1 /* $OpenBSD: subr_hibernate.c,v 1.29 2011/11/22 07:59:06 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/types.h> 25 #include <sys/systm.h> 26 #include <sys/disklabel.h> 27 #include <sys/disk.h> 28 #include <sys/conf.h> 29 #include <sys/buf.h> 30 #include <sys/fcntl.h> 31 #include <sys/stat.h> 32 #include <uvm/uvm.h> 33 #include <machine/hibernate.h> 34 35 struct hibernate_zlib_state *hibernate_state; 36 37 /* Temporary vaddr ranges used during hibernate */ 38 vaddr_t hibernate_temp_page; 39 vaddr_t hibernate_copy_page; 40 41 /* Hibernate info as read from disk during resume */ 42 union hibernate_info disk_hiber_info; 43 paddr_t global_pig_start; 44 vaddr_t global_piglet_va; 45 46 /* 47 * Hib alloc enforced alignment. 48 */ 49 #define HIB_ALIGN 8 /* bytes alignment */ 50 51 /* 52 * sizeof builtin operation, but with alignment constraint. 53 */ 54 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 55 56 struct hiballoc_entry { 57 size_t hibe_use; 58 size_t hibe_space; 59 RB_ENTRY(hiballoc_entry) hibe_entry; 60 }; 61 62 /* 63 * Compare hiballoc entries based on the address they manage. 64 * 65 * Since the address is fixed, relative to struct hiballoc_entry, 66 * we just compare the hiballoc_entry pointers. 67 */ 68 static __inline int 69 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 70 { 71 return l < r ? -1 : (l > r); 72 } 73 74 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 75 76 /* 77 * Given a hiballoc entry, return the address it manages. 78 */ 79 static __inline void * 80 hib_entry_to_addr(struct hiballoc_entry *entry) 81 { 82 caddr_t addr; 83 84 addr = (caddr_t)entry; 85 addr += HIB_SIZEOF(struct hiballoc_entry); 86 return addr; 87 } 88 89 /* 90 * Given an address, find the hiballoc that corresponds. 91 */ 92 static __inline struct hiballoc_entry* 93 hib_addr_to_entry(void *addr_param) 94 { 95 caddr_t addr; 96 97 addr = (caddr_t)addr_param; 98 addr -= HIB_SIZEOF(struct hiballoc_entry); 99 return (struct hiballoc_entry*)addr; 100 } 101 102 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 103 104 /* 105 * Allocate memory from the arena. 106 * 107 * Returns NULL if no memory is available. 108 */ 109 void * 110 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 111 { 112 struct hiballoc_entry *entry, *new_entry; 113 size_t find_sz; 114 115 /* 116 * Enforce alignment of HIB_ALIGN bytes. 117 * 118 * Note that, because the entry is put in front of the allocation, 119 * 0-byte allocations are guaranteed a unique address. 120 */ 121 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 122 123 /* 124 * Find an entry with hibe_space >= find_sz. 125 * 126 * If the root node is not large enough, we switch to tree traversal. 127 * Because all entries are made at the bottom of the free space, 128 * traversal from the end has a slightly better chance of yielding 129 * a sufficiently large space. 130 */ 131 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 132 entry = RB_ROOT(&arena->hib_addrs); 133 if (entry != NULL && entry->hibe_space < find_sz) { 134 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 135 if (entry->hibe_space >= find_sz) 136 break; 137 } 138 } 139 140 /* 141 * Insufficient or too fragmented memory. 142 */ 143 if (entry == NULL) 144 return NULL; 145 146 /* 147 * Create new entry in allocated space. 148 */ 149 new_entry = (struct hiballoc_entry*)( 150 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 151 new_entry->hibe_space = entry->hibe_space - find_sz; 152 new_entry->hibe_use = alloc_sz; 153 154 /* 155 * Insert entry. 156 */ 157 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 158 panic("hib_alloc: insert failure"); 159 entry->hibe_space = 0; 160 161 /* Return address managed by entry. */ 162 return hib_entry_to_addr(new_entry); 163 } 164 165 /* 166 * Free a pointer previously allocated from this arena. 167 * 168 * If addr is NULL, this will be silently accepted. 169 */ 170 void 171 hib_free(struct hiballoc_arena *arena, void *addr) 172 { 173 struct hiballoc_entry *entry, *prev; 174 175 if (addr == NULL) 176 return; 177 178 /* 179 * Derive entry from addr and check it is really in this arena. 180 */ 181 entry = hib_addr_to_entry(addr); 182 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 183 panic("hib_free: freed item %p not in hib arena", addr); 184 185 /* 186 * Give the space in entry to its predecessor. 187 * 188 * If entry has no predecessor, change its used space into free space 189 * instead. 190 */ 191 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 192 if (prev != NULL && 193 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 194 prev->hibe_use + prev->hibe_space) == entry) { 195 /* Merge entry. */ 196 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 197 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 198 entry->hibe_use + entry->hibe_space; 199 } else { 200 /* Flip used memory to free space. */ 201 entry->hibe_space += entry->hibe_use; 202 entry->hibe_use = 0; 203 } 204 } 205 206 /* 207 * Initialize hiballoc. 208 * 209 * The allocator will manage memmory at ptr, which is len bytes. 210 */ 211 int 212 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 213 { 214 struct hiballoc_entry *entry; 215 caddr_t ptr; 216 size_t len; 217 218 RB_INIT(&arena->hib_addrs); 219 220 /* 221 * Hib allocator enforces HIB_ALIGN alignment. 222 * Fixup ptr and len. 223 */ 224 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 225 len = p_len - ((size_t)ptr - (size_t)p_ptr); 226 len &= ~((size_t)HIB_ALIGN - 1); 227 228 /* 229 * Insufficient memory to be able to allocate and also do bookkeeping. 230 */ 231 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 232 return ENOMEM; 233 234 /* 235 * Create entry describing space. 236 */ 237 entry = (struct hiballoc_entry*)ptr; 238 entry->hibe_use = 0; 239 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 240 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 241 242 return 0; 243 } 244 245 /* 246 * Zero all free memory. 247 */ 248 void 249 uvm_pmr_zero_everything(void) 250 { 251 struct uvm_pmemrange *pmr; 252 struct vm_page *pg; 253 int i; 254 255 uvm_lock_fpageq(); 256 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 257 /* Zero single pages. */ 258 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 259 != NULL) { 260 uvm_pmr_remove(pmr, pg); 261 uvm_pagezero(pg); 262 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 263 uvmexp.zeropages++; 264 uvm_pmr_insert(pmr, pg, 0); 265 } 266 267 /* Zero multi page ranges. */ 268 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 269 != NULL) { 270 pg--; /* Size tree always has second page. */ 271 uvm_pmr_remove(pmr, pg); 272 for (i = 0; i < pg->fpgsz; i++) { 273 uvm_pagezero(&pg[i]); 274 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 275 uvmexp.zeropages++; 276 } 277 uvm_pmr_insert(pmr, pg, 0); 278 } 279 } 280 uvm_unlock_fpageq(); 281 } 282 283 /* 284 * Mark all memory as dirty. 285 * 286 * Used to inform the system that the clean memory isn't clean for some 287 * reason, for example because we just came back from hibernate. 288 */ 289 void 290 uvm_pmr_dirty_everything(void) 291 { 292 struct uvm_pmemrange *pmr; 293 struct vm_page *pg; 294 int i; 295 296 uvm_lock_fpageq(); 297 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 298 /* Dirty single pages. */ 299 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 300 != NULL) { 301 uvm_pmr_remove(pmr, pg); 302 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 303 uvm_pmr_insert(pmr, pg, 0); 304 } 305 306 /* Dirty multi page ranges. */ 307 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 308 != NULL) { 309 pg--; /* Size tree always has second page. */ 310 uvm_pmr_remove(pmr, pg); 311 for (i = 0; i < pg->fpgsz; i++) 312 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 313 uvm_pmr_insert(pmr, pg, 0); 314 } 315 } 316 317 uvmexp.zeropages = 0; 318 uvm_unlock_fpageq(); 319 } 320 321 /* 322 * Allocate the highest address that can hold sz. 323 * 324 * sz in bytes. 325 */ 326 int 327 uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) 328 { 329 struct uvm_pmemrange *pmr; 330 struct vm_page *pig_pg, *pg; 331 332 /* 333 * Convert sz to pages, since that is what pmemrange uses internally. 334 */ 335 sz = atop(round_page(sz)); 336 337 uvm_lock_fpageq(); 338 339 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 340 RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { 341 if (pig_pg->fpgsz >= sz) { 342 goto found; 343 } 344 } 345 } 346 347 /* 348 * Allocation failure. 349 */ 350 uvm_unlock_pageq(); 351 return ENOMEM; 352 353 found: 354 /* Remove page from freelist. */ 355 uvm_pmr_remove_size(pmr, pig_pg); 356 pig_pg->fpgsz -= sz; 357 pg = pig_pg + pig_pg->fpgsz; 358 if (pig_pg->fpgsz == 0) 359 uvm_pmr_remove_addr(pmr, pig_pg); 360 else 361 uvm_pmr_insert_size(pmr, pig_pg); 362 363 uvmexp.free -= sz; 364 *addr = VM_PAGE_TO_PHYS(pg); 365 366 /* 367 * Update pg flags. 368 * 369 * Note that we trash the sz argument now. 370 */ 371 while (sz > 0) { 372 KASSERT(pg->pg_flags & PQ_FREE); 373 374 atomic_clearbits_int(&pg->pg_flags, 375 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 376 377 if (pg->pg_flags & PG_ZERO) 378 uvmexp.zeropages -= sz; 379 atomic_clearbits_int(&pg->pg_flags, 380 PG_ZERO|PQ_FREE); 381 382 pg->uobject = NULL; 383 pg->uanon = NULL; 384 pg->pg_version++; 385 386 /* 387 * Next. 388 */ 389 pg++; 390 sz--; 391 } 392 393 /* Return. */ 394 uvm_unlock_fpageq(); 395 return 0; 396 } 397 398 /* 399 * Allocate a piglet area. 400 * 401 * This is as low as possible. 402 * Piglets are aligned. 403 * 404 * sz and align in bytes. 405 * 406 * The call will sleep for the pagedaemon to attempt to free memory. 407 * The pagedaemon may decide its not possible to free enough memory, causing 408 * the allocation to fail. 409 */ 410 int 411 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 412 { 413 paddr_t pg_addr, piglet_addr; 414 struct uvm_pmemrange *pmr; 415 struct vm_page *pig_pg, *pg; 416 struct pglist pageq; 417 int pdaemon_woken; 418 vaddr_t piglet_va; 419 420 KASSERT((align & (align - 1)) == 0); 421 pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ 422 423 /* 424 * Fixup arguments: align must be at least PAGE_SIZE, 425 * sz will be converted to pagecount, since that is what 426 * pmemrange uses internally. 427 */ 428 if (align < PAGE_SIZE) 429 align = PAGE_SIZE; 430 sz = round_page(sz); 431 432 uvm_lock_fpageq(); 433 434 TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, 435 pmr_use) { 436 retry: 437 /* 438 * Search for a range with enough space. 439 * Use the address tree, to ensure the range is as low as 440 * possible. 441 */ 442 RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { 443 pg_addr = VM_PAGE_TO_PHYS(pig_pg); 444 piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); 445 446 if (atop(pg_addr) + pig_pg->fpgsz >= 447 atop(piglet_addr) + atop(sz)) 448 goto found; 449 } 450 } 451 452 /* 453 * Try to coerse the pagedaemon into freeing memory 454 * for the piglet. 455 * 456 * pdaemon_woken is set to prevent the code from 457 * falling into an endless loop. 458 */ 459 if (!pdaemon_woken) { 460 pdaemon_woken = 1; 461 if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, 462 sz, UVM_PLA_FAILOK) == 0) 463 goto retry; 464 } 465 466 /* Return failure. */ 467 uvm_unlock_fpageq(); 468 return ENOMEM; 469 470 found: 471 /* 472 * Extract piglet from pigpen. 473 */ 474 TAILQ_INIT(&pageq); 475 uvm_pmr_extract_range(pmr, pig_pg, 476 atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); 477 478 *pa = piglet_addr; 479 uvmexp.free -= atop(sz); 480 481 /* 482 * Update pg flags. 483 * 484 * Note that we trash the sz argument now. 485 */ 486 TAILQ_FOREACH(pg, &pageq, pageq) { 487 KASSERT(pg->pg_flags & PQ_FREE); 488 489 atomic_clearbits_int(&pg->pg_flags, 490 PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); 491 492 if (pg->pg_flags & PG_ZERO) 493 uvmexp.zeropages--; 494 atomic_clearbits_int(&pg->pg_flags, 495 PG_ZERO|PQ_FREE); 496 497 pg->uobject = NULL; 498 pg->uanon = NULL; 499 pg->pg_version++; 500 } 501 502 uvm_unlock_fpageq(); 503 504 /* 505 * Now allocate a va. 506 * Use direct mappings for the pages. 507 */ 508 509 piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); 510 if (!piglet_va) { 511 uvm_pglistfree(&pageq); 512 return ENOMEM; 513 } 514 515 /* 516 * Map piglet to va. 517 */ 518 TAILQ_FOREACH(pg, &pageq, pageq) { 519 pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); 520 piglet_va += PAGE_SIZE; 521 } 522 pmap_update(pmap_kernel()); 523 524 return 0; 525 } 526 527 /* 528 * Free a piglet area. 529 */ 530 void 531 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 532 { 533 paddr_t pa; 534 struct vm_page *pg; 535 536 /* 537 * Fix parameters. 538 */ 539 sz = round_page(sz); 540 541 /* 542 * Find the first page in piglet. 543 * Since piglets are contiguous, the first pg is all we need. 544 */ 545 if (!pmap_extract(pmap_kernel(), va, &pa)) 546 panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); 547 pg = PHYS_TO_VM_PAGE(pa); 548 if (pg == NULL) 549 panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); 550 551 /* 552 * Unmap. 553 */ 554 pmap_kremove(va, sz); 555 pmap_update(pmap_kernel()); 556 557 /* 558 * Free the physical and virtual memory. 559 */ 560 uvm_pmr_freepages(pg, atop(sz)); 561 km_free((void *)va, sz, &kv_any, &kp_none); 562 } 563 564 /* 565 * Physmem RLE compression support. 566 * 567 * Given a physical page address, it will return the number of pages 568 * starting at the address, that are free. 569 * Returns 0 if the page at addr is not free. 570 */ 571 psize_t 572 uvm_page_rle(paddr_t addr) 573 { 574 struct vm_page *pg, *pg_end; 575 struct vm_physseg *vmp; 576 int pseg_idx, off_idx; 577 578 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 579 if (pseg_idx == -1) 580 return 0; 581 582 vmp = &vm_physmem[pseg_idx]; 583 pg = &vmp->pgs[off_idx]; 584 if (!(pg->pg_flags & PQ_FREE)) 585 return 0; 586 587 /* 588 * Search for the first non-free page after pg. 589 * Note that the page may not be the first page in a free pmemrange, 590 * therefore pg->fpgsz cannot be used. 591 */ 592 for (pg_end = pg; pg_end <= vmp->lastpg && 593 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++); 594 return pg_end - pg; 595 } 596 597 /* 598 * Fills out the hibernate_info union pointed to by hiber_info 599 * with information about this machine (swap signature block 600 * offsets, number of memory ranges, kernel in use, etc) 601 */ 602 int 603 get_hibernate_info(union hibernate_info *hiber_info, int suspend) 604 { 605 int chunktable_size; 606 struct disklabel dl; 607 char err_string[128], *dl_ret; 608 609 /* Determine I/O function to use */ 610 hiber_info->io_func = get_hibernate_io_function(); 611 if (hiber_info->io_func == NULL) 612 return (1); 613 614 /* Calculate hibernate device */ 615 hiber_info->device = swdevt[0].sw_dev; 616 617 /* Read disklabel (used to calculate signature and image offsets) */ 618 dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); 619 620 if (dl_ret) { 621 printf("Hibernate error reading disklabel: %s\n", dl_ret); 622 return (1); 623 } 624 625 hiber_info->secsize = dl.d_secsize; 626 627 /* Make sure the signature can fit in one block */ 628 KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); 629 630 /* Calculate swap offset from start of disk */ 631 hiber_info->swap_offset = dl.d_partitions[1].p_offset; 632 633 /* Calculate signature block location */ 634 hiber_info->sig_offset = dl.d_partitions[1].p_offset + 635 dl.d_partitions[1].p_size - 636 sizeof(union hibernate_info)/hiber_info->secsize; 637 638 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 639 640 /* Stash kernel version information */ 641 bzero(&hiber_info->kernel_version, 128); 642 bcopy(version, &hiber_info->kernel_version, 643 min(strlen(version), sizeof(hiber_info->kernel_version)-1)); 644 645 if (suspend) { 646 /* Allocate piglet region */ 647 if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, 648 &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, 649 HIBERNATE_CHUNK_SIZE)) { 650 printf("Hibernate failed to allocate the piglet\n"); 651 return (1); 652 } 653 hiber_info->io_page = (void *)hiber_info->piglet_va; 654 } else { 655 /* 656 * Resuming kernels use a regular I/O page since we won't 657 * have access to the suspended kernel's piglet VA at this 658 * point. No need to free this I/O page as it will vanish 659 * as part of the resume. 660 */ 661 hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 662 if (!hiber_info->io_page) 663 return (1); 664 } 665 666 667 /* 668 * Initialize of the hibernate IO function (for drivers which 669 * need that) 670 */ 671 if (hiber_info->io_func(hiber_info->device, 0, 672 (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) 673 goto fail; 674 675 if (get_hibernate_info_md(hiber_info)) 676 goto fail; 677 678 /* Calculate memory image location */ 679 hiber_info->image_offset = dl.d_partitions[1].p_offset + 680 dl.d_partitions[1].p_size - 681 (hiber_info->image_size / hiber_info->secsize) - 682 sizeof(union hibernate_info)/hiber_info->secsize - 683 chunktable_size; 684 685 return (0); 686 fail: 687 uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE*3); 688 return (1); 689 } 690 691 /* 692 * Allocate nitems*size bytes from the hiballoc area presently in use 693 */ 694 void 695 *hibernate_zlib_alloc(void *unused, int nitems, int size) 696 { 697 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 698 } 699 700 /* 701 * Free the memory pointed to by addr in the hiballoc area presently in 702 * use 703 */ 704 void 705 hibernate_zlib_free(void *unused, void *addr) 706 { 707 hib_free(&hibernate_state->hiballoc_arena, addr); 708 } 709 710 /* 711 * Inflate size bytes from src into dest, skipping any pages in 712 * [src..dest] that are special (see hibernate_inflate_skip) 713 * 714 * This function executes while using the resume-time stack 715 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 716 * will likely hang or reset the machine. 717 */ 718 void 719 hibernate_inflate(union hibernate_info *hiber_info, paddr_t dest, 720 paddr_t src, size_t size) 721 { 722 int i; 723 psize_t rle; 724 725 hibernate_state->hib_stream.avail_in = size; 726 hibernate_state->hib_stream.next_in = (char *)src; 727 728 do { 729 /* Flush cache and TLB */ 730 hibernate_flush(); 731 732 /* Read RLE code */ 733 hibernate_state->hib_stream.avail_out = sizeof(psize_t); 734 hibernate_state->hib_stream.next_out = (char *)&rle; 735 736 i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); 737 if (i != Z_OK && i != Z_STREAM_END) { 738 /* 739 * XXX - this will likely reboot/hang most machines, 740 * but there's not much else we can do here. 741 */ 742 panic("inflate rle error"); 743 } 744 745 if (i == Z_STREAM_END) 746 goto next_page; 747 748 /* Skip while RLE code is != 0 */ 749 while (rle != 0) { 750 dest += (rle * PAGE_SIZE); 751 hibernate_state->hib_stream.avail_out = 752 sizeof(psize_t); 753 hibernate_state->hib_stream.next_out = (char *)&rle; 754 755 i = inflate(&hibernate_state->hib_stream, 756 Z_FULL_FLUSH); 757 if (i != Z_OK && i != Z_STREAM_END) { 758 /* 759 * XXX - this will likely reboot/hang most 760 * machines but there's not much else 761 * we can do here. 762 */ 763 panic("inflate rle error 2"); 764 } 765 } 766 767 if (i == Z_STREAM_END) 768 goto next_page; 769 770 /* 771 * Is this a special page? If yes, redirect the 772 * inflate output to a scratch page (eg, discard it) 773 */ 774 if (hibernate_inflate_skip(hiber_info, dest)) 775 hibernate_enter_resume_mapping( 776 HIBERNATE_INFLATE_PAGE, 777 HIBERNATE_INFLATE_PAGE, 0); 778 else 779 hibernate_enter_resume_mapping( 780 HIBERNATE_INFLATE_PAGE, dest, 0); 781 782 hibernate_flush(); 783 784 /* Set up the stream for inflate */ 785 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 786 hibernate_state->hib_stream.next_out = 787 (char *)HIBERNATE_INFLATE_PAGE; 788 789 /* Process next block of data */ 790 i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); 791 if (i != Z_OK && i != Z_STREAM_END) { 792 /* 793 * XXX - this will likely reboot/hang most machines, 794 * but there's not much else we can do here. 795 */ 796 panic("inflate error"); 797 } 798 799 next_page: 800 dest += PAGE_SIZE - hibernate_state->hib_stream.avail_out; 801 } while (i != Z_STREAM_END); 802 } 803 804 /* 805 * deflate from src into the I/O page, up to 'remaining' bytes 806 * 807 * Returns number of input bytes consumed, and may reset 808 * the 'remaining' parameter if not all the output space was consumed 809 * (this information is needed to know how much to write to disk 810 */ 811 size_t 812 hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, 813 size_t *remaining) 814 { 815 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 816 817 /* Set up the stream for deflate */ 818 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 819 hibernate_state->hib_stream.avail_out = *remaining; 820 hibernate_state->hib_stream.next_in = (caddr_t)src; 821 hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + 822 (PAGE_SIZE - *remaining); 823 824 /* Process next block of data */ 825 if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) 826 panic("hibernate zlib deflate error"); 827 828 /* Update pointers and return number of bytes consumed */ 829 *remaining = hibernate_state->hib_stream.avail_out; 830 return (PAGE_SIZE - (src & PAGE_MASK)) - 831 hibernate_state->hib_stream.avail_in; 832 } 833 834 /* 835 * Write the hibernation information specified in hiber_info 836 * to the location in swap previously calculated (last block of 837 * swap), called the "signature block". 838 * 839 * Write the memory chunk table to the area in swap immediately 840 * preceding the signature block. 841 */ 842 int 843 hibernate_write_signature(union hibernate_info *hiber_info) 844 { 845 /* Write hibernate info to disk */ 846 return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, 847 (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, 848 hiber_info->io_page)); 849 } 850 851 /* 852 * Write the memory chunk table to the area in swap immediately 853 * preceding the signature block. The chunk table is stored 854 * in the piglet when this function is called. 855 */ 856 int 857 hibernate_write_chunktable(union hibernate_info *hiber_info) 858 { 859 struct hibernate_disk_chunk *chunks; 860 vaddr_t hibernate_chunk_table_start; 861 size_t hibernate_chunk_table_size; 862 daddr_t chunkbase; 863 int i; 864 865 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 866 867 chunkbase = hiber_info->sig_offset - 868 (hibernate_chunk_table_size / hiber_info->secsize); 869 870 hibernate_chunk_table_start = hiber_info->piglet_va + 871 HIBERNATE_CHUNK_SIZE; 872 873 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 874 HIBERNATE_CHUNK_SIZE); 875 876 /* Write chunk table */ 877 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 878 if (hiber_info->io_func(hiber_info->device, 879 chunkbase + (i/hiber_info->secsize), 880 (vaddr_t)(hibernate_chunk_table_start + i), 881 MAXPHYS, HIB_W, hiber_info->io_page)) 882 return (1); 883 } 884 885 return (0); 886 } 887 888 /* 889 * Write an empty hiber_info to the swap signature block, which is 890 * guaranteed to not match any valid hiber_info. 891 */ 892 int 893 hibernate_clear_signature(void) 894 { 895 union hibernate_info blank_hiber_info; 896 union hibernate_info hiber_info; 897 898 /* Zero out a blank hiber_info */ 899 bzero(&blank_hiber_info, sizeof(hiber_info)); 900 901 if (get_hibernate_info(&hiber_info, 0)) 902 return (1); 903 904 /* Write (zeroed) hibernate info to disk */ 905 /* XXX - use regular kernel write routine for this */ 906 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 907 (vaddr_t)&blank_hiber_info, hiber_info.secsize, HIB_W, 908 hiber_info.io_page)) 909 panic("error hibernate write 6"); 910 911 return (0); 912 } 913 914 /* 915 * Check chunk range overlap when calculating whether or not to copy a 916 * compressed chunk to the piglet area before decompressing. 917 * 918 * returns zero if the ranges do not overlap, non-zero otherwise. 919 */ 920 int 921 hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) 922 { 923 /* case A : end of r1 overlaps start of r2 */ 924 if (r1s < r2s && r1e > r2s) 925 return (1); 926 927 /* case B : r1 entirely inside r2 */ 928 if (r1s >= r2s && r1e <= r2e) 929 return (1); 930 931 /* case C : r2 entirely inside r1 */ 932 if (r2s >= r1s && r2e <= r1e) 933 return (1); 934 935 /* case D : end of r2 overlaps start of r1 */ 936 if (r2s < r1s && r2e > r1s) 937 return (1); 938 939 return (0); 940 } 941 942 /* 943 * Compare two hibernate_infos to determine if they are the same (eg, 944 * we should be performing a hibernate resume on this machine. 945 * Not all fields are checked - just enough to verify that the machine 946 * has the same memory configuration and kernel as the one that 947 * wrote the signature previously. 948 */ 949 int 950 hibernate_compare_signature(union hibernate_info *mine, 951 union hibernate_info *disk) 952 { 953 u_int i; 954 955 if (mine->nranges != disk->nranges) 956 return (1); 957 958 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) 959 return (1); 960 961 for (i = 0; i < mine->nranges; i++) { 962 if ((mine->ranges[i].base != disk->ranges[i].base) || 963 (mine->ranges[i].end != disk->ranges[i].end) ) 964 return (1); 965 } 966 967 return (0); 968 } 969 970 /* 971 * Reads read_size bytes from the hibernate device specified in 972 * hib_info at offset blkctr. Output is placed into the vaddr specified 973 * at dest. 974 * 975 * Separate offsets and pages are used to handle misaligned reads (reads 976 * that span a page boundary). 977 * 978 * blkctr specifies a relative offset (relative to the start of swap), 979 * not an absolute disk offset 980 * 981 */ 982 int 983 hibernate_read_block(union hibernate_info *hib_info, daddr_t blkctr, 984 size_t read_size, vaddr_t dest) 985 { 986 struct buf *bp; 987 struct bdevsw *bdsw; 988 int error; 989 990 bp = geteblk(read_size); 991 bdsw = &bdevsw[major(hib_info->device)]; 992 993 error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); 994 if (error) { 995 printf("hibernate_read_block open failed\n"); 996 return (1); 997 } 998 999 bp->b_bcount = read_size; 1000 bp->b_blkno = blkctr; 1001 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 1002 SET(bp->b_flags, B_BUSY | B_READ | B_RAW); 1003 bp->b_dev = hib_info->device; 1004 bp->b_cylinder = 0; 1005 (*bdsw->d_strategy)(bp); 1006 1007 error = biowait(bp); 1008 if (error) { 1009 printf("hibernate_read_block biowait failed %d\n", error); 1010 error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, 1011 curproc); 1012 if (error) 1013 printf("hibernate_read_block error close failed\n"); 1014 return (1); 1015 } 1016 1017 error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); 1018 if (error) { 1019 printf("hibernate_read_block close failed\n"); 1020 return (1); 1021 } 1022 1023 bcopy(bp->b_data, (caddr_t)dest, read_size); 1024 1025 bp->b_flags |= B_INVAL; 1026 brelse(bp); 1027 1028 return (0); 1029 } 1030 1031 /* 1032 * Reads the signature block from swap, checks against the current machine's 1033 * information. If the information matches, perform a resume by reading the 1034 * saved image into the pig area, and unpacking. 1035 */ 1036 void 1037 hibernate_resume(void) 1038 { 1039 union hibernate_info hiber_info; 1040 int s; 1041 1042 /* Get current running machine's hibernate info */ 1043 bzero(&hiber_info, sizeof(hiber_info)); 1044 if (get_hibernate_info(&hiber_info, 0)) 1045 return; 1046 1047 /* Read hibernate info from disk */ 1048 s = splbio(); 1049 1050 /* XXX use regular kernel read routine here */ 1051 if (hiber_info.io_func(hiber_info.device, hiber_info.sig_offset, 1052 (vaddr_t)&disk_hiber_info, hiber_info.secsize, HIB_R, 1053 hiber_info.io_page)) 1054 panic("error in hibernate read"); 1055 1056 /* 1057 * If on-disk and in-memory hibernate signatures match, 1058 * this means we should do a resume from hibernate. 1059 */ 1060 if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) 1061 return; 1062 1063 /* Read the image from disk into the image (pig) area */ 1064 if (hibernate_read_image(&disk_hiber_info)) 1065 goto fail; 1066 1067 /* Point of no return ... */ 1068 1069 disable_intr(); 1070 cold = 1; 1071 1072 /* Switch stacks */ 1073 hibernate_switch_stack_machdep(); 1074 1075 /* 1076 * Image is now in high memory (pig area), copy to correct location 1077 * in memory. We'll eventually end up copying on top of ourself, but 1078 * we are assured the kernel code here is the same between the 1079 * hibernated and resuming kernel, and we are running on our own 1080 * stack, so the overwrite is ok. 1081 */ 1082 hibernate_unpack_image(&disk_hiber_info); 1083 1084 /* 1085 * Resume the loaded kernel by jumping to the MD resume vector. 1086 * We won't be returning from this call. 1087 */ 1088 hibernate_resume_machdep(); 1089 1090 fail: 1091 printf("Unable to resume hibernated image\n"); 1092 } 1093 1094 /* 1095 * Unpack image from pig area to original location by looping through the 1096 * list of output chunks in the order they should be restored (fchunks). 1097 * This ordering is used to avoid having inflate overwrite a chunk in the 1098 * middle of processing that chunk. This will, of course, happen during the 1099 * final output chunk, where we copy the chunk to the piglet area first, 1100 * before inflating. 1101 */ 1102 void 1103 hibernate_unpack_image(union hibernate_info *hiber_info) 1104 { 1105 struct hibernate_disk_chunk *chunks; 1106 union hibernate_info local_hiber_info; 1107 paddr_t image_cur = global_pig_start; 1108 int *fchunks, i; 1109 char *pva = (char *)hiber_info->piglet_va; 1110 1111 /* Mask off based on arch-specific piglet page size */ 1112 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1113 fchunks = (int *)(pva + (6 * PAGE_SIZE)); 1114 1115 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1116 1117 /* Can't use hiber_info that's passed in after here */ 1118 bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); 1119 1120 hibernate_state = (struct hibernate_zlib_state *) 1121 (pva + (7 * PAGE_SIZE)); 1122 1123 hibernate_activate_resume_pt_machdep(); 1124 1125 for (i = 0; i < local_hiber_info.chunk_ctr; i++) { 1126 /* Reset zlib for inflate */ 1127 if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) 1128 panic("hibernate failed to reset zlib for inflate"); 1129 1130 /* 1131 * If there is a conflict, copy the chunk to the piglet area 1132 * before unpacking it to its original location. 1133 */ 1134 if ((chunks[fchunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) == 0) 1135 hibernate_inflate(&local_hiber_info, 1136 chunks[fchunks[i]].base, image_cur, 1137 chunks[fchunks[i]].compressed_size); 1138 else { 1139 bcopy((caddr_t)image_cur, 1140 pva + (HIBERNATE_CHUNK_SIZE * 2), 1141 chunks[fchunks[i]].compressed_size); 1142 hibernate_inflate(&local_hiber_info, 1143 chunks[fchunks[i]].base, 1144 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1145 chunks[fchunks[i]].compressed_size); 1146 } 1147 image_cur += chunks[fchunks[i]].compressed_size; 1148 } 1149 } 1150 1151 /* 1152 * Write a compressed version of this machine's memory to disk, at the 1153 * precalculated swap offset: 1154 * 1155 * end of swap - signature block size - chunk table size - memory size 1156 * 1157 * The function begins by looping through each phys mem range, cutting each 1158 * one into 4MB chunks. These chunks are then compressed individually 1159 * and written out to disk, in phys mem order. Some chunks might compress 1160 * more than others, and for this reason, each chunk's size is recorded 1161 * in the chunk table, which is written to disk after the image has 1162 * properly been compressed and written (in hibernate_write_chunktable). 1163 * 1164 * When this function is called, the machine is nearly suspended - most 1165 * devices are quiesced/suspended, interrupts are off, and cold has 1166 * been set. This means that there can be no side effects once the 1167 * write has started, and the write function itself can also have no 1168 * side effects. 1169 * 1170 * This function uses the piglet area during this process as follows: 1171 * 1172 * offset from piglet base use 1173 * ----------------------- -------------------- 1174 * 0 i/o allocation area 1175 * PAGE_SIZE i/o write area 1176 * 2*PAGE_SIZE temp/scratch page 1177 * 3*PAGE_SIZE temp/scratch page 1178 * 4*PAGE_SIZE hiballoc arena 1179 * 5*PAGE_SIZE to 85*PAGE_SIZE zlib deflate area 1180 * ... 1181 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1182 * 1183 * Some transient piglet content is saved as part of deflate, 1184 * but it is irrelevant during resume as it will be repurposed 1185 * at that time for other things. 1186 */ 1187 int 1188 hibernate_write_chunks(union hibernate_info *hiber_info) 1189 { 1190 paddr_t range_base, range_end, inaddr, temp_inaddr; 1191 size_t nblocks, out_remaining, used, offset = 0; 1192 struct hibernate_disk_chunk *chunks; 1193 vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; 1194 daddr_t blkctr = hiber_info->image_offset; 1195 int i; 1196 psize_t rle; 1197 1198 hiber_info->chunk_ctr = 0; 1199 1200 /* 1201 * Allocate VA for the temp and copy page. 1202 * These will becomee part of the suspended kernel and will 1203 * be freed in hibernate_free, upon resume. 1204 */ 1205 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1206 &kp_none, &kd_nowait); 1207 if (!hibernate_temp_page) 1208 return (1); 1209 1210 hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1211 &kp_none, &kd_nowait); 1212 if (!hibernate_copy_page) 1213 return (1); 1214 1215 pmap_kenter_pa(hibernate_copy_page, 1216 (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); 1217 1218 /* XXX - not needed on all archs */ 1219 pmap_activate(curproc); 1220 1221 chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + 1222 HIBERNATE_CHUNK_SIZE); 1223 1224 /* Calculate the chunk regions */ 1225 for (i = 0; i < hiber_info->nranges; i++) { 1226 range_base = hiber_info->ranges[i].base; 1227 range_end = hiber_info->ranges[i].end; 1228 1229 inaddr = range_base; 1230 1231 while (inaddr < range_end) { 1232 chunks[hiber_info->chunk_ctr].base = inaddr; 1233 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1234 chunks[hiber_info->chunk_ctr].end = inaddr + 1235 HIBERNATE_CHUNK_SIZE; 1236 else 1237 chunks[hiber_info->chunk_ctr].end = range_end; 1238 1239 inaddr += HIBERNATE_CHUNK_SIZE; 1240 hiber_info->chunk_ctr ++; 1241 } 1242 } 1243 1244 /* Compress and write the chunks in the chunktable */ 1245 for (i = 0; i < hiber_info->chunk_ctr; i++) { 1246 range_base = chunks[i].base; 1247 range_end = chunks[i].end; 1248 1249 chunks[i].offset = blkctr; 1250 1251 /* Reset zlib for deflate */ 1252 if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) 1253 return (1); 1254 1255 inaddr = range_base; 1256 1257 /* 1258 * For each range, loop through its phys mem region 1259 * and write out the chunks (the last chunk might be 1260 * smaller than the chunk size). 1261 */ 1262 while (inaddr < range_end) { 1263 out_remaining = PAGE_SIZE; 1264 while (out_remaining > 0 && inaddr < range_end) { 1265 1266 /* 1267 * Adjust for regions that are not evenly 1268 * divisible by PAGE_SIZE or overflowed 1269 * pages from the previous iteration. 1270 */ 1271 temp_inaddr = (inaddr & PAGE_MASK) + 1272 hibernate_copy_page; 1273 1274 rle = uvm_page_rle(inaddr); 1275 while (rle > 0 && inaddr < range_end) { 1276 hibernate_state->hib_stream.avail_in = 1277 sizeof(psize_t); 1278 hibernate_state->hib_stream.avail_out = 1279 out_remaining; 1280 hibernate_state->hib_stream.next_in = 1281 (char *)&rle; 1282 hibernate_state->hib_stream.next_out = 1283 (caddr_t)hibernate_io_page + 1284 (PAGE_SIZE - out_remaining); 1285 1286 if (deflate(&hibernate_state->hib_stream, 1287 Z_PARTIAL_FLUSH) != Z_OK) 1288 return (1); 1289 1290 out_remaining = 1291 hibernate_state->hib_stream.avail_out; 1292 inaddr += (rle * PAGE_SIZE); 1293 if (inaddr > range_end) 1294 inaddr = range_end; 1295 else 1296 rle = uvm_page_rle(inaddr); 1297 } 1298 1299 if (out_remaining == 0) { 1300 /* Filled up the page */ 1301 nblocks = PAGE_SIZE / hiber_info->secsize; 1302 1303 if (hiber_info->io_func(hiber_info->device, 1304 blkctr, (vaddr_t)hibernate_io_page, 1305 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1306 return (1); 1307 1308 blkctr += nblocks; 1309 out_remaining = PAGE_SIZE; 1310 } 1311 1312 /* Write '0' RLE code */ 1313 if (inaddr < range_end) { 1314 hibernate_state->hib_stream.avail_in = 1315 sizeof(psize_t); 1316 hibernate_state->hib_stream.avail_out = 1317 out_remaining; 1318 hibernate_state->hib_stream.next_in = 1319 (char *)&rle; 1320 hibernate_state->hib_stream.next_out = 1321 (caddr_t)hibernate_io_page + 1322 (PAGE_SIZE - out_remaining); 1323 1324 if (deflate(&hibernate_state->hib_stream, 1325 Z_PARTIAL_FLUSH) != Z_OK) 1326 return (1); 1327 1328 out_remaining = 1329 hibernate_state->hib_stream.avail_out; 1330 } 1331 1332 if (out_remaining == 0) { 1333 /* Filled up the page */ 1334 nblocks = PAGE_SIZE / hiber_info->secsize; 1335 1336 if (hiber_info->io_func(hiber_info->device, 1337 blkctr, (vaddr_t)hibernate_io_page, 1338 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1339 return (1); 1340 1341 blkctr += nblocks; 1342 out_remaining = PAGE_SIZE; 1343 } 1344 1345 /* Deflate from temp_inaddr to IO page */ 1346 if (inaddr != range_end) { 1347 pmap_kenter_pa(hibernate_temp_page, 1348 inaddr & PMAP_PA_MASK, VM_PROT_ALL); 1349 1350 /* XXX - not needed on all archs */ 1351 pmap_activate(curproc); 1352 1353 bcopy((caddr_t)hibernate_temp_page, 1354 (caddr_t)hibernate_copy_page, PAGE_SIZE); 1355 inaddr += hibernate_deflate(hiber_info, 1356 temp_inaddr, &out_remaining); 1357 } 1358 } 1359 1360 if (out_remaining == 0) { 1361 /* Filled up the page */ 1362 nblocks = PAGE_SIZE / hiber_info->secsize; 1363 1364 if (hiber_info->io_func(hiber_info->device, 1365 blkctr, (vaddr_t)hibernate_io_page, 1366 PAGE_SIZE, HIB_W, hiber_info->io_page)) 1367 return (1); 1368 1369 blkctr += nblocks; 1370 } 1371 } 1372 1373 if (inaddr != range_end) 1374 return (1); 1375 1376 /* 1377 * End of range. Round up to next secsize bytes 1378 * after finishing compress 1379 */ 1380 if (out_remaining == 0) 1381 out_remaining = PAGE_SIZE; 1382 1383 /* Finish compress */ 1384 hibernate_state->hib_stream.avail_in = 0; 1385 hibernate_state->hib_stream.avail_out = out_remaining; 1386 hibernate_state->hib_stream.next_in = (caddr_t)inaddr; 1387 hibernate_state->hib_stream.next_out = 1388 (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); 1389 1390 if (deflate(&hibernate_state->hib_stream, Z_FINISH) != 1391 Z_STREAM_END) 1392 return (1); 1393 1394 out_remaining = hibernate_state->hib_stream.avail_out; 1395 1396 used = PAGE_SIZE - out_remaining; 1397 nblocks = used / hiber_info->secsize; 1398 1399 /* Round up to next block if needed */ 1400 if (used % hiber_info->secsize != 0) 1401 nblocks ++; 1402 1403 /* Write final block(s) for this chunk */ 1404 if (hiber_info->io_func(hiber_info->device, blkctr, 1405 (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, 1406 HIB_W, hiber_info->io_page)) 1407 return (1); 1408 1409 blkctr += nblocks; 1410 1411 offset = blkctr; 1412 chunks[i].compressed_size = (offset - chunks[i].offset) * 1413 hiber_info->secsize; 1414 } 1415 1416 return (0); 1417 } 1418 1419 /* 1420 * Reset the zlib stream state and allocate a new hiballoc area for either 1421 * inflate or deflate. This function is called once for each hibernate chunk. 1422 * Calling hiballoc_init multiple times is acceptable since the memory it is 1423 * provided is unmanaged memory (stolen). We use the memory provided to us 1424 * by the piglet allocated via the supplied hiber_info. 1425 */ 1426 int 1427 hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) 1428 { 1429 vaddr_t hibernate_zlib_start; 1430 size_t hibernate_zlib_size; 1431 char *pva = (char *)hiber_info->piglet_va; 1432 1433 hibernate_state = (struct hibernate_zlib_state *) 1434 (pva + (7 * PAGE_SIZE)); 1435 1436 hibernate_zlib_start = (vaddr_t)(pva + (8 * PAGE_SIZE)); 1437 hibernate_zlib_size = 80 * PAGE_SIZE; 1438 1439 bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1440 bzero((caddr_t)hibernate_state, PAGE_SIZE); 1441 1442 /* Set up stream structure */ 1443 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1444 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1445 1446 /* Initialize the hiballoc arena for zlib allocs/frees */ 1447 hiballoc_init(&hibernate_state->hiballoc_arena, 1448 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1449 1450 if (deflate) { 1451 return deflateInit(&hibernate_state->hib_stream, 1452 Z_BEST_SPEED); 1453 } else 1454 return inflateInit(&hibernate_state->hib_stream); 1455 } 1456 1457 /* 1458 * Reads the hibernated memory image from disk, whose location and 1459 * size are recorded in hiber_info. Begin by reading the persisted 1460 * chunk table, which records the original chunk placement location 1461 * and compressed size for each. Next, allocate a pig region of 1462 * sufficient size to hold the compressed image. Next, read the 1463 * chunks into the pig area (calling hibernate_read_chunks to do this), 1464 * and finally, if all of the above succeeds, clear the hibernate signature. 1465 * The function will then return to hibernate_resume, which will proceed 1466 * to unpack the pig image to the correct place in memory. 1467 */ 1468 int 1469 hibernate_read_image(union hibernate_info *hiber_info) 1470 { 1471 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1472 paddr_t image_start, image_end, pig_start, pig_end; 1473 struct hibernate_disk_chunk *chunks; 1474 daddr_t blkctr; 1475 vaddr_t chunktable = (vaddr_t)NULL; 1476 paddr_t piglet_chunktable = hiber_info->piglet_pa + 1477 HIBERNATE_CHUNK_SIZE; 1478 int i; 1479 1480 /* Calculate total chunk table size in disk blocks */ 1481 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; 1482 1483 blkctr = hiber_info->sig_offset - chunktable_size - 1484 hiber_info->swap_offset; 1485 1486 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1487 &kp_none, &kd_nowait); 1488 1489 if (!chunktable) 1490 return (1); 1491 1492 /* Read the chunktable from disk into the piglet chunktable */ 1493 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1494 i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { 1495 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); 1496 hibernate_read_block(hiber_info, blkctr, PAGE_SIZE, 1497 chunktable + i); 1498 } 1499 1500 blkctr = hiber_info->image_offset; 1501 compressed_size = 0; 1502 pmap_kenter_pa(chunktable, piglet_chunktable, VM_PROT_ALL); 1503 chunks = (struct hibernate_disk_chunk *)chunktable; 1504 1505 for (i = 0; i < hiber_info->chunk_ctr; i++) 1506 compressed_size += chunks[i].compressed_size; 1507 1508 disk_size = compressed_size; 1509 1510 /* Allocate the pig area */ 1511 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1512 if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) 1513 return (1); 1514 1515 pig_end = pig_start + pig_sz; 1516 1517 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1518 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1519 image_start = pig_start; 1520 1521 image_start = image_end - disk_size; 1522 1523 hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, 1524 chunks); 1525 1526 /* Prepare the resume time pmap/page table */ 1527 hibernate_populate_resume_pt(hiber_info, image_start, image_end); 1528 1529 /* Read complete, clear the signature and return */ 1530 return hibernate_clear_signature(); 1531 } 1532 1533 /* 1534 * Read the hibernated memory chunks from disk (chunk information at this 1535 * point is stored in the piglet) into the pig area specified by 1536 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1537 * only chunk with overlap possibilities. 1538 * 1539 * This function uses the piglet area during this process as follows: 1540 * 1541 * offset from piglet base use 1542 * ----------------------- -------------------- 1543 * 0 i/o allocation area 1544 * PAGE_SIZE i/o write area 1545 * 2*PAGE_SIZE temp/scratch page 1546 * 3*PAGE_SIZE temp/scratch page 1547 * 4*PAGE_SIZE to 6*PAGE_SIZE chunk ordering area 1548 * 7*PAGE_SIZE hiballoc arena 1549 * 8*PAGE_SIZE to 88*PAGE_SIZE zlib deflate area 1550 * ... 1551 * HIBERNATE_CHUNK_SIZE chunk table temporary area 1552 */ 1553 int 1554 hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, 1555 paddr_t pig_end, size_t image_compr_size, 1556 struct hibernate_disk_chunk *chunks) 1557 { 1558 paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; 1559 paddr_t copy_start, copy_end, piglet_cur; 1560 paddr_t piglet_base = hib_info->piglet_pa; 1561 paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; 1562 daddr_t blkctr; 1563 size_t processed, compressed_size, read_size; 1564 int i, j, overlap, found, nchunks; 1565 int nochunks = 0, nfchunks = 0, npchunks = 0; 1566 int *ochunks, *pchunks, *fchunks; 1567 vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; 1568 1569 global_pig_start = pig_start; 1570 1571 /* XXX - dont need this on all archs */ 1572 pmap_activate(curproc); 1573 1574 /* 1575 * These mappings go into the resuming kernel's page table, and are 1576 * used only during image read. They dissappear from existence 1577 * when the suspended kernel is unpacked on top of us. 1578 */ 1579 tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); 1580 if (!tempva) 1581 return (1); 1582 hibernate_fchunk_area = (vaddr_t)km_alloc(3*PAGE_SIZE, &kv_any, 1583 &kp_none, &kd_nowait); 1584 if (!hibernate_fchunk_area) 1585 return (1); 1586 1587 /* Temporary output chunk ordering */ 1588 ochunks = (int *)hibernate_fchunk_area; 1589 1590 /* Piglet chunk ordering */ 1591 pchunks = (int *)(hibernate_fchunk_area + PAGE_SIZE); 1592 1593 /* Final chunk ordering */ 1594 fchunks = (int *)(hibernate_fchunk_area + (2*PAGE_SIZE)); 1595 1596 /* Map the chunk ordering region */ 1597 pmap_kenter_pa(hibernate_fchunk_area, 1598 piglet_base + (4*PAGE_SIZE), VM_PROT_ALL); 1599 pmap_kenter_pa((vaddr_t)pchunks, piglet_base + (5*PAGE_SIZE), 1600 VM_PROT_ALL); 1601 pmap_kenter_pa((vaddr_t)fchunks, piglet_base + (6*PAGE_SIZE), 1602 VM_PROT_ALL); 1603 1604 nchunks = hib_info->chunk_ctr; 1605 1606 /* Initially start all chunks as unplaced */ 1607 for (i = 0; i < nchunks; i++) 1608 chunks[i].flags = 0; 1609 1610 /* 1611 * Search the list for chunks that are outside the pig area. These 1612 * can be placed first in the final output list. 1613 */ 1614 for (i = 0; i < nchunks; i++) { 1615 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1616 ochunks[nochunks] = (u_int8_t)i; 1617 fchunks[nfchunks] = (u_int8_t)i; 1618 nochunks++; 1619 nfchunks++; 1620 chunks[i].flags |= HIBERNATE_CHUNK_USED; 1621 } 1622 } 1623 1624 /* 1625 * Walk the ordering, place the chunks in ascending memory order. 1626 * Conflicts might arise, these are handled next. 1627 */ 1628 do { 1629 img_index = -1; 1630 found = 0; 1631 j = -1; 1632 for (i = 0; i < nchunks; i++) 1633 if (chunks[i].base < img_index && 1634 chunks[i].flags == 0 ) { 1635 j = i; 1636 img_index = chunks[i].base; 1637 } 1638 1639 if (j != -1) { 1640 found = 1; 1641 ochunks[nochunks] = (short)j; 1642 nochunks++; 1643 chunks[j].flags |= HIBERNATE_CHUNK_PLACED; 1644 } 1645 } while (found); 1646 1647 img_index = pig_start; 1648 1649 /* 1650 * Identify chunk output conflicts (chunks whose pig load area 1651 * corresponds to their original memory placement location) 1652 */ 1653 for (i = 0; i < nochunks ; i++) { 1654 overlap = 0; 1655 r1s = img_index; 1656 r1e = img_index + chunks[ochunks[i]].compressed_size; 1657 r2s = chunks[ochunks[i]].base; 1658 r2e = chunks[ochunks[i]].end; 1659 1660 overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); 1661 if (overlap) 1662 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; 1663 img_index += chunks[ochunks[i]].compressed_size; 1664 } 1665 1666 /* 1667 * Prepare the final output chunk list. Calculate an output 1668 * inflate strategy for overlapping chunks if needed. 1669 */ 1670 img_index = pig_start; 1671 for (i = 0; i < nochunks ; i++) { 1672 /* 1673 * If a conflict is detected, consume enough compressed 1674 * output chunks to fill the piglet 1675 */ 1676 if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { 1677 copy_start = piglet_base; 1678 copy_end = piglet_end; 1679 piglet_cur = piglet_base; 1680 npchunks = 0; 1681 j = i; 1682 while (copy_start < copy_end && j < nochunks) { 1683 piglet_cur += chunks[ochunks[j]].compressed_size; 1684 pchunks[npchunks] = ochunks[j]; 1685 npchunks++; 1686 copy_start += chunks[ochunks[j]].compressed_size; 1687 img_index += chunks[ochunks[j]].compressed_size; 1688 i++; 1689 j++; 1690 } 1691 1692 piglet_cur = piglet_base; 1693 for (j = 0; j < npchunks; j++) { 1694 piglet_cur += chunks[pchunks[j]].compressed_size; 1695 fchunks[nfchunks] = pchunks[j]; 1696 chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; 1697 nfchunks++; 1698 } 1699 } else { 1700 /* 1701 * No conflict, chunk can be added without copying 1702 */ 1703 if ((chunks[ochunks[i]].flags & 1704 HIBERNATE_CHUNK_USED) == 0) { 1705 fchunks[nfchunks] = ochunks[i]; 1706 chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; 1707 nfchunks++; 1708 } 1709 img_index += chunks[ochunks[i]].compressed_size; 1710 } 1711 } 1712 1713 img_index = pig_start; 1714 for (i = 0; i < nfchunks; i++) { 1715 piglet_cur = piglet_base; 1716 img_index += chunks[fchunks[i]].compressed_size; 1717 } 1718 1719 img_cur = pig_start; 1720 1721 for (i = 0; i < nfchunks; i++) { 1722 blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; 1723 processed = 0; 1724 compressed_size = chunks[fchunks[i]].compressed_size; 1725 1726 while (processed < compressed_size) { 1727 pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); 1728 pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, 1729 VM_PROT_ALL); 1730 1731 /* XXX - not needed on all archs */ 1732 pmap_activate(curproc); 1733 if (compressed_size - processed >= PAGE_SIZE) 1734 read_size = PAGE_SIZE; 1735 else 1736 read_size = compressed_size - processed; 1737 1738 hibernate_read_block(hib_info, blkctr, read_size, 1739 tempva + (img_cur & PAGE_MASK)); 1740 1741 blkctr += (read_size / hib_info->secsize); 1742 1743 hibernate_flush(); 1744 pmap_kremove(tempva, PAGE_SIZE); 1745 pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); 1746 processed += read_size; 1747 img_cur += read_size; 1748 } 1749 } 1750 1751 return (0); 1752 } 1753 1754 /* 1755 * Hibernating a machine comprises the following operations: 1756 * 1. Calculating this machine's hibernate_info information 1757 * 2. Allocating a piglet and saving the piglet's physaddr 1758 * 3. Calculating the memory chunks 1759 * 4. Writing the compressed chunks to disk 1760 * 5. Writing the chunk table 1761 * 6. Writing the signature block (hibernate_info) 1762 * 1763 * On most architectures, the function calling hibernate_suspend would 1764 * then power off the machine using some MD-specific implementation. 1765 */ 1766 int 1767 hibernate_suspend(void) 1768 { 1769 union hibernate_info hib_info; 1770 1771 /* 1772 * Calculate memory ranges, swap offsets, etc. 1773 * This also allocates a piglet whose physaddr is stored in 1774 * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va 1775 */ 1776 if (get_hibernate_info(&hib_info, 1)) 1777 return (1); 1778 1779 global_piglet_va = hib_info.piglet_va; 1780 1781 if (hibernate_write_chunks(&hib_info)) 1782 return (1); 1783 1784 if (hibernate_write_chunktable(&hib_info)) 1785 return (1); 1786 1787 if (hibernate_write_signature(&hib_info)) 1788 return (1); 1789 1790 delay(500000); 1791 return (0); 1792 } 1793 1794 /* 1795 * Free items allocated during hibernate 1796 */ 1797 void 1798 hibernate_free(void) 1799 { 1800 uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE); 1801 1802 pmap_kremove(hibernate_copy_page, PAGE_SIZE); 1803 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1804 pmap_update(pmap_kernel()); 1805 1806 km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none); 1807 km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none); 1808 } 1809