1 /* $OpenBSD: subr_hibernate.c,v 1.84 2014/02/01 07:10:33 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <uvm/uvm.h> 32 #include <uvm/uvm_swap.h> 33 #include <machine/hibernate.h> 34 35 /* 36 * Hibernate piglet layout information 37 * 38 * The piglet is a scratch area of memory allocated by the suspending kernel. 39 * Its phys and virt addrs are recorded in the signature block. The piglet is 40 * used to guarantee an unused area of memory that can be used by the resuming 41 * kernel for various things. The piglet is excluded during unpack operations. 42 * The piglet size is presently 3*HIBERNATE_CHUNK_SIZE (typically 3*4MB). 43 * 44 * Offset from piglet_base Purpose 45 * ---------------------------------------------------------------------------- 46 * 0 I/O page used during resume 47 * 1*PAGE_SIZE I/O page used during hibernate suspend 48 * 2*PAGE_SIZE I/O page used during hibernate suspend 49 * 3*PAGE_SIZE copy page used during hibernate suspend 50 * 4*PAGE_SIZE final chunk ordering list (8 pages) 51 * 12*PAGE_SIZE piglet chunk ordering list (8 pages) 52 * 20*PAGE_SIZE temp chunk ordering list (8 pages) 53 * 28*PAGE_SIZE start of hiballoc area 54 * 108*PAGE_SIZE end of hiballoc area (80 pages) 55 * ... unused 56 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 57 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 58 * 3*HIBERNATE_CHUNK_SIZE end of piglet 59 */ 60 61 /* Temporary vaddr ranges used during hibernate */ 62 vaddr_t hibernate_temp_page; 63 vaddr_t hibernate_copy_page; 64 65 /* Hibernate info as read from disk during resume */ 66 union hibernate_info disk_hib; 67 paddr_t global_pig_start; 68 vaddr_t global_piglet_va; 69 70 /* #define HIB_DEBUG */ 71 #ifdef HIB_DEBUG 72 int hib_debug = 99; 73 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 74 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 75 #else 76 #define DPRINTF(x...) 77 #define DNPRINTF(n,x...) 78 #endif 79 80 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 81 82 /* 83 * Hib alloc enforced alignment. 84 */ 85 #define HIB_ALIGN 8 /* bytes alignment */ 86 87 /* 88 * sizeof builtin operation, but with alignment constraint. 89 */ 90 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 91 92 struct hiballoc_entry { 93 size_t hibe_use; 94 size_t hibe_space; 95 RB_ENTRY(hiballoc_entry) hibe_entry; 96 }; 97 98 /* 99 * Compare hiballoc entries based on the address they manage. 100 * 101 * Since the address is fixed, relative to struct hiballoc_entry, 102 * we just compare the hiballoc_entry pointers. 103 */ 104 static __inline int 105 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 106 { 107 return l < r ? -1 : (l > r); 108 } 109 110 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 111 112 /* 113 * Given a hiballoc entry, return the address it manages. 114 */ 115 static __inline void * 116 hib_entry_to_addr(struct hiballoc_entry *entry) 117 { 118 caddr_t addr; 119 120 addr = (caddr_t)entry; 121 addr += HIB_SIZEOF(struct hiballoc_entry); 122 return addr; 123 } 124 125 /* 126 * Given an address, find the hiballoc that corresponds. 127 */ 128 static __inline struct hiballoc_entry* 129 hib_addr_to_entry(void *addr_param) 130 { 131 caddr_t addr; 132 133 addr = (caddr_t)addr_param; 134 addr -= HIB_SIZEOF(struct hiballoc_entry); 135 return (struct hiballoc_entry*)addr; 136 } 137 138 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 139 140 /* 141 * Allocate memory from the arena. 142 * 143 * Returns NULL if no memory is available. 144 */ 145 void * 146 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 147 { 148 struct hiballoc_entry *entry, *new_entry; 149 size_t find_sz; 150 151 /* 152 * Enforce alignment of HIB_ALIGN bytes. 153 * 154 * Note that, because the entry is put in front of the allocation, 155 * 0-byte allocations are guaranteed a unique address. 156 */ 157 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 158 159 /* 160 * Find an entry with hibe_space >= find_sz. 161 * 162 * If the root node is not large enough, we switch to tree traversal. 163 * Because all entries are made at the bottom of the free space, 164 * traversal from the end has a slightly better chance of yielding 165 * a sufficiently large space. 166 */ 167 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 168 entry = RB_ROOT(&arena->hib_addrs); 169 if (entry != NULL && entry->hibe_space < find_sz) { 170 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 171 if (entry->hibe_space >= find_sz) 172 break; 173 } 174 } 175 176 /* 177 * Insufficient or too fragmented memory. 178 */ 179 if (entry == NULL) 180 return NULL; 181 182 /* 183 * Create new entry in allocated space. 184 */ 185 new_entry = (struct hiballoc_entry*)( 186 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 187 new_entry->hibe_space = entry->hibe_space - find_sz; 188 new_entry->hibe_use = alloc_sz; 189 190 /* 191 * Insert entry. 192 */ 193 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 194 panic("hib_alloc: insert failure"); 195 entry->hibe_space = 0; 196 197 /* Return address managed by entry. */ 198 return hib_entry_to_addr(new_entry); 199 } 200 201 /* 202 * Free a pointer previously allocated from this arena. 203 * 204 * If addr is NULL, this will be silently accepted. 205 */ 206 void 207 hib_free(struct hiballoc_arena *arena, void *addr) 208 { 209 struct hiballoc_entry *entry, *prev; 210 211 if (addr == NULL) 212 return; 213 214 /* 215 * Derive entry from addr and check it is really in this arena. 216 */ 217 entry = hib_addr_to_entry(addr); 218 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 219 panic("hib_free: freed item %p not in hib arena", addr); 220 221 /* 222 * Give the space in entry to its predecessor. 223 * 224 * If entry has no predecessor, change its used space into free space 225 * instead. 226 */ 227 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 228 if (prev != NULL && 229 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 230 prev->hibe_use + prev->hibe_space) == entry) { 231 /* Merge entry. */ 232 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 233 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 234 entry->hibe_use + entry->hibe_space; 235 } else { 236 /* Flip used memory to free space. */ 237 entry->hibe_space += entry->hibe_use; 238 entry->hibe_use = 0; 239 } 240 } 241 242 /* 243 * Initialize hiballoc. 244 * 245 * The allocator will manage memmory at ptr, which is len bytes. 246 */ 247 int 248 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 249 { 250 struct hiballoc_entry *entry; 251 caddr_t ptr; 252 size_t len; 253 254 RB_INIT(&arena->hib_addrs); 255 256 /* 257 * Hib allocator enforces HIB_ALIGN alignment. 258 * Fixup ptr and len. 259 */ 260 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 261 len = p_len - ((size_t)ptr - (size_t)p_ptr); 262 len &= ~((size_t)HIB_ALIGN - 1); 263 264 /* 265 * Insufficient memory to be able to allocate and also do bookkeeping. 266 */ 267 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 268 return ENOMEM; 269 270 /* 271 * Create entry describing space. 272 */ 273 entry = (struct hiballoc_entry*)ptr; 274 entry->hibe_use = 0; 275 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 276 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 277 278 return 0; 279 } 280 281 /* 282 * Zero all free memory. 283 */ 284 void 285 uvm_pmr_zero_everything(void) 286 { 287 struct uvm_pmemrange *pmr; 288 struct vm_page *pg; 289 int i; 290 291 uvm_lock_fpageq(); 292 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 293 /* Zero single pages. */ 294 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 295 != NULL) { 296 uvm_pmr_remove(pmr, pg); 297 uvm_pagezero(pg); 298 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 299 uvmexp.zeropages++; 300 uvm_pmr_insert(pmr, pg, 0); 301 } 302 303 /* Zero multi page ranges. */ 304 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 305 != NULL) { 306 pg--; /* Size tree always has second page. */ 307 uvm_pmr_remove(pmr, pg); 308 for (i = 0; i < pg->fpgsz; i++) { 309 uvm_pagezero(&pg[i]); 310 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 311 uvmexp.zeropages++; 312 } 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 uvm_unlock_fpageq(); 317 } 318 319 /* 320 * Mark all memory as dirty. 321 * 322 * Used to inform the system that the clean memory isn't clean for some 323 * reason, for example because we just came back from hibernate. 324 */ 325 void 326 uvm_pmr_dirty_everything(void) 327 { 328 struct uvm_pmemrange *pmr; 329 struct vm_page *pg; 330 int i; 331 332 uvm_lock_fpageq(); 333 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 334 /* Dirty single pages. */ 335 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 336 != NULL) { 337 uvm_pmr_remove(pmr, pg); 338 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 339 uvm_pmr_insert(pmr, pg, 0); 340 } 341 342 /* Dirty multi page ranges. */ 343 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 344 != NULL) { 345 pg--; /* Size tree always has second page. */ 346 uvm_pmr_remove(pmr, pg); 347 for (i = 0; i < pg->fpgsz; i++) 348 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 349 uvm_pmr_insert(pmr, pg, 0); 350 } 351 } 352 353 uvmexp.zeropages = 0; 354 uvm_unlock_fpageq(); 355 } 356 357 /* 358 * Allocate the highest address that can hold sz. 359 * 360 * sz in bytes. 361 */ 362 int 363 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 364 { 365 struct uvm_pmemrange *pmr; 366 struct vm_page *pig_pg, *pg; 367 368 /* 369 * Convert sz to pages, since that is what pmemrange uses internally. 370 */ 371 sz = atop(round_page(sz)); 372 373 uvm_lock_fpageq(); 374 375 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 376 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 377 if (pig_pg->fpgsz >= sz) { 378 goto found; 379 } 380 } 381 } 382 383 /* 384 * Allocation failure. 385 */ 386 uvm_unlock_fpageq(); 387 return ENOMEM; 388 389 found: 390 /* Remove page from freelist. */ 391 uvm_pmr_remove_size(pmr, pig_pg); 392 pig_pg->fpgsz -= sz; 393 pg = pig_pg + pig_pg->fpgsz; 394 if (pig_pg->fpgsz == 0) 395 uvm_pmr_remove_addr(pmr, pig_pg); 396 else 397 uvm_pmr_insert_size(pmr, pig_pg); 398 399 uvmexp.free -= sz; 400 *addr = VM_PAGE_TO_PHYS(pg); 401 402 /* 403 * Update pg flags. 404 * 405 * Note that we trash the sz argument now. 406 */ 407 while (sz > 0) { 408 KASSERT(pg->pg_flags & PQ_FREE); 409 410 atomic_clearbits_int(&pg->pg_flags, 411 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 412 413 if (pg->pg_flags & PG_ZERO) 414 uvmexp.zeropages -= sz; 415 atomic_clearbits_int(&pg->pg_flags, 416 PG_ZERO|PQ_FREE); 417 418 pg->uobject = NULL; 419 pg->uanon = NULL; 420 pg->pg_version++; 421 422 /* 423 * Next. 424 */ 425 pg++; 426 sz--; 427 } 428 429 /* Return. */ 430 uvm_unlock_fpageq(); 431 return 0; 432 } 433 434 /* 435 * Allocate a piglet area. 436 * 437 * This is as low as possible. 438 * Piglets are aligned. 439 * 440 * sz and align in bytes. 441 * 442 * The call will sleep for the pagedaemon to attempt to free memory. 443 * The pagedaemon may decide its not possible to free enough memory, causing 444 * the allocation to fail. 445 */ 446 int 447 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 448 { 449 paddr_t pg_addr, piglet_addr; 450 struct uvm_pmemrange *pmr; 451 struct vm_page *pig_pg, *pg; 452 struct pglist pageq; 453 int pdaemon_woken; 454 vaddr_t piglet_va; 455 456 /* Ensure align is a power of 2 */ 457 KASSERT((align & (align - 1)) == 0); 458 459 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 460 461 /* 462 * Fixup arguments: align must be at least PAGE_SIZE, 463 * sz will be converted to pagecount, since that is what 464 * pmemrange uses internally. 465 */ 466 if (align < PAGE_SIZE) 467 align = PAGE_SIZE; 468 sz = round_page(sz); 469 470 uvm_lock_fpageq(); 471 472 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 473 pmr_use) { 474 retry: 475 /* 476 * Search for a range with enough space. 477 * Use the address tree, to ensure the range is as low as 478 * possible. 479 */ 480 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 481 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 482 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 483 484 if (atop(pg_addr) + pig_pg->fpgsz >= 485 atop(piglet_addr) + atop(sz)) 486 goto found; 487 } 488 } 489 490 /* 491 * Try to coerce the pagedaemon into freeing memory 492 * for the piglet. 493 * 494 * pdaemon_woken is set to prevent the code from 495 * falling into an endless loop. 496 */ 497 if (!pdaemon_woken) { 498 pdaemon_woken = 1; 499 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 500 sz, UVM_PLA_FAILOK) == 0) 501 goto retry; 502 } 503 504 /* Return failure. */ 505 uvm_unlock_fpageq(); 506 return ENOMEM; 507 508 found: 509 /* 510 * Extract piglet from pigpen. 511 */ 512 TAILQ_INIT(&pageq); 513 uvm_pmr_extract_range(pmr, pig_pg, 514 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 515 516 *pa = piglet_addr; 517 uvmexp.free -= atop(sz); 518 519 /* 520 * Update pg flags. 521 * 522 * Note that we trash the sz argument now. 523 */ 524 TAILQ_FOREACH(pg, &pageq, pageq) { 525 KASSERT(pg->pg_flags & PQ_FREE); 526 527 atomic_clearbits_int(&pg->pg_flags, 528 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 529 530 if (pg->pg_flags & PG_ZERO) 531 uvmexp.zeropages--; 532 atomic_clearbits_int(&pg->pg_flags, 533 PG_ZERO|PQ_FREE); 534 535 pg->uobject = NULL; 536 pg->uanon = NULL; 537 pg->pg_version++; 538 } 539 540 uvm_unlock_fpageq(); 541 542 /* 543 * Now allocate a va. 544 * Use direct mappings for the pages. 545 */ 546 547 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 548 if (!piglet_va) { 549 uvm_pglistfree(&pageq); 550 return ENOMEM; 551 } 552 553 /* 554 * Map piglet to va. 555 */ 556 TAILQ_FOREACH(pg, &pageq, pageq) { 557 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 558 piglet_va += PAGE_SIZE; 559 } 560 pmap_update(pmap_kernel()); 561 562 return 0; 563 } 564 565 /* 566 * Free a piglet area. 567 */ 568 void 569 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 570 { 571 paddr_t pa; 572 struct vm_page *pg; 573 574 /* 575 * Fix parameters. 576 */ 577 sz = round_page(sz); 578 579 /* 580 * Find the first page in piglet. 581 * Since piglets are contiguous, the first pg is all we need. 582 */ 583 if (!pmap_extract(pmap_kernel(), va, &pa)) 584 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 585 pg = PHYS_TO_VM_PAGE(pa); 586 if (pg == NULL) 587 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 588 589 /* 590 * Unmap. 591 */ 592 pmap_kremove(va, sz); 593 pmap_update(pmap_kernel()); 594 595 /* 596 * Free the physical and virtual memory. 597 */ 598 uvm_pmr_freepages(pg, atop(sz)); 599 km_free((void *)va, sz, &kv_any, &kp_none); 600 } 601 602 /* 603 * Physmem RLE compression support. 604 * 605 * Given a physical page address, return the number of pages starting at the 606 * address that are free. Clamps to the number of pages in 607 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 608 */ 609 int 610 uvm_page_rle(paddr_t addr) 611 { 612 struct vm_page *pg, *pg_end; 613 struct vm_physseg *vmp; 614 int pseg_idx, off_idx; 615 616 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 617 if (pseg_idx == -1) 618 return 0; 619 620 vmp = &vm_physmem[pseg_idx]; 621 pg = &vmp->pgs[off_idx]; 622 if (!(pg->pg_flags & PQ_FREE)) 623 return 0; 624 625 /* 626 * Search for the first non-free page after pg. 627 * Note that the page may not be the first page in a free pmemrange, 628 * therefore pg->fpgsz cannot be used. 629 */ 630 for (pg_end = pg; pg_end <= vmp->lastpg && 631 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 632 ; 633 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 634 } 635 636 /* 637 * Fills out the hibernate_info union pointed to by hiber_info 638 * with information about this machine (swap signature block 639 * offsets, number of memory ranges, kernel in use, etc) 640 */ 641 int 642 get_hibernate_info(union hibernate_info *hib, int suspend) 643 { 644 int chunktable_size; 645 struct disklabel dl; 646 char err_string[128], *dl_ret; 647 648 /* Determine I/O function to use */ 649 hib->io_func = get_hibernate_io_function(); 650 if (hib->io_func == NULL) 651 return (1); 652 653 /* Calculate hibernate device */ 654 hib->dev = swdevt[0].sw_dev; 655 656 /* Read disklabel (used to calculate signature and image offsets) */ 657 dl_ret = disk_readlabel(&dl, hib->dev, err_string, 128); 658 659 if (dl_ret) { 660 printf("Hibernate error reading disklabel: %s\n", dl_ret); 661 return (1); 662 } 663 664 /* Make sure we have a swap partition. */ 665 if (dl.d_partitions[1].p_fstype != FS_SWAP || 666 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 667 return (1); 668 669 /* Make sure the signature can fit in one block */ 670 if (sizeof(union hibernate_info) > DEV_BSIZE) 671 return (1); 672 673 /* Magic number */ 674 hib->magic = HIBERNATE_MAGIC; 675 676 /* Calculate signature block location */ 677 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 678 sizeof(union hibernate_info)/DEV_BSIZE; 679 680 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 681 682 /* Stash kernel version information */ 683 memset(&hib->kernel_version, 0, 128); 684 bcopy(version, &hib->kernel_version, 685 min(strlen(version), sizeof(hib->kernel_version)-1)); 686 687 if (suspend) { 688 /* Allocate piglet region */ 689 if (uvm_pmr_alloc_piglet(&hib->piglet_va, 690 &hib->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 691 HIBERNATE_CHUNK_SIZE)) { 692 printf("Hibernate failed to allocate the piglet\n"); 693 return (1); 694 } 695 hib->io_page = (void *)hib->piglet_va; 696 697 /* 698 * Initialization of the hibernate IO function for drivers 699 * that need to do prep work (such as allocating memory or 700 * setting up data structures that cannot safely be done 701 * during suspend without causing side effects). There is 702 * a matching HIB_DONE call performed after the write is 703 * completed. 704 */ 705 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 706 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 707 HIB_INIT, hib->io_page)) 708 goto fail; 709 710 } else { 711 /* 712 * Resuming kernels use a regular I/O page since we won't 713 * have access to the suspended kernel's piglet VA at this 714 * point. No need to free this I/O page as it will vanish 715 * as part of the resume. 716 */ 717 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 718 if (!hib->io_page) 719 return (1); 720 } 721 722 723 if (get_hibernate_info_md(hib)) 724 goto fail; 725 726 727 return (0); 728 fail: 729 if (suspend) 730 uvm_pmr_free_piglet(hib->piglet_va, 731 HIBERNATE_CHUNK_SIZE * 3); 732 733 return (1); 734 } 735 736 /* 737 * Allocate nitems*size bytes from the hiballoc area presently in use 738 */ 739 void * 740 hibernate_zlib_alloc(void *unused, int nitems, int size) 741 { 742 struct hibernate_zlib_state *hibernate_state; 743 744 hibernate_state = 745 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 746 747 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 748 } 749 750 /* 751 * Free the memory pointed to by addr in the hiballoc area presently in 752 * use 753 */ 754 void 755 hibernate_zlib_free(void *unused, void *addr) 756 { 757 struct hibernate_zlib_state *hibernate_state; 758 759 hibernate_state = 760 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 761 762 hib_free(&hibernate_state->hiballoc_arena, addr); 763 } 764 765 /* 766 * Inflate next page of data from the image stream 767 */ 768 int 769 hibernate_inflate_page(void) 770 { 771 struct hibernate_zlib_state *hibernate_state; 772 int i; 773 774 hibernate_state = 775 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 776 777 /* Set up the stream for inflate */ 778 hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; 779 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 780 781 /* Process next block of data */ 782 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 783 if (i != Z_OK && i != Z_STREAM_END) { 784 /* 785 * XXX - this will likely reboot/hang most machines 786 * since the console output buffer will be unmapped, 787 * but there's not much else we can do here. 788 */ 789 panic("inflate error"); 790 } 791 792 /* We should always have extracted a full page ... */ 793 if (hibernate_state->hib_stream.avail_out != 0) { 794 /* 795 * XXX - this will likely reboot/hang most machines 796 * since the console output buffer will be unmapped, 797 * but there's not much else we can do here. 798 */ 799 panic("incomplete page"); 800 } 801 802 return (i == Z_STREAM_END); 803 } 804 805 /* 806 * Inflate size bytes from src into dest, skipping any pages in 807 * [src..dest] that are special (see hibernate_inflate_skip) 808 * 809 * This function executes while using the resume-time stack 810 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 811 * will likely hang or reset the machine since the console output buffer 812 * will be unmapped. 813 */ 814 void 815 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 816 paddr_t src, size_t size) 817 { 818 int end_stream = 0 ; 819 struct hibernate_zlib_state *hibernate_state; 820 821 hibernate_state = 822 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 823 824 hibernate_state->hib_stream.next_in = (char *)src; 825 hibernate_state->hib_stream.avail_in = size; 826 827 do { 828 /* 829 * Is this a special page? If yes, redirect the 830 * inflate output to a scratch page (eg, discard it) 831 */ 832 if (hibernate_inflate_skip(hib, dest)) { 833 hibernate_enter_resume_mapping( 834 HIBERNATE_INFLATE_PAGE, 835 HIBERNATE_INFLATE_PAGE, 0); 836 } else { 837 hibernate_enter_resume_mapping( 838 HIBERNATE_INFLATE_PAGE, dest, 0); 839 } 840 841 hibernate_flush(); 842 end_stream = hibernate_inflate_page(); 843 844 dest += PAGE_SIZE; 845 } while (!end_stream); 846 } 847 848 /* 849 * deflate from src into the I/O page, up to 'remaining' bytes 850 * 851 * Returns number of input bytes consumed, and may reset 852 * the 'remaining' parameter if not all the output space was consumed 853 * (this information is needed to know how much to write to disk 854 */ 855 size_t 856 hibernate_deflate(union hibernate_info *hib, paddr_t src, 857 size_t *remaining) 858 { 859 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 860 struct hibernate_zlib_state *hibernate_state; 861 862 hibernate_state = 863 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 864 865 /* Set up the stream for deflate */ 866 hibernate_state->hib_stream.next_in = (caddr_t)src; 867 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 868 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 869 (PAGE_SIZE - *remaining); 870 hibernate_state->hib_stream.avail_out = *remaining; 871 872 /* Process next block of data */ 873 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 874 panic("hibernate zlib deflate error"); 875 876 /* Update pointers and return number of bytes consumed */ 877 *remaining = hibernate_state->hib_stream.avail_out; 878 return (PAGE_SIZE - (src & PAGE_MASK)) - 879 hibernate_state->hib_stream.avail_in; 880 } 881 882 /* 883 * Write the hibernation information specified in hiber_info 884 * to the location in swap previously calculated (last block of 885 * swap), called the "signature block". 886 */ 887 int 888 hibernate_write_signature(union hibernate_info *hib) 889 { 890 /* Write hibernate info to disk */ 891 return (hib->io_func(hib->dev, hib->sig_offset, 892 (vaddr_t)hib, DEV_BSIZE, HIB_W, 893 hib->io_page)); 894 } 895 896 /* 897 * Write the memory chunk table to the area in swap immediately 898 * preceding the signature block. The chunk table is stored 899 * in the piglet when this function is called. Returns errno. 900 */ 901 int 902 hibernate_write_chunktable(union hibernate_info *hib) 903 { 904 struct hibernate_disk_chunk *chunks; 905 vaddr_t hibernate_chunk_table_start; 906 size_t hibernate_chunk_table_size; 907 int i, err; 908 909 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 910 911 hibernate_chunk_table_start = hib->piglet_va + 912 HIBERNATE_CHUNK_SIZE; 913 914 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 915 HIBERNATE_CHUNK_SIZE); 916 917 /* Write chunk table */ 918 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 919 if ((err = hib->io_func(hib->dev, 920 hib->chunktable_offset + (i/DEV_BSIZE), 921 (vaddr_t)(hibernate_chunk_table_start + i), 922 MAXPHYS, HIB_W, hib->io_page))) { 923 DPRINTF("chunktable write error: %d\n", err); 924 return (err); 925 } 926 } 927 928 return (0); 929 } 930 931 /* 932 * Write an empty hiber_info to the swap signature block, which is 933 * guaranteed to not match any valid hib. 934 */ 935 int 936 hibernate_clear_signature(void) 937 { 938 union hibernate_info blank_hiber_info; 939 union hibernate_info hib; 940 941 /* Zero out a blank hiber_info */ 942 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 943 944 /* Get the signature block location */ 945 if (get_hibernate_info(&hib, 0)) 946 return (1); 947 948 /* Write (zeroed) hibernate info to disk */ 949 DPRINTF("clearing hibernate signature block location: %lld\n", 950 hib.sig_offset); 951 if (hibernate_block_io(&hib, 952 hib.sig_offset, 953 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 954 printf("Warning: could not clear hibernate signature\n"); 955 956 return (0); 957 } 958 959 /* 960 * Check chunk range overlap when calculating whether or not to copy a 961 * compressed chunk to the piglet area before decompressing. 962 * 963 * returns zero if the ranges do not overlap, non-zero otherwise. 964 */ 965 int 966 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 967 { 968 /* case A : end of r1 overlaps start of r2 */ 969 if (r1s < r2s && r1e > r2s) 970 return (1); 971 972 /* case B : r1 entirely inside r2 */ 973 if (r1s >= r2s && r1e <= r2e) 974 return (1); 975 976 /* case C : r2 entirely inside r1 */ 977 if (r2s >= r1s && r2e <= r1e) 978 return (1); 979 980 /* case D : end of r2 overlaps start of r1 */ 981 if (r2s < r1s && r2e > r1s) 982 return (1); 983 984 return (0); 985 } 986 987 /* 988 * Compare two hibernate_infos to determine if they are the same (eg, 989 * we should be performing a hibernate resume on this machine. 990 * Not all fields are checked - just enough to verify that the machine 991 * has the same memory configuration and kernel as the one that 992 * wrote the signature previously. 993 */ 994 int 995 hibernate_compare_signature(union hibernate_info *mine, 996 union hibernate_info *disk) 997 { 998 u_int i; 999 1000 if (mine->nranges != disk->nranges) { 1001 DPRINTF("hibernate memory range count mismatch\n"); 1002 return (1); 1003 } 1004 1005 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 1006 DPRINTF("hibernate kernel version mismatch\n"); 1007 return (1); 1008 } 1009 1010 for (i = 0; i < mine->nranges; i++) { 1011 if ((mine->ranges[i].base != disk->ranges[i].base) || 1012 (mine->ranges[i].end != disk->ranges[i].end) ) { 1013 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 1014 i, mine->ranges[i].base, mine->ranges[i].end, 1015 disk->ranges[i].base, disk->ranges[i].end); 1016 return (1); 1017 } 1018 } 1019 1020 return (0); 1021 } 1022 1023 /* 1024 * Transfers xfer_size bytes between the hibernate device specified in 1025 * hib_info at offset blkctr and the vaddr specified at dest. 1026 * 1027 * Separate offsets and pages are used to handle misaligned reads (reads 1028 * that span a page boundary). 1029 * 1030 * blkctr specifies a relative offset (relative to the start of swap), 1031 * not an absolute disk offset 1032 * 1033 */ 1034 int 1035 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 1036 size_t xfer_size, vaddr_t dest, int iswrite) 1037 { 1038 struct buf *bp; 1039 struct bdevsw *bdsw; 1040 int error; 1041 1042 bp = geteblk(xfer_size); 1043 bdsw = &bdevsw[major(hib->dev)]; 1044 1045 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 1046 if (error) { 1047 printf("hibernate_block_io open failed\n"); 1048 return (1); 1049 } 1050 1051 if (iswrite) 1052 bcopy((caddr_t)dest, bp->b_data, xfer_size); 1053 1054 bp->b_bcount = xfer_size; 1055 bp->b_blkno = blkctr; 1056 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1057 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 1058 bp->b_dev = hib->dev; 1059 (*bdsw->d_strategy)(bp); 1060 1061 error = biowait(bp); 1062 if (error) { 1063 printf("hib block_io biowait error %d blk %lld size %zu\n", 1064 error, (long long)blkctr, xfer_size); 1065 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 1066 curproc); 1067 if (error) 1068 printf("hibernate_block_io error close failed\n"); 1069 return (1); 1070 } 1071 1072 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 1073 if (error) { 1074 printf("hibernate_block_io close failed\n"); 1075 return (1); 1076 } 1077 1078 if (!iswrite) 1079 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 1080 1081 bp->b_flags |= B_INVAL; 1082 brelse(bp); 1083 1084 return (0); 1085 } 1086 1087 /* 1088 * Reads the signature block from swap, checks against the current machine's 1089 * information. If the information matches, perform a resume by reading the 1090 * saved image into the pig area, and unpacking. 1091 */ 1092 void 1093 hibernate_resume(void) 1094 { 1095 union hibernate_info hib; 1096 int s; 1097 1098 /* Get current running machine's hibernate info */ 1099 memset(&hib, 0, sizeof(hib)); 1100 if (get_hibernate_info(&hib, 0)) { 1101 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1102 return; 1103 } 1104 1105 /* Read hibernate info from disk */ 1106 s = splbio(); 1107 1108 DPRINTF("reading hibernate signature block location: %lld\n", 1109 hib.sig_offset); 1110 1111 if (hibernate_block_io(&hib, 1112 hib.sig_offset, 1113 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1114 DPRINTF("error in hibernate read"); 1115 splx(s); 1116 return; 1117 } 1118 1119 /* Check magic number */ 1120 if (disk_hib.magic != HIBERNATE_MAGIC) { 1121 DPRINTF("wrong magic number in hibernate signature: %x\n", 1122 disk_hib.magic); 1123 splx(s); 1124 return; 1125 } 1126 1127 /* 1128 * We (possibly) found a hibernate signature. Clear signature first, 1129 * to prevent accidental resume or endless resume cycles later. 1130 */ 1131 if (hibernate_clear_signature()) { 1132 DPRINTF("error clearing hibernate signature block\n"); 1133 splx(s); 1134 return; 1135 } 1136 1137 /* 1138 * If on-disk and in-memory hibernate signatures match, 1139 * this means we should do a resume from hibernate. 1140 */ 1141 if (hibernate_compare_signature(&hib, &disk_hib)) { 1142 DPRINTF("mismatched hibernate signature block\n"); 1143 splx(s); 1144 return; 1145 } 1146 1147 #ifdef MULTIPROCESSOR 1148 hibernate_quiesce_cpus(); 1149 #endif /* MULTIPROCESSOR */ 1150 1151 /* Read the image from disk into the image (pig) area */ 1152 if (hibernate_read_image(&disk_hib)) 1153 goto fail; 1154 1155 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) 1156 goto fail; 1157 1158 (void) splhigh(); 1159 hibernate_disable_intr_machdep(); 1160 cold = 1; 1161 1162 if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { 1163 cold = 0; 1164 hibernate_enable_intr_machdep(); 1165 goto fail; 1166 } 1167 1168 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1169 VM_PROT_ALL); 1170 pmap_activate(curproc); 1171 1172 printf("Unpacking image...\n"); 1173 1174 /* Switch stacks */ 1175 hibernate_switch_stack_machdep(); 1176 1177 /* Unpack and resume */ 1178 hibernate_unpack_image(&disk_hib); 1179 1180 fail: 1181 splx(s); 1182 printf("\nUnable to resume hibernated image\n"); 1183 } 1184 1185 /* 1186 * Unpack image from pig area to original location by looping through the 1187 * list of output chunks in the order they should be restored (fchunks). 1188 * 1189 * Note that due to the stack smash protector and the fact that we have 1190 * switched stacks, it is not permitted to return from this function. 1191 */ 1192 void 1193 hibernate_unpack_image(union hibernate_info *hib) 1194 { 1195 struct hibernate_disk_chunk *chunks; 1196 union hibernate_info local_hib; 1197 paddr_t image_cur = global_pig_start; 1198 short i, *fchunks; 1199 char *pva = (char *)hib->piglet_va; 1200 struct hibernate_zlib_state *hibernate_state; 1201 1202 hibernate_state = 1203 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1204 1205 /* Mask off based on arch-specific piglet page size */ 1206 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1207 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1208 1209 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1210 1211 /* Can't use hiber_info that's passed in after this point */ 1212 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1213 1214 /* 1215 * Point of no return. Once we pass this point, only kernel code can 1216 * be accessed. No global variables or other kernel data structures 1217 * are guaranteed to be coherent after unpack starts. 1218 * 1219 * The image is now in high memory (pig area), we unpack from the pig 1220 * to the correct location in memory. We'll eventually end up copying 1221 * on top of ourself, but we are assured the kernel code here is the 1222 * same between the hibernated and resuming kernel, and we are running 1223 * on our own stack, so the overwrite is ok. 1224 */ 1225 hibernate_activate_resume_pt_machdep(); 1226 1227 for (i = 0; i < local_hib.chunk_ctr; i++) { 1228 /* Reset zlib for inflate */ 1229 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1230 panic("hibernate failed to reset zlib for inflate"); 1231 1232 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1233 image_cur); 1234 1235 image_cur += chunks[fchunks[i]].compressed_size; 1236 1237 } 1238 1239 /* 1240 * Resume the loaded kernel by jumping to the MD resume vector. 1241 * We won't be returning from this call. 1242 */ 1243 hibernate_resume_machdep(); 1244 } 1245 1246 /* 1247 * Bounce a compressed image chunk to the piglet, entering mappings for the 1248 * copied pages as needed 1249 */ 1250 void 1251 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1252 { 1253 size_t ct, ofs; 1254 paddr_t src = img_cur; 1255 vaddr_t dest = piglet; 1256 1257 /* Copy first partial page */ 1258 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1259 ofs = (src & PAGE_MASK); 1260 1261 if (ct < PAGE_SIZE) { 1262 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1263 (src - ofs), 0); 1264 hibernate_flush(); 1265 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1266 src += ct; 1267 dest += ct; 1268 } 1269 1270 /* Copy remaining pages */ 1271 while (src < size + img_cur) { 1272 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1273 hibernate_flush(); 1274 ct = PAGE_SIZE; 1275 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1276 hibernate_flush(); 1277 src += ct; 1278 dest += ct; 1279 } 1280 } 1281 1282 /* 1283 * Process a chunk by bouncing it to the piglet, followed by unpacking 1284 */ 1285 void 1286 hibernate_process_chunk(union hibernate_info *hib, 1287 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1288 { 1289 char *pva = (char *)hib->piglet_va; 1290 1291 hibernate_copy_chunk_to_piglet(img_cur, 1292 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1293 1294 hibernate_inflate_region(hib, chunk->base, 1295 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1296 chunk->compressed_size); 1297 } 1298 1299 /* 1300 * Write a compressed version of this machine's memory to disk, at the 1301 * precalculated swap offset: 1302 * 1303 * end of swap - signature block size - chunk table size - memory size 1304 * 1305 * The function begins by looping through each phys mem range, cutting each 1306 * one into MD sized chunks. These chunks are then compressed individually 1307 * and written out to disk, in phys mem order. Some chunks might compress 1308 * more than others, and for this reason, each chunk's size is recorded 1309 * in the chunk table, which is written to disk after the image has 1310 * properly been compressed and written (in hibernate_write_chunktable). 1311 * 1312 * When this function is called, the machine is nearly suspended - most 1313 * devices are quiesced/suspended, interrupts are off, and cold has 1314 * been set. This means that there can be no side effects once the 1315 * write has started, and the write function itself can also have no 1316 * side effects. This also means no printfs are permitted (since printf 1317 * has side effects.) 1318 * 1319 * Return values : 1320 * 1321 * 0 - success 1322 * EIO - I/O error occurred writing the chunks 1323 * EINVAL - Failed to write a complete range 1324 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1325 */ 1326 int 1327 hibernate_write_chunks(union hibernate_info *hib) 1328 { 1329 paddr_t range_base, range_end, inaddr, temp_inaddr; 1330 size_t nblocks, out_remaining, used; 1331 struct hibernate_disk_chunk *chunks; 1332 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1333 daddr_t blkctr = 0; 1334 int i, err; 1335 struct hibernate_zlib_state *hibernate_state; 1336 1337 hibernate_state = 1338 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1339 1340 hib->chunk_ctr = 0; 1341 1342 /* 1343 * Allocate VA for the temp and copy page. 1344 * 1345 * These will become part of the suspended kernel and will 1346 * be freed in hibernate_free, upon resume. 1347 */ 1348 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1349 &kp_none, &kd_nowait); 1350 if (!hibernate_temp_page) 1351 return (ENOMEM); 1352 1353 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1354 &kp_none, &kd_nowait); 1355 if (!hibernate_copy_page) { 1356 DPRINTF("out of memory allocating hibernate_copy_page\n"); 1357 return (ENOMEM); 1358 } 1359 1360 pmap_kenter_pa(hibernate_copy_page, 1361 (hib->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1362 1363 pmap_activate(curproc); 1364 1365 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1366 HIBERNATE_CHUNK_SIZE); 1367 1368 /* Calculate the chunk regions */ 1369 for (i = 0; i < hib->nranges; i++) { 1370 range_base = hib->ranges[i].base; 1371 range_end = hib->ranges[i].end; 1372 1373 inaddr = range_base; 1374 1375 while (inaddr < range_end) { 1376 chunks[hib->chunk_ctr].base = inaddr; 1377 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1378 chunks[hib->chunk_ctr].end = inaddr + 1379 HIBERNATE_CHUNK_SIZE; 1380 else 1381 chunks[hib->chunk_ctr].end = range_end; 1382 1383 inaddr += HIBERNATE_CHUNK_SIZE; 1384 hib->chunk_ctr ++; 1385 } 1386 } 1387 1388 /* Compress and write the chunks in the chunktable */ 1389 for (i = 0; i < hib->chunk_ctr; i++) { 1390 range_base = chunks[i].base; 1391 range_end = chunks[i].end; 1392 1393 chunks[i].offset = blkctr + hib->image_offset; 1394 1395 /* Reset zlib for deflate */ 1396 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1397 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1398 return (ENOMEM); 1399 } 1400 1401 inaddr = range_base; 1402 1403 /* 1404 * For each range, loop through its phys mem region 1405 * and write out the chunks (the last chunk might be 1406 * smaller than the chunk size). 1407 */ 1408 while (inaddr < range_end) { 1409 out_remaining = PAGE_SIZE; 1410 while (out_remaining > 0 && inaddr < range_end) { 1411 1412 /* 1413 * Adjust for regions that are not evenly 1414 * divisible by PAGE_SIZE or overflowed 1415 * pages from the previous iteration. 1416 */ 1417 temp_inaddr = (inaddr & PAGE_MASK) + 1418 hibernate_copy_page; 1419 1420 /* Deflate from temp_inaddr to IO page */ 1421 if (inaddr != range_end) { 1422 pmap_kenter_pa(hibernate_temp_page, 1423 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1424 1425 pmap_activate(curproc); 1426 1427 bcopy((caddr_t)hibernate_temp_page, 1428 (caddr_t)hibernate_copy_page, 1429 PAGE_SIZE); 1430 inaddr += hibernate_deflate(hib, 1431 temp_inaddr, &out_remaining); 1432 } 1433 1434 if (out_remaining == 0) { 1435 /* Filled up the page */ 1436 nblocks = 1437 PAGE_SIZE / DEV_BSIZE; 1438 1439 if ((err = hib->io_func(hib->dev, 1440 blkctr + hib->image_offset, 1441 (vaddr_t)hibernate_io_page, 1442 PAGE_SIZE, HIB_W, hib->io_page))) { 1443 DPRINTF("hib write error %d\n", 1444 err); 1445 return (err); 1446 } 1447 1448 blkctr += nblocks; 1449 } 1450 } 1451 } 1452 1453 if (inaddr != range_end) { 1454 DPRINTF("deflate range ended prematurely\n"); 1455 return (EINVAL); 1456 } 1457 1458 /* 1459 * End of range. Round up to next secsize bytes 1460 * after finishing compress 1461 */ 1462 if (out_remaining == 0) 1463 out_remaining = PAGE_SIZE; 1464 1465 /* Finish compress */ 1466 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1467 hibernate_state->hib_stream.avail_in = 0; 1468 hibernate_state->hib_stream.next_out = 1469 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1470 1471 /* We have an extra output page available for finalize */ 1472 hibernate_state->hib_stream.avail_out = 1473 out_remaining + PAGE_SIZE; 1474 1475 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1476 Z_STREAM_END) { 1477 DPRINTF("deflate error in output stream: %d\n", err); 1478 return (err); 1479 } 1480 1481 out_remaining = hibernate_state->hib_stream.avail_out; 1482 1483 used = 2*PAGE_SIZE - out_remaining; 1484 nblocks = used / DEV_BSIZE; 1485 1486 /* Round up to next block if needed */ 1487 if (used % DEV_BSIZE != 0) 1488 nblocks ++; 1489 1490 /* Write final block(s) for this chunk */ 1491 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1492 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1493 HIB_W, hib->io_page))) { 1494 DPRINTF("hib final write error %d\n", err); 1495 return (err); 1496 } 1497 1498 blkctr += nblocks; 1499 1500 chunks[i].compressed_size = (blkctr + hib->image_offset - 1501 chunks[i].offset) * DEV_BSIZE; 1502 } 1503 1504 hib->chunktable_offset = hib->image_offset + blkctr; 1505 return (0); 1506 } 1507 1508 /* 1509 * Reset the zlib stream state and allocate a new hiballoc area for either 1510 * inflate or deflate. This function is called once for each hibernate chunk. 1511 * Calling hiballoc_init multiple times is acceptable since the memory it is 1512 * provided is unmanaged memory (stolen). We use the memory provided to us 1513 * by the piglet allocated via the supplied hib. 1514 */ 1515 int 1516 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1517 { 1518 vaddr_t hibernate_zlib_start; 1519 size_t hibernate_zlib_size; 1520 char *pva = (char *)hib->piglet_va; 1521 struct hibernate_zlib_state *hibernate_state; 1522 1523 hibernate_state = 1524 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1525 1526 if (!deflate) 1527 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1528 1529 hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); 1530 hibernate_zlib_size = 80 * PAGE_SIZE; 1531 1532 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1533 memset(hibernate_state, 0, PAGE_SIZE); 1534 1535 /* Set up stream structure */ 1536 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1537 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1538 1539 /* Initialize the hiballoc arena for zlib allocs/frees */ 1540 hiballoc_init(&hibernate_state->hiballoc_arena, 1541 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1542 1543 if (deflate) { 1544 return deflateInit(&hibernate_state->hib_stream, 1545 Z_BEST_SPEED); 1546 } else 1547 return inflateInit(&hibernate_state->hib_stream); 1548 } 1549 1550 /* 1551 * Reads the hibernated memory image from disk, whose location and 1552 * size are recorded in hib. Begin by reading the persisted 1553 * chunk table, which records the original chunk placement location 1554 * and compressed size for each. Next, allocate a pig region of 1555 * sufficient size to hold the compressed image. Next, read the 1556 * chunks into the pig area (calling hibernate_read_chunks to do this), 1557 * and finally, if all of the above succeeds, clear the hibernate signature. 1558 * The function will then return to hibernate_resume, which will proceed 1559 * to unpack the pig image to the correct place in memory. 1560 */ 1561 int 1562 hibernate_read_image(union hibernate_info *hib) 1563 { 1564 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1565 paddr_t image_start, image_end, pig_start, pig_end; 1566 struct hibernate_disk_chunk *chunks; 1567 daddr_t blkctr; 1568 vaddr_t chunktable = (vaddr_t)NULL; 1569 paddr_t piglet_chunktable = hib->piglet_pa + 1570 HIBERNATE_CHUNK_SIZE; 1571 int i; 1572 1573 pmap_activate(curproc); 1574 1575 /* Calculate total chunk table size in disk blocks */ 1576 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1577 1578 blkctr = hib->chunktable_offset; 1579 1580 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1581 &kp_none, &kd_nowait); 1582 1583 if (!chunktable) 1584 return (1); 1585 1586 /* Read the chunktable from disk into the piglet chunktable */ 1587 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1588 i += PAGE_SIZE, blkctr += PAGE_SIZE/DEV_BSIZE) { 1589 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1590 VM_PROT_ALL); 1591 pmap_update(pmap_kernel()); 1592 hibernate_block_io(hib, blkctr, PAGE_SIZE, 1593 chunktable + i, 0); 1594 } 1595 1596 blkctr = hib->image_offset; 1597 compressed_size = 0; 1598 1599 chunks = (struct hibernate_disk_chunk *)chunktable; 1600 1601 for (i = 0; i < hib->chunk_ctr; i++) 1602 compressed_size += chunks[i].compressed_size; 1603 1604 disk_size = compressed_size; 1605 1606 printf("unhibernating @ block %lld length %lu bytes\n", 1607 hib->sig_offset - chunktable_size, 1608 compressed_size); 1609 1610 /* Allocate the pig area */ 1611 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1612 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1613 return (1); 1614 1615 pig_end = pig_start + pig_sz; 1616 1617 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1618 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1619 image_start = image_end - disk_size; 1620 1621 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1622 chunks); 1623 1624 pmap_kremove(chunktable, PAGE_SIZE); 1625 pmap_update(pmap_kernel()); 1626 1627 /* Prepare the resume time pmap/page table */ 1628 hibernate_populate_resume_pt(hib, image_start, image_end); 1629 1630 return (0); 1631 } 1632 1633 /* 1634 * Read the hibernated memory chunks from disk (chunk information at this 1635 * point is stored in the piglet) into the pig area specified by 1636 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1637 * only chunk with overlap possibilities. 1638 */ 1639 int 1640 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1641 paddr_t pig_end, size_t image_compr_size, 1642 struct hibernate_disk_chunk *chunks) 1643 { 1644 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1645 paddr_t copy_start, copy_end, piglet_cur; 1646 paddr_t piglet_base = hib->piglet_pa; 1647 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1648 daddr_t blkctr; 1649 size_t processed, compressed_size, read_size; 1650 int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; 1651 short *ochunks, *pchunks, *fchunks, i, j; 1652 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1653 1654 global_pig_start = pig_start; 1655 1656 pmap_activate(curproc); 1657 1658 /* 1659 * These mappings go into the resuming kernel's page table, and are 1660 * used only during image read. They dissappear from existence 1661 * when the suspended kernel is unpacked on top of us. 1662 */ 1663 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1664 if (!tempva) 1665 return (1); 1666 hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, 1667 &kp_none, &kd_nowait); 1668 if (!hibernate_fchunk_area) 1669 return (1); 1670 1671 /* Final output chunk ordering VA */ 1672 fchunks = (short *)hibernate_fchunk_area; 1673 1674 /* Piglet chunk ordering VA */ 1675 pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); 1676 1677 /* Final chunk ordering VA */ 1678 ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); 1679 1680 /* Map the chunk ordering region */ 1681 for(i=0; i<24 ; i++) { 1682 pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), 1683 piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); 1684 pmap_update(pmap_kernel()); 1685 } 1686 1687 nchunks = hib->chunk_ctr; 1688 1689 /* Initially start all chunks as unplaced */ 1690 for (i = 0; i < nchunks; i++) 1691 chunks[i].flags = 0; 1692 1693 /* 1694 * Search the list for chunks that are outside the pig area. These 1695 * can be placed first in the final output list. 1696 */ 1697 for (i = 0; i < nchunks; i++) { 1698 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1699 ochunks[nochunks] = i; 1700 fchunks[nfchunks] = i; 1701 nochunks++; 1702 nfchunks++; 1703 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1704 } 1705 } 1706 1707 /* 1708 * Walk the ordering, place the chunks in ascending memory order. 1709 * Conflicts might arise, these are handled next. 1710 */ 1711 do { 1712 img_index = -1; 1713 found = 0; 1714 j = -1; 1715 for (i = 0; i < nchunks; i++) 1716 if (chunks[i].base < img_index && 1717 chunks[i].flags == 0 ) { 1718 j = i; 1719 img_index = chunks[i].base; 1720 } 1721 1722 if (j != -1) { 1723 found = 1; 1724 ochunks[nochunks] = j; 1725 nochunks++; 1726 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1727 } 1728 } while (found); 1729 1730 img_index = pig_start; 1731 1732 /* 1733 * Identify chunk output conflicts (chunks whose pig load area 1734 * corresponds to their original memory placement location) 1735 */ 1736 for (i = 0; i < nochunks ; i++) { 1737 overlap = 0; 1738 r1s = img_index; 1739 r1e = img_index + chunks[ochunks[i]].compressed_size; 1740 r2s = chunks[ochunks[i]].base; 1741 r2e = chunks[ochunks[i]].end; 1742 1743 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1744 if (overlap) 1745 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1746 img_index += chunks[ochunks[i]].compressed_size; 1747 } 1748 1749 /* 1750 * Prepare the final output chunk list. Calculate an output 1751 * inflate strategy for overlapping chunks if needed. 1752 */ 1753 img_index = pig_start; 1754 for (i = 0; i < nochunks ; i++) { 1755 /* 1756 * If a conflict is detected, consume enough compressed 1757 * output chunks to fill the piglet 1758 */ 1759 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1760 copy_start = piglet_base; 1761 copy_end = piglet_end; 1762 piglet_cur = piglet_base; 1763 npchunks = 0; 1764 j = i; 1765 1766 while (copy_start < copy_end && j < nochunks) { 1767 piglet_cur += 1768 chunks[ochunks[j]].compressed_size; 1769 pchunks[npchunks] = ochunks[j]; 1770 npchunks++; 1771 copy_start += 1772 chunks[ochunks[j]].compressed_size; 1773 img_index += chunks[ochunks[j]].compressed_size; 1774 i++; 1775 j++; 1776 } 1777 1778 piglet_cur = piglet_base; 1779 for (j = 0; j < npchunks; j++) { 1780 piglet_cur += 1781 chunks[pchunks[j]].compressed_size; 1782 fchunks[nfchunks] = pchunks[j]; 1783 chunks[pchunks[j]].flags |= 1784 HIBERNATE_CHUNK_USED; 1785 nfchunks++; 1786 } 1787 } else { 1788 /* 1789 * No conflict, chunk can be added without copying 1790 */ 1791 if ((chunks[ochunks[i]].flags & 1792 HIBERNATE_CHUNK_USED) == 0) { 1793 fchunks[nfchunks] = ochunks[i]; 1794 chunks[ochunks[i]].flags |= 1795 HIBERNATE_CHUNK_USED; 1796 nfchunks++; 1797 } 1798 img_index += chunks[ochunks[i]].compressed_size; 1799 } 1800 } 1801 1802 img_index = pig_start; 1803 for (i = 0; i < nfchunks; i++) { 1804 piglet_cur = piglet_base; 1805 img_index += chunks[fchunks[i]].compressed_size; 1806 } 1807 1808 img_cur = pig_start; 1809 1810 for (i = 0; i < nfchunks; i++) { 1811 blkctr = chunks[fchunks[i]].offset; 1812 processed = 0; 1813 compressed_size = chunks[fchunks[i]].compressed_size; 1814 1815 while (processed < compressed_size) { 1816 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1817 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1818 VM_PROT_ALL); 1819 pmap_update(pmap_kernel()); 1820 1821 if (compressed_size - processed >= PAGE_SIZE) 1822 read_size = PAGE_SIZE; 1823 else 1824 read_size = compressed_size - processed; 1825 1826 hibernate_block_io(hib, blkctr, read_size, 1827 tempva + (img_cur & PAGE_MASK), 0); 1828 1829 blkctr += (read_size / DEV_BSIZE); 1830 1831 pmap_kremove(tempva, PAGE_SIZE); 1832 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1833 processed += read_size; 1834 img_cur += read_size; 1835 } 1836 } 1837 1838 pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); 1839 pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); 1840 pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); 1841 pmap_update(pmap_kernel()); 1842 1843 return (0); 1844 } 1845 1846 /* 1847 * Hibernating a machine comprises the following operations: 1848 * 1. Calculating this machine's hibernate_info information 1849 * 2. Allocating a piglet and saving the piglet's physaddr 1850 * 3. Calculating the memory chunks 1851 * 4. Writing the compressed chunks to disk 1852 * 5. Writing the chunk table 1853 * 6. Writing the signature block (hibernate_info) 1854 * 1855 * On most architectures, the function calling hibernate_suspend would 1856 * then power off the machine using some MD-specific implementation. 1857 */ 1858 int 1859 hibernate_suspend(void) 1860 { 1861 union hibernate_info hib; 1862 u_long start, end; 1863 1864 /* 1865 * Calculate memory ranges, swap offsets, etc. 1866 * This also allocates a piglet whose physaddr is stored in 1867 * hib->piglet_pa and vaddr stored in hib->piglet_va 1868 */ 1869 if (get_hibernate_info(&hib, 1)) { 1870 DPRINTF("failed to obtain hibernate info\n"); 1871 return (1); 1872 } 1873 1874 /* Find a page-addressed region in swap [start,end] */ 1875 if (uvm_hibswap(hib.dev, &start, &end)) { 1876 printf("cannot find any swap\n"); 1877 return (1); 1878 } 1879 1880 if (end - start < 1000) { 1881 printf("%lu\n is too small", end - start); 1882 return (1); 1883 } 1884 1885 /* Calculate block offsets in swap */ 1886 hib.image_offset = ctod(start); 1887 1888 /* XXX side effect */ 1889 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1890 hib.image_offset, ctod(end) - ctod(start)); 1891 1892 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1893 VM_PROT_ALL); 1894 pmap_activate(curproc); 1895 1896 /* Stash the piglet VA so we can free it in the resuming kernel */ 1897 global_piglet_va = hib.piglet_va; 1898 1899 DPRINTF("hibernate: writing chunks\n"); 1900 if (hibernate_write_chunks(&hib)) { 1901 DPRINTF("hibernate_write_chunks failed\n"); 1902 return (1); 1903 } 1904 1905 DPRINTF("hibernate: writing chunktable\n"); 1906 if (hibernate_write_chunktable(&hib)) { 1907 DPRINTF("hibernate_write_chunktable failed\n"); 1908 return (1); 1909 } 1910 1911 DPRINTF("hibernate: writing signature\n"); 1912 if (hibernate_write_signature(&hib)) { 1913 DPRINTF("hibernate_write_signature failed\n"); 1914 return (1); 1915 } 1916 1917 /* Allow the disk to settle */ 1918 delay(500000); 1919 1920 /* 1921 * Give the device-specific I/O function a notification that we're 1922 * done, and that it can clean up or shutdown as needed. 1923 */ 1924 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1925 1926 return (0); 1927 } 1928 1929 /* 1930 * Free items allocated by hibernate_suspend() 1931 */ 1932 void 1933 hibernate_free(void) 1934 { 1935 if (global_piglet_va) 1936 uvm_pmr_free_piglet(global_piglet_va, 1937 3*HIBERNATE_CHUNK_SIZE); 1938 1939 if (hibernate_copy_page) 1940 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1941 if (hibernate_temp_page) 1942 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1943 1944 pmap_update(pmap_kernel()); 1945 1946 if (hibernate_copy_page) 1947 km_free((void *)hibernate_copy_page, PAGE_SIZE, 1948 &kv_any, &kp_none); 1949 if (hibernate_temp_page) 1950 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1951 &kv_any, &kp_none); 1952 1953 global_piglet_va = 0; 1954 hibernate_copy_page = 0; 1955 hibernate_temp_page = 0; 1956 } 1957