all memory as dirty. 311 * 312 * Used to inform the system that the clean memory isn't clean for some 313 * reason, for example because we just came back from hibernate. 314 */ 315 void 316 uvm_pmr_dirty_everything(void) 317 { 318 struct uvm_pmemrange *pmr; 319 struct vm_page *pg; 320 int i; 321 322 uvm_lock_fpageq(); 323 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 324 /* Dirty single pages. */ 325 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 326 != NULL) { 327 uvm_pmr_remove(pmr, pg); 328 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 329 uvm_pmr_insert(pmr, pg, 0); 330 } 331 332 /* Dirty multi page ranges. */ 333 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 334 != NULL) { 335 pg--; /* Size tree always has second page. */ 336 uvm_pmr_remove(pmr, pg); 337 for (i = 0; i < pg->fpgsz; i++) 338 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 } 342 343 uvmexp.zeropages = 0; 344 uvm_unlock_fpageq(); 345 } 346 347 /* 348 * Allocate the highest address that can hold sz. 349 * 350 * sz in bytes. 351 */ 352 int 353 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 354 { 355 struct uvm_pmemrange *pmr; 356 struct vm_page *pig_pg, *pg; 357 358 /* 359 * Convert sz to pages, since that is what pmemrange uses internally. 360 */ 361 sz = atop(round_page(sz)); 362 363 uvm_lock_fpageq(); 364 365 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 366 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 367 if (pig_pg->fpgsz >= sz) { 368 goto found; 369 } 370 } 371 } 372 373 /* 374 * Allocation failure. 375 */ 376 uvm_unlock_fpageq(); 377 return ENOMEM; 378 379 found: 380 /* Remove page from freelist. */ 381 uvm_pmr_remove_size(pmr, pig_pg); 382 pig_pg->fpgsz -= sz; 383 pg = pig_pg + pig_pg->fpgsz; 384 if (pig_pg->fpgsz == 0) 385 uvm_pmr_remove_addr(pmr, pig_pg); 386 else 387 uvm_pmr_insert_size(pmr, pig_pg); 388 389 uvmexp.free -= sz; 390 *addr = VM_PAGE_TO_PHYS(pg); 391 392 /* 393 * Update pg flags. 394 * 395 * Note that we trash the sz argument now. 396 */ 397 while (sz > 0) { 398 KASSERT(pg->pg_flags & PQ_FREE); 399 400 atomic_clearbits_int(&pg->pg_flags, 401 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 402 403 if (pg->pg_flags & PG_ZERO) 404 uvmexp.zeropages -= sz; 405 atomic_clearbits_int(&pg->pg_flags, 406 PG_ZERO|PQ_FREE); 407 408 pg->uobject = NULL; 409 pg->uanon = NULL; 410 pg->pg_version++; 411 412 /* 413 * Next. 414 */ 415 pg++; 416 sz--; 417 } 418 419 /* Return. */ 420 uvm_unlock_fpageq(); 421 return 0; 422 } 423 424 /* 425 * Allocate a piglet area. 426 * 427 * This is as low as possible. 428 * Piglets are aligned. 429 * 430 * sz and align in bytes. 431 * 432 * The call will sleep for the pagedaemon to attempt to free memory. 433 * The pagedaemon may decide its not possible to free enough memory, causing 434 * the allocation to fail. 435 */ 436 int 437 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 438 { 439 paddr_t pg_addr, piglet_addr; 440 struct uvm_pmemrange *pmr; 441 struct vm_page *pig_pg, *pg; 442 struct pglist pageq; 443 int pdaemon_woken; 444 vaddr_t piglet_va; 445 446 /* Ensure align is a power of 2 */ 447 KASSERT((align & (align - 1)) == 0); 448 449 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 450 451 /* 452 * Fixup arguments: align must be at least PAGE_SIZE, 453 * sz will be converted to pagecount, since that is what 454 * pmemrange uses internally. 455 */ 456 if (align < PAGE_SIZE) 457 align = PAGE_SIZE; 458 sz = round_page(sz); 459 460 uvm_lock_fpageq(); 461 462 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 463 pmr_use) { 464 retry: 465 /* 466 * Search for a range with enough space. 467 * Use the address tree, to ensure the range is as low as 468 * possible. 469 */ 470 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 471 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 472 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 473 474 if (atop(pg_addr) + pig_pg->fpgsz >= 475 atop(piglet_addr) + atop(sz)) 476 goto found; 477 } 478 } 479 480 /* 481 * Try to coerce the pagedaemon into freeing memory 482 * for the piglet. 483 * 484 * pdaemon_woken is set to prevent the code from 485 * falling into an endless loop. 486 */ 487 if (!pdaemon_woken) { 488 pdaemon_woken = 1; 489 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 490 sz, UVM_PLA_FAILOK) == 0) 491 goto retry; 492 } 493 494 /* Return failure. */ 495 uvm_unlock_fpageq(); 496 return ENOMEM; 497 498 found: 499 /* 500 * Extract piglet from pigpen. 501 */ 502 TAILQ_INIT(&pageq); 503 uvm_pmr_extract_range(pmr, pig_pg, 504 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 505 506 *pa = piglet_addr; 507 uvmexp.free -= atop(sz); 508 509 /* 510 * Update pg flags. 511 * 512 * Note that we trash the sz argument now. 513 */ 514 TAILQ_FOREACH(pg, &pageq, pageq) { 515 KASSERT(pg->pg_flags & PQ_FREE); 516 517 atomic_clearbits_int(&pg->pg_flags, 518 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 519 520 if (pg->pg_flags & PG_ZERO) 521 uvmexp.zeropages--; 522 atomic_clearbits_int(&pg->pg_flags, 523 PG_ZERO|PQ_FREE); 524 525 pg->uobject = NULL; 526 pg->uanon = NULL; 527 pg->pg_version++; 528 } 529 530 uvm_unlock_fpageq(); 531 532 /* 533 * Now allocate a va. 534 * Use direct mappings for the pages. 535 */ 536 537 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 538 if (!piglet_va) { 539 uvm_pglistfree(&pageq); 540 return ENOMEM; 541 } 542 543 /* 544 * Map piglet to va. 545 */ 546 TAILQ_FOREACH(pg, &pageq, pageq) { 547 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 548 piglet_va += PAGE_SIZE; 549 } 550 pmap_update(pmap_kernel()); 551 552 return 0; 553 } 554 555 /* 556 * Free a piglet area. 557 */ 558 void 559 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 560 { 561 paddr_t pa; 562 struct vm_page *pg; 563 564 /* 565 * Fix parameters. 566 */ 567 sz = round_page(sz); 568 569 /* 570 * Find the first page in piglet. 571 * Since piglets are contiguous, the first pg is all we need. 572 */ 573 if (!pmap_extract(pmap_kernel(), va, &pa)) 574 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 575 pg = PHYS_TO_VM_PAGE(pa); 576 if (pg == NULL) 577 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 578 579 /* 580 * Unmap. 581 */ 582 pmap_kremove(va, sz); 583 pmap_update(pmap_kernel()); 584 585 /* 586 * Free the physical and virtual memory. 587 */ 588 uvm_pmr_freepages(pg, atop(sz)); 589 km_free((void *)va, sz, &kv_any, &kp_none); 590 } 591 592 /* 593 * Physmem RLE compression support. 594 * 595 * Given a physical page address, return the number of pages starting at the 596 * address that are free. Clamps to the number of pages in 597 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 598 */ 599 int 600 uvm_page_rle(paddr_t addr) 601 { 602 struct vm_page *pg, *pg_end; 603 struct vm_physseg *vmp; 604 int pseg_idx, off_idx; 605 606 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 607 if (pseg_idx == -1) 608 return 0; 609 610 vmp = &vm_physmem[pseg_idx]; 611 pg = &vmp->pgs[off_idx]; 612 if (!(pg->pg_flags & PQ_FREE)) 613 return 0; 614 615 /* 616 * Search for the first non-free page after pg. 617 * Note that the page may not be the first page in a free pmemrange, 618 * therefore pg->fpgsz cannot be used. 619 */ 620 for (pg_end = pg; pg_end <= vmp->lastpg && 621 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 622 ; 623 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 624 } 625 626 /* 627 * Fills out the hibernate_info union pointed to by hiber_info 628 * with information about this machine (swap signature block 629 * offsets, number of memory ranges, kernel in use, etc) 630 */ 631 int 632 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 633 { 634 int chunktable_size; 635 struct disklabel dl; 636 char err_string[128], *dl_ret; 637 638 /* Determine I/O function to use */ 639 hiber_info->io_func = get_hibernate_io_function(); 640 if (hiber_info->io_func == NULL) 641 return (1); 642 643 /* Calculate hibernate device */ 644 hiber_info->device = swdevt[0].sw_dev; 645 646 /* Read disklabel (used to calculate signature and image offsets) */ 647 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 648 649 if (dl_ret) { 650 printf("Hibernate error reading disklabel: %s\n", dl_ret); 651 return (1); 652 } 653 654 /* Make sure we have a swap partition. */ 655 if (dl.d_partitions[1].p_fstype != FS_SWAP || 656 dl.d_partitions[1].p_size == 0) 657 return (1); 658 659 hiber_info->secsize = dl.d_secsize; 660 661 /* Make sure the signature can fit in one block */ 662 if(sizeof(union hibernate_info) > hiber_info->secsize) 663 return (1); 664 665 /* Magic number */ 666 hiber_info->magic = HIBERNATE_MAGIC; 667 668 /* Calculate swap offset from start of disk */ 669 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 670 671 /* Calculate signature block location */ 672 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 673 dl.d_partitions[1].p_size - 674 sizeof(union hibernate_info)/hiber_info->secsize; 675 676 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 677 678 /* Stash kernel version information */ 679 bzero(&hiber_info->kernel_version, 128); 680 bcopy(version, &hiber_info->kernel_version, 681 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 682 683 if (suspend) { 684 /* Allocate piglet region */ 685 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 686 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 687 HIBERNATE_CHUNK_SIZE)) { 688 printf("Hibernate failed to allocate the piglet\n"); 689 return (1); 690 } 691 hiber_info->io_page = (void *)hiber_info->piglet_va; 692 693 /* 694 * Initialization of the hibernate IO function for drivers 695 * that need to do prep work (such as allocating memory or 696 * setting up data structures that cannot safely be done 697 * during suspend without causing side effects). There is 698 * a matching HIB_DONE call performed after the write is 699 * completed. 700 */ 701 if (hiber_info->io_func(hiber_info->device, 0, 702 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 703 goto fail; 704 705 } else { 706 /* 707 * Resuming kernels use a regular I/O page since we won't 708 * have access to the suspended kernel's piglet VA at this 709 * point. No need to free this I/O page as it will vanish 710 * as part of the resume. 711 */ 712 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 713 if (!hiber_info->io_page) 714 return (1); 715 } 716 717 718 if (get_hibernate_info_md(hiber_info)) 719 goto fail; 720 721 /* Calculate memory image location in swap */ 722 hiber_info->image_offset = dl.d_partitions[1].p_offset + 723 dl.d_partitions[1].p_size - 724 (hiber_info->image_size / hiber_info->secsize) - 725 sizeof(union hibernate_info)/hiber_info->secsize - 726 chunktable_size; 727 728 return (0); 729 fail: 730 if (suspend) 731 uvm_pmr_free_piglet(hiber_info->piglet_va, 732 HIBERNATE_CHUNK_SIZE * 3); 733 734 return (1); 735 } 736 737 /* 738 * Allocate nitems*size bytes from the hiballoc area presently in use 739 */ 740 void * 741 hibernate_zlib_alloc(void *unused, int nitems, int size) 742 { 743 struct hibernate_zlib_state *hibernate_state; 744 745 hibernate_state = 746 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 747 748 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 749 } 750 751 /* 752 * Free the memory pointed to by addr in the hiballoc area presently in 753 * use 754 */ 755 void 756 hibernate_zlib_free(void *unused, void *addr) 757 { 758 struct hibernate_zlib_state *hibernate_state; 759 760 hibernate_state = 761 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 762 763 hib_free(&hibernate_state->hiballoc_arena, addr); 764 } 765 766 /* 767 * Gets the next RLE value from the image stream 768 */ 769 int 770 hibernate_get_next_rle(void) 771 { 772 int rle, i; 773 struct hibernate_zlib_state *hibernate_state; 774 775 hibernate_state = 776 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 777 778 /* Read RLE code */ 779 hibernate_state->hib_stream.next_out = (char *)&rle; 780 hibernate_state->hib_stream.avail_out = sizeof(rle); 781 782 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 783 if (i != Z_OK && i != Z_STREAM_END) { 784 /* 785 * XXX - this will likely reboot/hang most machines 786 * since the console output buffer will be unmapped, 787 * but there's not much else we can do here. 788 */ 789 panic("inflate rle error"); 790 } 791 792 /* Sanity check what RLE value we got */ 793 if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) 794 panic("invalid RLE code"); 795 796 if (i == Z_STREAM_END) 797 rle = -1; 798 799 return rle; 800 } 801 802 /* 803 * Inflate next page of data from the image stream 804 */ 805 int 806 hibernate_inflate_page(void) 807 { 808 struct hibernate_zlib_state *hibernate_state; 809 int i; 810 811 hibernate_state = 812 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 813 814 /* Set up the stream for inflate */ 815 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 816 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 817 818 /* Process next block of data */ 819 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 820 if (i != Z_OK && i != Z_STREAM_END) { 821 /* 822 * XXX - this will likely reboot/hang most machines 823 * since the console output buffer will be unmapped, 824 * but there's not much else we can do here. 825 */ 826 panic("inflate error"); 827 } 828 829 /* We should always have extracted a full page ... */ 830 if (hibernate_state->hib_stream.avail_out != 0) { 831 /* 832 * XXX - this will likely reboot/hang most machines 833 * since the console output buffer will be unmapped, 834 * but there's not much else we can do here. 835 */ 836 panic("incomplete page"); 837 } 838 839 return (i == Z_STREAM_END); 840 } 841 842 /* 843 * Inflate size bytes from src into dest, skipping any pages in 844 * [src..dest] that are special (see hibernate_inflate_skip) 845 * 846 * This function executes while using the resume-time stack 847 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 848 * will likely hang or reset the machine since the console output buffer 849 * will be unmapped. 850 */ 851 void 852 hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, 853 paddr_t src, size_t size) 854 { 855 int end_stream = 0 ; 856 struct hibernate_zlib_state *hibernate_state; 857 858 hibernate_state = 859 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 860 861 hibernate_state->hib_stream.next_in = (char *)src; 862 hibernate_state->hib_stream.avail_in = size; 863 864 do { 865 /* Flush cache and TLB */ 866 hibernate_flush(); 867 868 /* 869 * Is this a special page? If yes, redirect the 870 * inflate output to a scratch page (eg, discard it) 871 */ 872 if (hibernate_inflate_skip(hiber_info, dest)) { 873 hibernate_enter_resume_mapping( 874 HIBERNATE_INFLATE_PAGE, 875 HIBERNATE_INFLATE_PAGE, 0); 876 } else { 877 hibernate_enter_resume_mapping( 878 HIBERNATE_INFLATE_PAGE, dest, 0); 879 } 880 881 hibernate_flush(); 882 end_stream = hibernate_inflate_page(); 883 884 dest += PAGE_SIZE; 885 } while (!end_stream); 886 } 887 888 /* 889 * deflate from src into the I/O page, up to 'remaining' bytes 890 * 891 * Returns number of input bytes consumed, and may reset 892 * the 'remaining' parameter if not all the output space was consumed 893 * (this information is needed to know how much to write to disk 894 */ 895 size_t 896 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 897 size_t *remaining) 898 { 899 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 900 struct hibernate_zlib_state *hibernate_state; 901 902 hibernate_state = 903 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 904 905 /* Set up the stream for deflate */ 906 hibernate_state->hib_stream.next_in = (caddr_t)src; 907 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 908 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 909 (PAGE_SIZE - *remaining); 910 hibernate_state->hib_stream.avail_out = *remaining; 911 912 /* Process next block of data */ 913 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 914 panic("hibernate zlib deflate error"); 915 916 /* Update pointers and return number of bytes consumed */ 917 *remaining = hibernate_state->hib_stream.avail_out; 918 return (PAGE_SIZE - (src & PAGE_MASK)) - 919 hibernate_state->hib_stream.avail_in; 920 } 921 922 /* 923 * Write the hibernation information specified in hiber_info 924 * to the location in swap previously calculated (last block of 925 * swap), called the "signature block". 926 */ 927 int 928 hibernate_write_signature(union hibernate_info *hiber_info) 929 { 930 /* Write hibernate info to disk */ 931 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 932 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 933 hiber_info->io_page)); 934 } 935 936 /* 937 * Write the memory chunk table to the area in swap immediately 938 * preceding the signature block. The chunk table is stored 939 * in the piglet when this function is called. 940 * 941 * Return values: 942 * 943 * 0 - success 944 * EIO - I/O error writing the chunktable 945 */ 946 int 947 hibernate_write_chunktable(union hibernate_info *hiber_info) 948 { 949 struct hibernate_disk_chunk *chunks; 950 vaddr_t hibernate_chunk_table_start; 951 size_t hibernate_chunk_table_size; 952 daddr_t chunkbase; 953 int i; 954 955 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 956 957 chunkbase = hiber_info->sig_offset - 958 (hibernate_chunk_table_size / hiber_info->secsize); 959 960 hibernate_chunk_table_start = hiber_info->piglet_va + 961 HIBERNATE_CHUNK_SIZE; 962 963 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 964 HIBERNATE_CHUNK_SIZE); 965 966 /* Write chunk table */ 967 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 968 if (hiber_info->io_func(hiber_info->device, 969 chunkbase + (i/hiber_info->secsize), 970 (vaddr_t)(hibernate_chunk_table_start + i), 971 MAXPHYS, HIB_W, hiber_info->io_page)) 972 return (EIO); 973 } 974 975 return (0); 976 } 977 978 /* 979 * Write an empty hiber_info to the swap signature block, which is 980 * guaranteed to not match any valid hiber_info. 981 */ 982 int 983 hibernate_clear_signature(void) 984 { 985 union hibernate_info blank_hiber_info; 986 union hibernate_info hiber_info; 987 988 /* Zero out a blank hiber_info */ 989 bzero(&blank_hiber_info, sizeof(union hibernate_info)); 990 991 /* Get the signature block location */ 992 if (get_hibernate_info(&hiber_info, 0)) 993 return (1); 994 995 /* Write (zeroed) hibernate info to disk */ 996 #ifdef HIBERNATE_DEBUG 997 printf("clearing hibernate signature block location: %lld\n", 998 hiber_info.sig_offset - hiber_info.swap_offset); 999 #endif /* HIBERNATE_DEBUG */ 1000 if (hibernate_block_io(&hiber_info, 1001 hiber_info.sig_offset - hiber_info.swap_offset, 1002 hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) 1003 printf("Warning: could not clear hibernate signature\n"); 1004 1005 return (0); 1006 } 1007 1008 /* 1009 * Check chunk range overlap when calculating whether or not to copy a 1010 * compressed chunk to the piglet area before decompressing. 1011 * 1012 * returns zero if the ranges do not overlap, non-zero otherwise. 1013 */ 1014 int 1015 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 1016 { 1017 /* case A : end of r1 overlaps start of r2 */ 1018 if (r1s < r2s && r1e > r2s) 1019 return (1); 1020 1021 /* case B : r1 entirely inside r2 */ 1022 if (r1s >= r2s && r1e <= r2e) 1023 return (1); 1024 1025 /* case C : r2 entirely inside r1 */ 1026 if (r2s >= r1s && r2e <= r1e) 1027 return (1); 1028 1029 /* case D : end of r2 overlaps start of r1 */ 1030 if (r2s < r1s && r2e > r1s) 1031 return (1); 1032 1033 return (0); 1034 } 1035 1036 /* 1037 * Compare two hibernate_infos to determine if they are the same (eg, 1038 * we should be performing a hibernate resume on this machine. 1039 * Not all fields are checked - just enough to verify that the machine 1040 * has the same memory configuration and kernel as the one that 1041 * wrote the signature previously. 1042 */ 1043 int 1044 hibernate_compare_signature(union hibernate_info *mine, 1045 union hibernate_info *disk) 1046 { 1047 u_int i; 1048 1049 if (mine->nranges != disk->nranges) { 1050 #ifdef HIBERNATE_DEBUG 1051 printf("hibernate memory range count mismatch\n"); 1052 #endif 1053 return (1); 1054 } 1055 1056 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1057 #ifdef HIBERNATE_DEBUG 1058 printf("hibernate kernel version mismatch\n"); 1059 #endif 1060 return (1); 1061 } 1062 1063 for (i = 0; i < mine->nranges; i++) { 1064 if ((mine->ranges[i].base != disk->ranges[i].base) || 1065 (mine->ranges[i].end != disk->ranges[i].end) ) { 1066 #ifdef HIBERNATE_DEBUG 1067 printf("hib range %d mismatch [%p-%p != %p-%p]\n", 1068 i, mine->ranges[i].base, mine->ranges[i].end, 1069 disk->ranges[i].base, disk->ranges[i].end); 1070 #endif 1071 return (1); 1072 } 1073 } 1074 1075 return (0); 1076 } 1077 1078 /* 1079 * Transfers xfer_size bytes between the hibernate device specified in 1080 * hib_info at offset blkctr and the vaddr specified at dest. 1081 * 1082 * Separate offsets and pages are used to handle misaligned reads (reads 1083 * that span a page boundary). 1084 * 1085 * blkctr specifies a relative offset (relative to the start of swap), 1086 * not an absolute disk offset 1087 * 1088 */ 1089 int 1090 hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, 1091 size_t xfer_size, vaddr_t dest, int iswrite) 1092 { 1093 struct buf *bp; 1094 struct bdevsw *bdsw; 1095 int error; 1096 1097 bp = geteblk(xfer_size); 1098 bdsw = &bdevsw[major(hib_info->device)]; 1099 1100 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 1101 if (error) { 1102 printf("hibernate_block_io open failed\n"); 1103 return (1); 1104 } 1105 1106 if (iswrite) 1107 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1108 1109 bp->b_bcount = xfer_size; 1110 bp->b_blkno = blkctr; 1111 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1112 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1113 bp->b_dev = hib_info->device; 1114 bp->b_cylinder = 0; 1115 (*bdsw->d_strategy)(bp); 1116 1117 error = biowait(bp); 1118 if (error) { 1119 printf("hibernate_block_io biowait failed %d\n", error); 1120 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1121 curproc); 1122 if (error) 1123 printf("hibernate_block_io error close failed\n"); 1124 return (1); 1125 } 1126 1127 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1128 if (error) { 1129 printf("hibernate_block_io close failed\n"); 1130 return (1); 1131 } 1132 1133 if (!iswrite) 1134 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1135 1136 bp->b_flags |= B_INVAL; 1137 brelse(bp); 1138 1139 return (0); 1140 } 1141 1142 /* 1143 * Reads the signature block from swap, checks against the current machine's 1144 * information. If the information matches, perform a resume by reading the 1145 * saved image into the pig area, and unpacking. 1146 */ 1147 void 1148 hibernate_resume(void) 1149 { 1150 union hibernate_info hiber_info; 1151 int s; 1152 1153 /* Get current running machine's hibernate info */ 1154 bzero(&hiber_info, sizeof(hiber_info)); 1155 if (get_hibernate_info(&hiber_info, 0)) 1156 return; 1157 1158 /* Read hibernate info from disk */ 1159 s = splbio(); 1160 1161 #ifdef HIBERNATE_DEBUG 1162 printf("reading hibernate signature block location: %lld\n", 1163 hiber_info.sig_offset - hiber_info.swap_offset); 1164 #endif /* HIBERNATE_DEBUG */ 1165 1166 if (hibernate_block_io(&hiber_info, 1167 hiber_info.sig_offset - hiber_info.swap_offset, 1168 hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) 1169 panic("error in hibernate read"); 1170 1171 /* Check magic number */ 1172 if (disk_hiber_info.magic != HIBERNATE_MAGIC) { 1173 splx(s); 1174 return; 1175 } 1176 1177 /* 1178 * We (possibly) found a hibernate signature. Clear signature first, 1179 * to prevent accidental resume or endless resume cycles later. 1180 */ 1181 if (hibernate_clear_signature()) { 1182 splx(s); 1183 return; 1184 } 1185 1186 /* 1187 * If on-disk and in-memory hibernate signatures match, 1188 * this means we should do a resume from hibernate. 1189 */ 1190 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { 1191 splx(s); 1192 return; 1193 } 1194 1195 #ifdef MULTIPROCESSOR 1196 hibernate_quiesce_cpus(); 1197 #endif /* MULTIPROCESSOR */ 1198 1199 printf("Unhibernating...\n"); 1200 1201 /* Read the image from disk into the image (pig) area */ 1202 if (hibernate_read_image(&disk_hiber_info)) 1203 goto fail; 1204 1205 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1206 goto fail; 1207 1208 (void) splhigh(); 1209 hibernate_disable_intr_machdep(); 1210 cold = 1; 1211 1212 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1213 cold = 0; 1214 hibernate_enable_intr_machdep(); 1215 goto fail; 1216 } 1217 1218 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1219 VM_PROT_ALL); 1220 pmap_activate(curproc); 1221 1222 /* Switch stacks */ 1223 hibernate_switch_stack_machdep(); 1224 1225 /* 1226 * Point of no return. Once we pass this point, only kernel code can 1227 * be accessed. No global variables or other kernel data structures 1228 * are guaranteed to be coherent after unpack starts. 1229 * 1230 * The image is now in high memory (pig area), we unpack from the pig 1231 * to the correct location in memory. We'll eventually end up copying 1232 * on top of ourself, but we are assured the kernel code here is the 1233 * same between the hibernated and resuming kernel, and we are running 1234 * on our own stack, so the overwrite is ok. 1235 */ 1236 hibernate_unpack_image(&disk_hiber_info); 1237 1238 /* 1239 * Resume the loaded kernel by jumping to the MD resume vector. 1240 * We won't be returning from this call. 1241 */ 1242 hibernate_resume_machdep(); 1243 1244 fail: 1245 splx(s); 1246 printf("Unable to resume hibernated image\n"); 1247 } 1248 1249 /* 1250 * Unpack image from pig area to original location by looping through the 1251 * list of output chunks in the order they should be restored (fchunks). 1252 */ 1253 void 1254 hibernate_unpack_image(union hibernate_info *hiber_info) 1255 { 1256 struct hibernate_disk_chunk *chunks; 1257 union hibernate_info local_hiber_info; 1258 paddr_t image_cur = global_pig_start; 1259 short i, *fchunks; 1260 char *pva = (char *)hiber_info->piglet_va; 1261 struct hibernate_zlib_state *hibernate_state; 1262 1263 hibernate_state = 1264 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1265 1266 /* Mask off based on arch-specific piglet page size */ 1267 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1268 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1269 1270 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1271 1272 /* Can't use hiber_info that's passed in after this point */ 1273 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1274 1275 hibernate_activate_resume_pt_machdep(); 1276 1277 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1278 /* Reset zlib for inflate */ 1279 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1280 panic("hibernate failed to reset zlib for inflate"); 1281 1282 hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], 1283 image_cur); 1284 1285 image_cur += chunks[fchunks[i]].compressed_size; 1286 1287 } 1288 } 1289 1290 /* 1291 * Bounce a compressed image chunk to the piglet, entering mappings for the 1292 * copied pages as needed 1293 */ 1294 void 1295 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1296 { 1297 size_t ct, ofs; 1298 paddr_t src = img_cur; 1299 vaddr_t dest = piglet; 1300 1301 /* Copy first partial page */ 1302 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1303 ofs = (src & PAGE_MASK); 1304 1305 if (ct < PAGE_SIZE) { 1306 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1307 (src - ofs), 0); 1308 hibernate_flush(); 1309 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1310 src += ct; 1311 dest += ct; 1312 } 1313 1314 /* Copy remaining pages */ 1315 while (src < size + img_cur) { 1316 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1317 hibernate_flush(); 1318 ct = PAGE_SIZE; 1319 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1320 hibernate_flush(); 1321 src += ct; 1322 dest += ct; 1323 } 1324 } 1325 1326 /* 1327 * Process a chunk by bouncing it to the piglet, followed by unpacking 1328 */ 1329 void 1330 hibernate_process_chunk(union hibernate_info *hiber_info, 1331 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1332 { 1333 char *pva = (char *)hiber_info->piglet_va; 1334 1335 hibernate_copy_chunk_to_piglet(img_cur, 1336 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1337 1338 hibernate_inflate_region(hiber_info, chunk->base, 1339 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1340 chunk->compressed_size); 1341 } 1342 1343 /* 1344 * Write a compressed version of this machine's memory to disk, at the 1345 * precalculated swap offset: 1346 * 1347 * end of swap - signature block size - chunk table size - memory size 1348 * 1349 * The function begins by looping through each phys mem range, cutting each 1350 * one into MD sized chunks. These chunks are then compressed individually 1351 * and written out to disk, in phys mem order. Some chunks might compress 1352 * more than others, and for this reason, each chunk's size is recorded 1353 * in the chunk table, which is written to disk after the image has 1354 * properly been compressed and written (in hibernate_write_chunktable). 1355 * 1356 * When this function is called, the machine is nearly suspended - most 1357 * devices are quiesced/suspended, interrupts are off, and cold has 1358 * been set. This means that there can be no side effects once the 1359 * write has started, and the write function itself can also have no 1360 * side effects. This also means no printfs are permitted (since printf 1361 * has side effects.) 1362 * 1363 * Return values : 1364 * 1365 * 0 - success 1366 * EIO - I/O error occurred writing the chunks 1367 * EINVAL - Failed to write a complete range 1368 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1369 */ 1370 int 1371 hibernate_write_chunks(union hibernate_info *hiber_info) 1372 { 1373 paddr_t range_base, range_end, inaddr, temp_inaddr; 1374 size_t nblocks, out_remaining, used; 1375 struct hibernate_disk_chunk *chunks; 1376 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1377 daddr_t blkctr = hiber_info->image_offset, offset = 0; 1378 int i; 1379 struct hibernate_zlib_state *hibernate_state; 1380 1381 hibernate_state = 1382 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1383 1384 hiber_info->chunk_ctr = 0; 1385 1386 /* 1387 * Allocate VA for the temp and copy page. 1388 * 1389 * These will become part of the suspended kernel and will 1390 * be freed in hibernate_free, upon resume. 1391 */ 1392 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1393 &kp_none, &kd_nowait); 1394 if (!hibernate_temp_page) 1395 return (ENOMEM); 1396 1397 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1398 &kp_none, &kd_nowait); 1399 if (!hibernate_copy_page) 1400 return (ENOMEM); 1401 1402 pmap_kenter_pa(hibernate_copy_page, 1403 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1404 1405 pmap_activate(curproc); 1406 1407 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1408 HIBERNATE_CHUNK_SIZE); 1409 1410 /* Calculate the chunk regions */ 1411 for (i = 0; i < hiber_info->nranges; i++) { 1412 range_base = hiber_info->ranges[i].base; 1413 range_end = hiber_info->ranges[i].end; 1414 1415 inaddr = range_base; 1416 1417 while (inaddr < range_end) { 1418 chunks[hiber_info->chunk_ctr].base = inaddr; 1419 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1420 chunks[hiber_info->chunk_ctr].end = inaddr + 1421 HIBERNATE_CHUNK_SIZE; 1422 else 1423 chunks[hiber_info->chunk_ctr].end = range_end; 1424 1425 inaddr += HIBERNATE_CHUNK_SIZE; 1426 hiber_info->chunk_ctr ++; 1427 } 1428 } 1429 1430 /* Compress and write the chunks in the chunktable */ 1431 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1432 range_base = chunks[i].base; 1433 range_end = chunks[i].end; 1434 1435 chunks[i].offset = blkctr; 1436 1437 /* Reset zlib for deflate */ 1438 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1439 return (ENOMEM); 1440 1441 inaddr = range_base; 1442 1443 /* 1444 * For each range, loop through its phys mem region 1445 * and write out the chunks (the last chunk might be 1446 * smaller than the chunk size). 1447 */ 1448 while (inaddr < range_end) { 1449 out_remaining = PAGE_SIZE; 1450 while (out_remaining > 0 && inaddr < range_end) { 1451 1452 /* 1453 * Adjust for regions that are not evenly 1454 * divisible by PAGE_SIZE or overflowed 1455 * pages from the previous iteration. 1456 */ 1457 temp_inaddr = (inaddr & PAGE_MASK) + 1458 hibernate_copy_page; 1459 1460 /* Deflate from temp_inaddr to IO page */ 1461 if (inaddr != range_end) { 1462 pmap_kenter_pa(hibernate_temp_page, 1463 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1464 1465 pmap_activate(curproc); 1466 1467 bcopy((caddr_t)hibernate_temp_page, 1468 (caddr_t)hibernate_copy_page, 1469 PAGE_SIZE); 1470 inaddr += hibernate_deflate(hiber_info, 1471 temp_inaddr, &out_remaining); 1472 } 1473 1474 if (out_remaining == 0) { 1475 /* Filled up the page */ 1476 nblocks = 1477 PAGE_SIZE / hiber_info->secsize; 1478 1479 if (hiber_info->io_func( 1480 hiber_info->device, 1481 blkctr, (vaddr_t)hibernate_io_page, 1482 PAGE_SIZE, HIB_W, 1483 hiber_info->io_page)) 1484 return (EIO); 1485 1486 blkctr += nblocks; 1487 } 1488 } 1489 } 1490 1491 if (inaddr != range_end) 1492 return (EINVAL); 1493 1494 /* 1495 * End of range. Round up to next secsize bytes 1496 * after finishing compress 1497 */ 1498 if (out_remaining == 0) 1499 out_remaining = PAGE_SIZE; 1500 1501 /* Finish compress */ 1502 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1503 hibernate_state->hib_stream.avail_in = 0; 1504 hibernate_state->hib_stream.next_out = 1505 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1506 hibernate_state->hib_stream.avail_out = out_remaining; 1507 1508 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1509 Z_STREAM_END) 1510 return (EIO); 1511 1512 out_remaining = hibernate_state->hib_stream.avail_out; 1513 1514 used = PAGE_SIZE - out_remaining; 1515 nblocks = used / hiber_info->secsize; 1516 1517 /* Round up to next block if needed */ 1518 if (used % hiber_info->secsize != 0) 1519 nblocks ++; 1520 1521 /* Write final block(s) for this chunk */ 1522 if (hiber_info->io_func(hiber_info->device, blkctr, 1523 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1524 HIB_W, hiber_info->io_page)) 1525 return (EIO); 1526 1527 blkctr += nblocks; 1528 1529 offset = blkctr; 1530 chunks[i].compressed_size = (offset - chunks[i].offset) * 1531 hiber_info->secsize; 1532 } 1533 1534 return (0); 1535 } 1536 1537 /* 1538 * Reset the zlib stream state and allocate a new hiballoc area for either 1539 * inflate or deflate. This function is called once for each hibernate chunk. 1540 * Calling hiballoc_init multiple times is acceptable since the memory it is 1541 * provided is unmanaged memory (stolen). We use the memory provided to us 1542 * by the piglet allocated via the supplied hiber_info. 1543 */ 1544 int 1545 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1546 { 1547 vaddr_t hibernate_zlib_start; 1548 size_t hibernate_zlib_size; 1549 char *pva = (char *)hiber_info->piglet_va; 1550 struct hibernate_zlib_state *hibernate_state; 1551 1552 hibernate_state = 1553 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1554 1555 if(!deflate) 1556 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1557 1558 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1559 hibernate_zlib_size = 80 * PAGE_SIZE; 1560 1561 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1562 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1563 1564 /* Set up stream structure */ 1565 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1566 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1567 1568 /* Initialize the hiballoc arena for zlib allocs/frees */ 1569 hiballoc_init(&hibernate_state->hiballoc_arena, 1570 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1571 1572 if (deflate) { 1573 return deflateInit(&hibernate_state->hib_stream, 1574 Z_BEST_SPEED); 1575 } else 1576 return inflateInit(&hibernate_state->hib_stream); 1577 } 1578 1579 /* 1580 * Reads the hibernated memory image from disk, whose location and 1581 * size are recorded in hiber_info. Begin by reading the persisted 1582 * chunk table, which records the original chunk placement location 1583 * and compressed size for each. Next, allocate a pig region of 1584 * sufficient size to hold the compressed image. Next, read the 1585 * chunks into the pig area (calling hibernate_read_chunks to do this), 1586 * and finally, if all of the above succeeds, clear the hibernate signature. 1587 * The function will then return to hibernate_resume, which will proceed 1588 * to unpack the pig image to the correct place in memory. 1589 */ 1590 int 1591 hibernate_read_image(union hibernate_info *hiber_info) 1592 { 1593 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1594 paddr_t image_start, image_end, pig_start, pig_end; 1595 struct hibernate_disk_chunk *chunks; 1596 daddr_t blkctr; 1597 vaddr_t chunktable = (vaddr_t)NULL; 1598 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1599 HIBERNATE_CHUNK_SIZE; 1600 int i; 1601 1602 pmap_activate(curproc); 1603 1604 /* Calculate total chunk table size in disk blocks */ 1605 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1606 1607 blkctr = hiber_info->sig_offset - chunktable_size - 1608 hiber_info->swap_offset; 1609 1610 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1611 &kp_none, &kd_nowait); 1612 1613 if (!chunktable) 1614 return (1); 1615 1616 /* Read the chunktable from disk into the piglet chunktable */ 1617 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1618 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1619 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1620 VM_PROT_ALL); 1621 pmap_update(pmap_kernel()); 1622 hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, 1623 chunktable + i, 0); 1624 } 1625 1626 blkctr = hiber_info->image_offset; 1627 compressed_size = 0; 1628 1629 chunks = (struct hibernate_disk_chunk *)chunktable; 1630 1631 for (i = 0; i < hiber_info->chunk_ctr; i++) 1632 compressed_size += chunks[i].compressed_size; 1633 1634 disk_size = compressed_size; 1635 1636 /* Allocate the pig area */ 1637 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1638 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1639 return (1); 1640 1641 pig_end = pig_start + pig_sz; 1642 1643 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1644 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1645 image_start = pig_start; 1646 1647 image_start = image_end - disk_size; 1648 1649 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1650 chunks); 1651 1652 pmap_kremove(chunktable, PAGE_SIZE); 1653 pmap_update(pmap_kernel()); 1654 1655 /* Prepare the resume time pmap/page table */ 1656 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1657 1658 return (0); 1659 } 1660 1661 /* 1662 * Read the hibernated memory chunks from disk (chunk information at this 1663 * point is stored in the piglet) into the pig area specified by 1664 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1665 * only chunk with overlap possibilities. 1666 */ 1667 int 1668 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1669 paddr_t pig_end, size_t image_compr_size, 1670 struct hibernate_disk_chunk *chunks) 1671 { 1672 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1673 paddr_t copy_start, copy_end, piglet_cur; 1674 paddr_t piglet_base = hib_info->piglet_pa; 1675 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1676 daddr_t blkctr; 1677 size_t processed, compressed_size, read_size; 1678 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1679 short *ochunks, *pchunks, *fchunks, i, j; 1680 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1681 1682 global_pig_start = pig_start; 1683 1684 pmap_activate(curproc); 1685 1686 /* 1687 * These mappings go into the resuming kernel's page table, and are 1688 * used only during image read. They dissappear from existence 1689 * when the suspended kernel is unpacked on top of us. 1690 */ 1691 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1692 if (!tempva) 1693 return (1); 1694 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1695 &kp_none, &kd_nowait); 1696 if (!hibernate_fchunk_area) 1697 return (1); 1698 1699 /* Final output chunk ordering VA */ 1700 fchunks = (short *)hibernate_fchunk_area; 1701 1702 /* Piglet chunk ordering VA */ 1703 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1704 1705 /* Final chunk ordering VA */ 1706 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1707 1708 /* Map the chunk ordering region */ 1709 for(i=0; i<24 ; i++) { 1710 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1711 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1712 pmap_update(pmap_kernel()); 1713 } 1714 1715 nchunks = hib_info->chunk_ctr; 1716 1717 /* Initially start all chunks as unplaced */ 1718 for (i = 0; i < nchunks; i++) 1719 chunks[i].flags = 0; 1720 1721 /* 1722 * Search the list for chunks that are outside the pig area. These 1723 * can be placed first in the final output list. 1724 */ 1725 for (i = 0; i < nchunks; i++) { 1726 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1727 ochunks[nochunks] = i; 1728 fchunks[nfchunks] = i; 1729 nochunks++; 1730 nfchunks++; 1731 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1732 } 1733 } 1734 1735 /* 1736 * Walk the ordering, place the chunks in ascending memory order. 1737 * Conflicts might arise, these are handled next. 1738 */ 1739 do { 1740 img_index = -1; 1741 found = 0; 1742 j = -1; 1743 for (i = 0; i < nchunks; i++) 1744 if (chunks[i].base < img_index && 1745 chunks[i].flags == 0 ) { 1746 j = i; 1747 img_index = chunks[i].base; 1748 } 1749 1750 if (j != -1) { 1751 found = 1; 1752 ochunks[nochunks] = j; 1753 nochunks++; 1754 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1755 } 1756 } while (found); 1757 1758 img_index = pig_start; 1759 1760 /* 1761 * Identify chunk output conflicts (chunks whose pig load area 1762 * corresponds to their original memory placement location) 1763 */ 1764 for (i = 0; i < nochunks ; i++) { 1765 overlap = 0; 1766 r1s = img_index; 1767 r1e = img_index + chunks[ochunks[i]].compressed_size; 1768 r2s = chunks[ochunks[i]].base; 1769 r2e = chunks[ochunks[i]].end; 1770 1771 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1772 if (overlap) 1773 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1774 img_index += chunks[ochunks[i]].compressed_size; 1775 } 1776 1777 /* 1778 * Prepare the final output chunk list. Calculate an output 1779 * inflate strategy for overlapping chunks if needed. 1780 */ 1781 img_index = pig_start; 1782 for (i = 0; i < nochunks ; i++) { 1783 /* 1784 * If a conflict is detected, consume enough compressed 1785 * output chunks to fill the piglet 1786 */ 1787 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1788 copy_start = piglet_base; 1789 copy_end = piglet_end; 1790 piglet_cur = piglet_base; 1791 npchunks = 0; 1792 j = i; 1793 1794 while (copy_start < copy_end && j < nochunks) { 1795 piglet_cur += 1796 chunks[ochunks[j]].compressed_size; 1797 pchunks[npchunks] = ochunks[j]; 1798 npchunks++; 1799 copy_start += 1800 chunks[ochunks[j]].compressed_size; 1801 img_index += chunks[ochunks[j]].compressed_size; 1802 i++; 1803 j++; 1804 } 1805 1806 piglet_cur = piglet_base; 1807 for (j = 0; j < npchunks; j++) { 1808 piglet_cur += 1809 chunks[pchunks[j]].compressed_size; 1810 fchunks[nfchunks] = pchunks[j]; 1811 chunks[pchunks[j]].flags |= 1812 HIBERNATE_CHUNK_USED; 1813 nfchunks++; 1814 } 1815 } else { 1816 /* 1817 * No conflict, chunk can be added without copying 1818 */ 1819 if ((chunks[ochunks[i]].flags & 1820 HIBERNATE_CHUNK_USED) == 0) { 1821 fchunks[nfchunks] = ochunks[i]; 1822 chunks[ochunks[i]].flags |= 1823 HIBERNATE_CHUNK_USED; 1824 nfchunks++; 1825 } 1826 img_index += chunks[ochunks[i]].compressed_size; 1827 } 1828 } 1829 1830 img_index = pig_start; 1831 for (i = 0; i < nfchunks; i++) { 1832 piglet_cur = piglet_base; 1833 img_index += chunks[fchunks[i]].compressed_size; 1834 } 1835 1836 img_cur = pig_start; 1837 1838 for (i = 0; i < nfchunks; i++) { 1839 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1840 processed = 0; 1841 compressed_size = chunks[fchunks[i]].compressed_size; 1842 1843 while (processed < compressed_size) { 1844 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1845 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1846 VM_PROT_ALL); 1847 pmap_update(pmap_kernel()); 1848 1849 if (compressed_size - processed >= PAGE_SIZE) 1850 read_size = PAGE_SIZE; 1851 else 1852 read_size = compressed_size - processed; 1853 1854 hibernate_block_io(hib_info, blkctr, read_size, 1855 tempva + (img_cur & PAGE_MASK), 0); 1856 1857 blkctr += (read_size / hib_info->secsize); 1858 1859 hibernate_flush(); 1860 pmap_kremove(tempva, PAGE_SIZE); 1861 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1862 processed += read_size; 1863 img_cur += read_size; 1864 } 1865 } 1866 1867 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1868 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1869 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1870 pmap_update(pmap_kernel()); 1871 1872 return (0); 1873 } 1874 1875 /* 1876 * Hibernating a machine comprises the following operations: 1877 * 1. Calculating this machine's hibernate_info information 1878 * 2. Allocating a piglet and saving the piglet's physaddr 1879 * 3. Calculating the memory chunks 1880 * 4. Writing the compressed chunks to disk 1881 * 5. Writing the chunk table 1882 * 6. Writing the signature block (hibernate_info) 1883 * 1884 * On most architectures, the function calling hibernate_suspend would 1885 * then power off the machine using some MD-specific implementation. 1886 */ 1887 int 1888 hibernate_suspend(void) 1889 { 1890 union hibernate_info hib_info; 1891 size_t swap_size; 1892 1893 /* 1894 * Calculate memory ranges, swap offsets, etc. 1895 * This also allocates a piglet whose physaddr is stored in 1896 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1897 */ 1898 if (get_hibernate_info(&hib_info, 1)) 1899 return (1); 1900 1901 swap_size = hib_info.image_size + hib_info.secsize + 1902 HIBERNATE_CHUNK_TABLE_SIZE; 1903 1904 if (uvm_swap_check_range(hib_info.device, swap_size)) { 1905 printf("insufficient swap space for hibernate\n"); 1906 return (1); 1907 } 1908 1909 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1910 VM_PROT_ALL); 1911 pmap_activate(curproc); 1912 1913 /* Stash the piglet VA so we can free it in the resuming kernel */ 1914 global_piglet_va = hib_info.piglet_va; 1915 1916 if (hibernate_write_chunks(&hib_info)) 1917 return (1); 1918 1919 if (hibernate_write_chunktable(&hib_info)) 1920 return (1); 1921 1922 if (hibernate_write_signature(&hib_info)) 1923 return (1); 1924 1925 /* Allow the disk to settle */ 1926 delay(500000); 1927 1928 /* 1929 * Give the device-specific I/O function a notification that we're 1930 * done, and that it can clean up or shutdown as needed. 1931 */ 1932 hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0, 1933 HIB_DONE, hib_info.io_page); 1934 1935 return (0); 1936 } 1937 1938 /* 1939 * Free items allocated by hibernate_suspend() 1940 */ 1941 void 1942 hibernate_free(void) 1943 { 1944 if (global_piglet_va) 1945 uvm_pmr_free_piglet(global_piglet_va, 1946 3*HIBERNATE_CHUNK_SIZE); 1947 1948 if (hibernate_copy_page) 1949 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1950 if (hibernate_temp_page) 1951 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1952 1953 pmap_update(pmap_kernel()); 1954 1955 if (hibernate_copy_page) 1956 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1957 &kv_any, &kp_none); 1958 if (hibernate_temp_page) 1959 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1960 &kv_any, &kp_none); 1961 1962 global_piglet_va = 0; 1963 hibernate_copy_page = 0; 1964 hibernate_temp_page = 0; 1965 } 1966