1 /* $OpenBSD: subr_hibernate.c,v 1.111 2014/12/22 22:22:35 mlarkin Exp $ */ 2 3 /* 4 * Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl> 5 * Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/hibernate.h> 21 #include <sys/malloc.h> 22 #include <sys/param.h> 23 #include <sys/tree.h> 24 #include <sys/systm.h> 25 #include <sys/disklabel.h> 26 #include <sys/disk.h> 27 #include <sys/conf.h> 28 #include <sys/buf.h> 29 #include <sys/fcntl.h> 30 #include <sys/stat.h> 31 #include <sys/atomic.h> 32 33 #include <uvm/uvm.h> 34 #include <uvm/uvm_swap.h> 35 36 #include <machine/hibernate.h> 37 38 /* 39 * Hibernate piglet layout information 40 * 41 * The piglet is a scratch area of memory allocated by the suspending kernel. 42 * Its phys and virt addrs are recorded in the signature block. The piglet is 43 * used to guarantee an unused area of memory that can be used by the resuming 44 * kernel for various things. The piglet is excluded during unpack operations. 45 * The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB). 46 * 47 * Offset from piglet_base Purpose 48 * ---------------------------------------------------------------------------- 49 * 0 Private page for suspend I/O write functions 50 * 1*PAGE_SIZE I/O page used during hibernate suspend 51 * 2*PAGE_SIZE I/O page used during hibernate suspend 52 * 3*PAGE_SIZE copy page used during hibernate suspend 53 * 4*PAGE_SIZE final chunk ordering list (24 pages) 54 * 28*PAGE_SIZE RLE utility page 55 * 29*PAGE_SIZE start of hiballoc area 56 * 109*PAGE_SIZE end of hiballoc area (80 pages) 57 * ... unused 58 * HIBERNATE_CHUNK_SIZE start of hibernate chunk table 59 * 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked 60 * 4*HIBERNATE_CHUNK_SIZE end of piglet 61 */ 62 63 /* Temporary vaddr ranges used during hibernate */ 64 vaddr_t hibernate_temp_page; 65 vaddr_t hibernate_copy_page; 66 vaddr_t hibernate_rle_page; 67 68 /* Hibernate info as read from disk during resume */ 69 union hibernate_info disk_hib; 70 71 /* 72 * Global copy of the pig start address. This needs to be a global as we 73 * switch stacks after computing it - it can't be stored on the stack. 74 */ 75 paddr_t global_pig_start; 76 77 /* 78 * Global copies of the piglet start addresses (PA/VA). We store these 79 * as globals to avoid having to carry them around as parameters, as the 80 * piglet is allocated early and freed late - its lifecycle extends beyond 81 * that of the hibernate info union which is calculated on suspend/resume. 82 */ 83 vaddr_t global_piglet_va; 84 paddr_t global_piglet_pa; 85 86 /* #define HIB_DEBUG */ 87 #ifdef HIB_DEBUG 88 int hib_debug = 99; 89 #define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0) 90 #define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0) 91 #else 92 #define DPRINTF(x...) 93 #define DNPRINTF(n,x...) 94 #endif 95 96 #ifndef NO_PROPOLICE 97 extern long __guard_local; 98 #endif /* ! NO_PROPOLICE */ 99 100 void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); 101 int hibernate_calc_rle(paddr_t, paddr_t); 102 int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *, 103 size_t *); 104 105 #define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE) 106 107 /* 108 * Hib alloc enforced alignment. 109 */ 110 #define HIB_ALIGN 8 /* bytes alignment */ 111 112 /* 113 * sizeof builtin operation, but with alignment constraint. 114 */ 115 #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) 116 117 struct hiballoc_entry { 118 size_t hibe_use; 119 size_t hibe_space; 120 RB_ENTRY(hiballoc_entry) hibe_entry; 121 }; 122 123 /* 124 * Sort hibernate memory ranges by ascending PA 125 */ 126 void 127 hibernate_sort_ranges(union hibernate_info *hib_info) 128 { 129 int i, j; 130 struct hibernate_memory_range *ranges; 131 paddr_t base, end; 132 133 ranges = hib_info->ranges; 134 135 for (i = 1; i < hib_info->nranges; i++) { 136 j = i; 137 while (j > 0 && ranges[j - 1].base > ranges[j].base) { 138 base = ranges[j].base; 139 end = ranges[j].end; 140 ranges[j].base = ranges[j - 1].base; 141 ranges[j].end = ranges[j - 1].end; 142 ranges[j - 1].base = base; 143 ranges[j - 1].end = end; 144 j--; 145 } 146 } 147 } 148 149 /* 150 * Compare hiballoc entries based on the address they manage. 151 * 152 * Since the address is fixed, relative to struct hiballoc_entry, 153 * we just compare the hiballoc_entry pointers. 154 */ 155 static __inline int 156 hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) 157 { 158 return l < r ? -1 : (l > r); 159 } 160 161 RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 162 163 /* 164 * Given a hiballoc entry, return the address it manages. 165 */ 166 static __inline void * 167 hib_entry_to_addr(struct hiballoc_entry *entry) 168 { 169 caddr_t addr; 170 171 addr = (caddr_t)entry; 172 addr += HIB_SIZEOF(struct hiballoc_entry); 173 return addr; 174 } 175 176 /* 177 * Given an address, find the hiballoc that corresponds. 178 */ 179 static __inline struct hiballoc_entry* 180 hib_addr_to_entry(void *addr_param) 181 { 182 caddr_t addr; 183 184 addr = (caddr_t)addr_param; 185 addr -= HIB_SIZEOF(struct hiballoc_entry); 186 return (struct hiballoc_entry*)addr; 187 } 188 189 RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) 190 191 /* 192 * Allocate memory from the arena. 193 * 194 * Returns NULL if no memory is available. 195 */ 196 void * 197 hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) 198 { 199 struct hiballoc_entry *entry, *new_entry; 200 size_t find_sz; 201 202 /* 203 * Enforce alignment of HIB_ALIGN bytes. 204 * 205 * Note that, because the entry is put in front of the allocation, 206 * 0-byte allocations are guaranteed a unique address. 207 */ 208 alloc_sz = roundup(alloc_sz, HIB_ALIGN); 209 210 /* 211 * Find an entry with hibe_space >= find_sz. 212 * 213 * If the root node is not large enough, we switch to tree traversal. 214 * Because all entries are made at the bottom of the free space, 215 * traversal from the end has a slightly better chance of yielding 216 * a sufficiently large space. 217 */ 218 find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); 219 entry = RB_ROOT(&arena->hib_addrs); 220 if (entry != NULL && entry->hibe_space < find_sz) { 221 RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { 222 if (entry->hibe_space >= find_sz) 223 break; 224 } 225 } 226 227 /* 228 * Insufficient or too fragmented memory. 229 */ 230 if (entry == NULL) 231 return NULL; 232 233 /* 234 * Create new entry in allocated space. 235 */ 236 new_entry = (struct hiballoc_entry*)( 237 (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); 238 new_entry->hibe_space = entry->hibe_space - find_sz; 239 new_entry->hibe_use = alloc_sz; 240 241 /* 242 * Insert entry. 243 */ 244 if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) 245 panic("hib_alloc: insert failure"); 246 entry->hibe_space = 0; 247 248 /* Return address managed by entry. */ 249 return hib_entry_to_addr(new_entry); 250 } 251 252 /* 253 * Free a pointer previously allocated from this arena. 254 * 255 * If addr is NULL, this will be silently accepted. 256 */ 257 void 258 hib_free(struct hiballoc_arena *arena, void *addr) 259 { 260 struct hiballoc_entry *entry, *prev; 261 262 if (addr == NULL) 263 return; 264 265 /* 266 * Derive entry from addr and check it is really in this arena. 267 */ 268 entry = hib_addr_to_entry(addr); 269 if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) 270 panic("hib_free: freed item %p not in hib arena", addr); 271 272 /* 273 * Give the space in entry to its predecessor. 274 * 275 * If entry has no predecessor, change its used space into free space 276 * instead. 277 */ 278 prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); 279 if (prev != NULL && 280 (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + 281 prev->hibe_use + prev->hibe_space) == entry) { 282 /* Merge entry. */ 283 RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); 284 prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + 285 entry->hibe_use + entry->hibe_space; 286 } else { 287 /* Flip used memory to free space. */ 288 entry->hibe_space += entry->hibe_use; 289 entry->hibe_use = 0; 290 } 291 } 292 293 /* 294 * Initialize hiballoc. 295 * 296 * The allocator will manage memmory at ptr, which is len bytes. 297 */ 298 int 299 hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) 300 { 301 struct hiballoc_entry *entry; 302 caddr_t ptr; 303 size_t len; 304 305 RB_INIT(&arena->hib_addrs); 306 307 /* 308 * Hib allocator enforces HIB_ALIGN alignment. 309 * Fixup ptr and len. 310 */ 311 ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); 312 len = p_len - ((size_t)ptr - (size_t)p_ptr); 313 len &= ~((size_t)HIB_ALIGN - 1); 314 315 /* 316 * Insufficient memory to be able to allocate and also do bookkeeping. 317 */ 318 if (len <= HIB_SIZEOF(struct hiballoc_entry)) 319 return ENOMEM; 320 321 /* 322 * Create entry describing space. 323 */ 324 entry = (struct hiballoc_entry*)ptr; 325 entry->hibe_use = 0; 326 entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); 327 RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); 328 329 return 0; 330 } 331 332 /* 333 * Zero all free memory. 334 */ 335 void 336 uvm_pmr_zero_everything(void) 337 { 338 struct uvm_pmemrange *pmr; 339 struct vm_page *pg; 340 int i; 341 342 uvm_lock_fpageq(); 343 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 344 /* Zero single pages. */ 345 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) 346 != NULL) { 347 uvm_pmr_remove(pmr, pg); 348 uvm_pagezero(pg); 349 atomic_setbits_int(&pg->pg_flags, PG_ZERO); 350 uvmexp.zeropages++; 351 uvm_pmr_insert(pmr, pg, 0); 352 } 353 354 /* Zero multi page ranges. */ 355 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) 356 != NULL) { 357 pg--; /* Size tree always has second page. */ 358 uvm_pmr_remove(pmr, pg); 359 for (i = 0; i < pg->fpgsz; i++) { 360 uvm_pagezero(&pg[i]); 361 atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); 362 uvmexp.zeropages++; 363 } 364 uvm_pmr_insert(pmr, pg, 0); 365 } 366 } 367 uvm_unlock_fpageq(); 368 } 369 370 /* 371 * Mark all memory as dirty. 372 * 373 * Used to inform the system that the clean memory isn't clean for some 374 * reason, for example because we just came back from hibernate. 375 */ 376 void 377 uvm_pmr_dirty_everything(void) 378 { 379 struct uvm_pmemrange *pmr; 380 struct vm_page *pg; 381 int i; 382 383 uvm_lock_fpageq(); 384 TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { 385 /* Dirty single pages. */ 386 while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) 387 != NULL) { 388 uvm_pmr_remove(pmr, pg); 389 atomic_clearbits_int(&pg->pg_flags, PG_ZERO); 390 uvm_pmr_insert(pmr, pg, 0); 391 } 392 393 /* Dirty multi page ranges. */ 394 while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) 395 != NULL) { 396 pg--; /* Size tree always has second page. */ 397 uvm_pmr_remove(pmr, pg); 398 for (i = 0; i < pg->fpgsz; i++) 399 atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); 400 uvm_pmr_insert(pmr, pg, 0); 401 } 402 } 403 404 uvmexp.zeropages = 0; 405 uvm_unlock_fpageq(); 406 } 407 408 /* 409 * Allocate an area that can hold sz bytes and doesn't overlap with 410 * the piglet at piglet_pa. 411 */ 412 int 413 uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa) 414 { 415 struct uvm_constraint_range pig_constraint; 416 struct kmem_pa_mode kp_pig = { 417 .kp_constraint = &pig_constraint, 418 .kp_maxseg = 1 419 }; 420 vaddr_t va; 421 422 sz = round_page(sz); 423 424 pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE; 425 pig_constraint.ucr_high = -1; 426 427 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 428 if (va == 0) { 429 pig_constraint.ucr_low = 0; 430 pig_constraint.ucr_high = piglet_pa - 1; 431 432 va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait); 433 if (va == 0) 434 return ENOMEM; 435 } 436 437 pmap_extract(pmap_kernel(), va, pa); 438 return 0; 439 } 440 441 /* 442 * Allocate a piglet area. 443 * 444 * This needs to be in DMA-safe memory. 445 * Piglets are aligned. 446 * 447 * sz and align in bytes. 448 * 449 * The call will sleep for the pagedaemon to attempt to free memory. 450 * The pagedaemon may decide its not possible to free enough memory, causing 451 * the allocation to fail. 452 */ 453 int 454 uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) 455 { 456 struct kmem_pa_mode kp_piglet = { 457 .kp_constraint = &dma_constraint, 458 .kp_align = align, 459 .kp_maxseg = 1 460 }; 461 462 /* Ensure align is a power of 2 */ 463 KASSERT((align & (align - 1)) == 0); 464 465 /* 466 * Fixup arguments: align must be at least PAGE_SIZE, 467 * sz will be converted to pagecount, since that is what 468 * pmemrange uses internally. 469 */ 470 if (align < PAGE_SIZE) 471 kp_piglet.kp_align = PAGE_SIZE; 472 473 sz = round_page(sz); 474 475 *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait); 476 if (*va == 0) 477 return ENOMEM; 478 479 pmap_extract(pmap_kernel(), *va, pa); 480 return 0; 481 } 482 483 /* 484 * Free a piglet area. 485 */ 486 void 487 uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) 488 { 489 /* 490 * Fix parameters. 491 */ 492 sz = round_page(sz); 493 494 /* 495 * Free the physical and virtual memory. 496 */ 497 km_free((void *)va, sz, &kv_any, &kp_dma_contig); 498 } 499 500 /* 501 * Physmem RLE compression support. 502 * 503 * Given a physical page address, return the number of pages starting at the 504 * address that are free. Clamps to the number of pages in 505 * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. 506 */ 507 int 508 uvm_page_rle(paddr_t addr) 509 { 510 struct vm_page *pg, *pg_end; 511 struct vm_physseg *vmp; 512 int pseg_idx, off_idx; 513 514 pseg_idx = vm_physseg_find(atop(addr), &off_idx); 515 if (pseg_idx == -1) 516 return 0; 517 518 vmp = &vm_physmem[pseg_idx]; 519 pg = &vmp->pgs[off_idx]; 520 if (!(pg->pg_flags & PQ_FREE)) 521 return 0; 522 523 /* 524 * Search for the first non-free page after pg. 525 * Note that the page may not be the first page in a free pmemrange, 526 * therefore pg->fpgsz cannot be used. 527 */ 528 for (pg_end = pg; pg_end <= vmp->lastpg && 529 (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) 530 ; 531 return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); 532 } 533 534 /* 535 * Fills out the hibernate_info union pointed to by hib 536 * with information about this machine (swap signature block 537 * offsets, number of memory ranges, kernel in use, etc) 538 */ 539 int 540 get_hibernate_info(union hibernate_info *hib, int suspend) 541 { 542 struct disklabel dl; 543 char err_string[128], *dl_ret; 544 545 #ifndef NO_PROPOLICE 546 /* Save propolice guard */ 547 hib->guard = __guard_local; 548 #endif /* ! NO_PROPOLICE */ 549 550 /* Determine I/O function to use */ 551 hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev); 552 if (hib->io_func == NULL) 553 return (1); 554 555 /* Calculate hibernate device */ 556 hib->dev = swdevt[0].sw_dev; 557 558 /* Read disklabel (used to calculate signature and image offsets) */ 559 dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string)); 560 561 if (dl_ret) { 562 printf("Hibernate error reading disklabel: %s\n", dl_ret); 563 return (1); 564 } 565 566 /* Make sure we have a swap partition. */ 567 if (dl.d_partitions[1].p_fstype != FS_SWAP || 568 DL_GETPSIZE(&dl.d_partitions[1]) == 0) 569 return (1); 570 571 /* Make sure the signature can fit in one block */ 572 if (sizeof(union hibernate_info) > DEV_BSIZE) 573 return (1); 574 575 /* Magic number */ 576 hib->magic = HIBERNATE_MAGIC; 577 578 /* Calculate signature block location */ 579 hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[1]) - 580 sizeof(union hibernate_info)/DEV_BSIZE; 581 582 /* Stash kernel version information */ 583 memset(&hib->kernel_version, 0, 128); 584 bcopy(version, &hib->kernel_version, 585 min(strlen(version), sizeof(hib->kernel_version)-1)); 586 587 if (suspend) { 588 /* Grab the previously-allocated piglet addresses */ 589 hib->piglet_va = global_piglet_va; 590 hib->piglet_pa = global_piglet_pa; 591 hib->io_page = (void *)hib->piglet_va; 592 593 /* 594 * Initialization of the hibernate IO function for drivers 595 * that need to do prep work (such as allocating memory or 596 * setting up data structures that cannot safely be done 597 * during suspend without causing side effects). There is 598 * a matching HIB_DONE call performed after the write is 599 * completed. 600 */ 601 if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[1]), 602 (vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[1]), 603 HIB_INIT, hib->io_page)) 604 goto fail; 605 606 } else { 607 /* 608 * Resuming kernels use a regular private page for the driver 609 * No need to free this I/O page as it will vanish as part of 610 * the resume. 611 */ 612 hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); 613 if (!hib->io_page) 614 goto fail; 615 } 616 617 if (get_hibernate_info_md(hib)) 618 goto fail; 619 620 return (0); 621 622 fail: 623 return (1); 624 } 625 626 /* 627 * Allocate nitems*size bytes from the hiballoc area presently in use 628 */ 629 void * 630 hibernate_zlib_alloc(void *unused, int nitems, int size) 631 { 632 struct hibernate_zlib_state *hibernate_state; 633 634 hibernate_state = 635 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 636 637 return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); 638 } 639 640 /* 641 * Free the memory pointed to by addr in the hiballoc area presently in 642 * use 643 */ 644 void 645 hibernate_zlib_free(void *unused, void *addr) 646 { 647 struct hibernate_zlib_state *hibernate_state; 648 649 hibernate_state = 650 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 651 652 hib_free(&hibernate_state->hiballoc_arena, addr); 653 } 654 655 /* 656 * Inflate next page of data from the image stream. 657 * The rle parameter is modified on exit to contain the number of pages to 658 * skip in the output stream (or 0 if this page was inflated into). 659 * 660 * Returns 0 if the stream contains additional data, or 1 if the stream is 661 * finished. 662 */ 663 int 664 hibernate_inflate_page(int *rle) 665 { 666 struct hibernate_zlib_state *hibernate_state; 667 int i; 668 669 hibernate_state = 670 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 671 672 /* Set up the stream for RLE code inflate */ 673 hibernate_state->hib_stream.next_out = (unsigned char *)rle; 674 hibernate_state->hib_stream.avail_out = sizeof(*rle); 675 676 /* Inflate RLE code */ 677 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 678 if (i != Z_OK && i != Z_STREAM_END) { 679 /* 680 * XXX - this will likely reboot/hang most machines 681 * since the console output buffer will be unmapped, 682 * but there's not much else we can do here. 683 */ 684 panic("rle inflate stream error"); 685 } 686 687 if (hibernate_state->hib_stream.avail_out != 0) { 688 /* 689 * XXX - this will likely reboot/hang most machines 690 * since the console output buffer will be unmapped, 691 * but there's not much else we can do here. 692 */ 693 panic("rle short inflate error"); 694 } 695 696 if (*rle < 0 || *rle > 1024) { 697 /* 698 * XXX - this will likely reboot/hang most machines 699 * since the console output buffer will be unmapped, 700 * but there's not much else we can do here. 701 */ 702 panic("invalid rle count"); 703 } 704 705 if (i == Z_STREAM_END) 706 return (1); 707 708 if (*rle != 0) 709 return (0); 710 711 /* Set up the stream for page inflate */ 712 hibernate_state->hib_stream.next_out = 713 (unsigned char *)HIBERNATE_INFLATE_PAGE; 714 hibernate_state->hib_stream.avail_out = PAGE_SIZE; 715 716 /* Process next block of data */ 717 i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH); 718 if (i != Z_OK && i != Z_STREAM_END) { 719 /* 720 * XXX - this will likely reboot/hang most machines 721 * since the console output buffer will be unmapped, 722 * but there's not much else we can do here. 723 */ 724 panic("inflate error"); 725 } 726 727 /* We should always have extracted a full page ... */ 728 if (hibernate_state->hib_stream.avail_out != 0) { 729 /* 730 * XXX - this will likely reboot/hang most machines 731 * since the console output buffer will be unmapped, 732 * but there's not much else we can do here. 733 */ 734 panic("incomplete page"); 735 } 736 737 return (i == Z_STREAM_END); 738 } 739 740 /* 741 * Inflate size bytes from src into dest, skipping any pages in 742 * [src..dest] that are special (see hibernate_inflate_skip) 743 * 744 * This function executes while using the resume-time stack 745 * and pmap, and therefore cannot use ddb/printf/etc. Doing so 746 * will likely hang or reset the machine since the console output buffer 747 * will be unmapped. 748 */ 749 void 750 hibernate_inflate_region(union hibernate_info *hib, paddr_t dest, 751 paddr_t src, size_t size) 752 { 753 int end_stream = 0, rle; 754 struct hibernate_zlib_state *hibernate_state; 755 756 hibernate_state = 757 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 758 759 hibernate_state->hib_stream.next_in = (unsigned char *)src; 760 hibernate_state->hib_stream.avail_in = size; 761 762 do { 763 /* 764 * Is this a special page? If yes, redirect the 765 * inflate output to a scratch page (eg, discard it) 766 */ 767 if (hibernate_inflate_skip(hib, dest)) { 768 hibernate_enter_resume_mapping( 769 HIBERNATE_INFLATE_PAGE, 770 HIBERNATE_INFLATE_PAGE, 0); 771 } else { 772 hibernate_enter_resume_mapping( 773 HIBERNATE_INFLATE_PAGE, dest, 0); 774 } 775 776 hibernate_flush(); 777 end_stream = hibernate_inflate_page(&rle); 778 779 if (rle == 0) 780 dest += PAGE_SIZE; 781 else 782 dest += (rle * PAGE_SIZE); 783 } while (!end_stream); 784 } 785 786 /* 787 * deflate from src into the I/O page, up to 'remaining' bytes 788 * 789 * Returns number of input bytes consumed, and may reset 790 * the 'remaining' parameter if not all the output space was consumed 791 * (this information is needed to know how much to write to disk 792 */ 793 size_t 794 hibernate_deflate(union hibernate_info *hib, paddr_t src, 795 size_t *remaining) 796 { 797 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 798 struct hibernate_zlib_state *hibernate_state; 799 800 hibernate_state = 801 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 802 803 /* Set up the stream for deflate */ 804 hibernate_state->hib_stream.next_in = (unsigned char *)src; 805 hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); 806 hibernate_state->hib_stream.next_out = 807 (unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining); 808 hibernate_state->hib_stream.avail_out = *remaining; 809 810 /* Process next block of data */ 811 if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK) 812 panic("hibernate zlib deflate error"); 813 814 /* Update pointers and return number of bytes consumed */ 815 *remaining = hibernate_state->hib_stream.avail_out; 816 return (PAGE_SIZE - (src & PAGE_MASK)) - 817 hibernate_state->hib_stream.avail_in; 818 } 819 820 /* 821 * Write the hibernation information specified in hiber_info 822 * to the location in swap previously calculated (last block of 823 * swap), called the "signature block". 824 */ 825 int 826 hibernate_write_signature(union hibernate_info *hib) 827 { 828 /* Write hibernate info to disk */ 829 return (hib->io_func(hib->dev, hib->sig_offset, 830 (vaddr_t)hib, DEV_BSIZE, HIB_W, 831 hib->io_page)); 832 } 833 834 /* 835 * Write the memory chunk table to the area in swap immediately 836 * preceding the signature block. The chunk table is stored 837 * in the piglet when this function is called. Returns errno. 838 */ 839 int 840 hibernate_write_chunktable(union hibernate_info *hib) 841 { 842 vaddr_t hibernate_chunk_table_start; 843 size_t hibernate_chunk_table_size; 844 int i, err; 845 846 hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; 847 848 hibernate_chunk_table_start = hib->piglet_va + 849 HIBERNATE_CHUNK_SIZE; 850 851 /* Write chunk table */ 852 for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { 853 if ((err = hib->io_func(hib->dev, 854 hib->chunktable_offset + (i/DEV_BSIZE), 855 (vaddr_t)(hibernate_chunk_table_start + i), 856 MAXPHYS, HIB_W, hib->io_page))) { 857 DPRINTF("chunktable write error: %d\n", err); 858 return (err); 859 } 860 } 861 862 return (0); 863 } 864 865 /* 866 * Write an empty hiber_info to the swap signature block, which is 867 * guaranteed to not match any valid hib. 868 */ 869 int 870 hibernate_clear_signature(void) 871 { 872 union hibernate_info blank_hiber_info; 873 union hibernate_info hib; 874 875 /* Zero out a blank hiber_info */ 876 memset(&blank_hiber_info, 0, sizeof(union hibernate_info)); 877 878 /* Get the signature block location */ 879 if (get_hibernate_info(&hib, 0)) 880 return (1); 881 882 /* Write (zeroed) hibernate info to disk */ 883 DPRINTF("clearing hibernate signature block location: %lld\n", 884 hib.sig_offset); 885 if (hibernate_block_io(&hib, 886 hib.sig_offset, 887 DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1)) 888 printf("Warning: could not clear hibernate signature\n"); 889 890 return (0); 891 } 892 893 /* 894 * Compare two hibernate_infos to determine if they are the same (eg, 895 * we should be performing a hibernate resume on this machine. 896 * Not all fields are checked - just enough to verify that the machine 897 * has the same memory configuration and kernel as the one that 898 * wrote the signature previously. 899 */ 900 int 901 hibernate_compare_signature(union hibernate_info *mine, 902 union hibernate_info *disk) 903 { 904 u_int i; 905 906 if (mine->nranges != disk->nranges) { 907 DPRINTF("hibernate memory range count mismatch\n"); 908 return (1); 909 } 910 911 if (strcmp(mine->kernel_version, disk->kernel_version) != 0) { 912 DPRINTF("hibernate kernel version mismatch\n"); 913 return (1); 914 } 915 916 for (i = 0; i < mine->nranges; i++) { 917 if ((mine->ranges[i].base != disk->ranges[i].base) || 918 (mine->ranges[i].end != disk->ranges[i].end) ) { 919 DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n", 920 i, 921 (void *)mine->ranges[i].base, 922 (void *)mine->ranges[i].end, 923 (void *)disk->ranges[i].base, 924 (void *)disk->ranges[i].end); 925 return (1); 926 } 927 } 928 929 return (0); 930 } 931 932 /* 933 * Transfers xfer_size bytes between the hibernate device specified in 934 * hib_info at offset blkctr and the vaddr specified at dest. 935 * 936 * Separate offsets and pages are used to handle misaligned reads (reads 937 * that span a page boundary). 938 * 939 * blkctr specifies a relative offset (relative to the start of swap), 940 * not an absolute disk offset 941 * 942 */ 943 int 944 hibernate_block_io(union hibernate_info *hib, daddr_t blkctr, 945 size_t xfer_size, vaddr_t dest, int iswrite) 946 { 947 struct buf *bp; 948 struct bdevsw *bdsw; 949 int error; 950 951 bp = geteblk(xfer_size); 952 bdsw = &bdevsw[major(hib->dev)]; 953 954 error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc); 955 if (error) { 956 printf("hibernate_block_io open failed\n"); 957 return (1); 958 } 959 960 if (iswrite) 961 bcopy((caddr_t)dest, bp->b_data, xfer_size); 962 963 bp->b_bcount = xfer_size; 964 bp->b_blkno = blkctr; 965 CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); 966 SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); 967 bp->b_dev = hib->dev; 968 (*bdsw->d_strategy)(bp); 969 970 error = biowait(bp); 971 if (error) { 972 printf("hib block_io biowait error %d blk %lld size %zu\n", 973 error, (long long)blkctr, xfer_size); 974 error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR, 975 curproc); 976 if (error) 977 printf("hibernate_block_io error close failed\n"); 978 return (1); 979 } 980 981 error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc); 982 if (error) { 983 printf("hibernate_block_io close failed\n"); 984 return (1); 985 } 986 987 if (!iswrite) 988 bcopy(bp->b_data, (caddr_t)dest, xfer_size); 989 990 bp->b_flags |= B_INVAL; 991 brelse(bp); 992 993 return (0); 994 } 995 996 /* 997 * Reads the signature block from swap, checks against the current machine's 998 * information. If the information matches, perform a resume by reading the 999 * saved image into the pig area, and unpacking. 1000 */ 1001 void 1002 hibernate_resume(void) 1003 { 1004 union hibernate_info hib; 1005 int s; 1006 1007 /* Get current running machine's hibernate info */ 1008 memset(&hib, 0, sizeof(hib)); 1009 if (get_hibernate_info(&hib, 0)) { 1010 DPRINTF("couldn't retrieve machine's hibernate info\n"); 1011 return; 1012 } 1013 1014 /* Read hibernate info from disk */ 1015 s = splbio(); 1016 1017 DPRINTF("reading hibernate signature block location: %lld\n", 1018 hib.sig_offset); 1019 1020 if (hibernate_block_io(&hib, 1021 hib.sig_offset, 1022 DEV_BSIZE, (vaddr_t)&disk_hib, 0)) { 1023 DPRINTF("error in hibernate read"); 1024 splx(s); 1025 return; 1026 } 1027 1028 /* Check magic number */ 1029 if (disk_hib.magic != HIBERNATE_MAGIC) { 1030 DPRINTF("wrong magic number in hibernate signature: %x\n", 1031 disk_hib.magic); 1032 splx(s); 1033 return; 1034 } 1035 1036 /* 1037 * We (possibly) found a hibernate signature. Clear signature first, 1038 * to prevent accidental resume or endless resume cycles later. 1039 */ 1040 if (hibernate_clear_signature()) { 1041 DPRINTF("error clearing hibernate signature block\n"); 1042 splx(s); 1043 return; 1044 } 1045 1046 /* 1047 * If on-disk and in-memory hibernate signatures match, 1048 * this means we should do a resume from hibernate. 1049 */ 1050 if (hibernate_compare_signature(&hib, &disk_hib)) { 1051 DPRINTF("mismatched hibernate signature block\n"); 1052 splx(s); 1053 return; 1054 } 1055 1056 #ifdef MULTIPROCESSOR 1057 /* XXX - if we fail later, we may need to rehatch APs on some archs */ 1058 DPRINTF("hibernate: quiescing APs\n"); 1059 hibernate_quiesce_cpus(); 1060 #endif /* MULTIPROCESSOR */ 1061 1062 /* Read the image from disk into the image (pig) area */ 1063 if (hibernate_read_image(&disk_hib)) 1064 goto fail; 1065 1066 DPRINTF("hibernate: quiescing devices\n"); 1067 if (config_suspend_all(DVACT_QUIESCE) != 0) 1068 goto fail; 1069 1070 (void) splhigh(); 1071 hibernate_disable_intr_machdep(); 1072 cold = 1; 1073 1074 DPRINTF("hibernate: suspending devices\n"); 1075 if (config_suspend_all(DVACT_SUSPEND) != 0) { 1076 cold = 0; 1077 hibernate_enable_intr_machdep(); 1078 goto fail; 1079 } 1080 1081 printf("Unpacking image...\n"); 1082 1083 /* Switch stacks */ 1084 DPRINTF("hibernate: switching stacks\n"); 1085 hibernate_switch_stack_machdep(); 1086 1087 #ifndef NO_PROPOLICE 1088 /* Start using suspended kernel's propolice guard */ 1089 __guard_local = disk_hib.guard; 1090 #endif /* ! NO_PROPOLICE */ 1091 1092 /* Unpack and resume */ 1093 hibernate_unpack_image(&disk_hib); 1094 1095 fail: 1096 splx(s); 1097 printf("\nUnable to resume hibernated image\n"); 1098 } 1099 1100 /* 1101 * Unpack image from pig area to original location by looping through the 1102 * list of output chunks in the order they should be restored (fchunks). 1103 * 1104 * Note that due to the stack smash protector and the fact that we have 1105 * switched stacks, it is not permitted to return from this function. 1106 */ 1107 void 1108 hibernate_unpack_image(union hibernate_info *hib) 1109 { 1110 struct hibernate_disk_chunk *chunks; 1111 union hibernate_info local_hib; 1112 paddr_t image_cur = global_pig_start; 1113 short i, *fchunks; 1114 char *pva; 1115 1116 /* Piglet will be identity mapped (VA == PA) */ 1117 pva = (char *)hib->piglet_pa; 1118 1119 fchunks = (short *)(pva + (4 * PAGE_SIZE)); 1120 1121 chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); 1122 1123 /* Can't use hiber_info that's passed in after this point */ 1124 bcopy(hib, &local_hib, sizeof(union hibernate_info)); 1125 1126 /* VA == PA */ 1127 local_hib.piglet_va = local_hib.piglet_pa; 1128 1129 /* 1130 * Point of no return. Once we pass this point, only kernel code can 1131 * be accessed. No global variables or other kernel data structures 1132 * are guaranteed to be coherent after unpack starts. 1133 * 1134 * The image is now in high memory (pig area), we unpack from the pig 1135 * to the correct location in memory. We'll eventually end up copying 1136 * on top of ourself, but we are assured the kernel code here is the 1137 * same between the hibernated and resuming kernel, and we are running 1138 * on our own stack, so the overwrite is ok. 1139 */ 1140 DPRINTF("hibernate: activating alt. pagetable and starting unpack\n"); 1141 hibernate_activate_resume_pt_machdep(); 1142 1143 for (i = 0; i < local_hib.chunk_ctr; i++) { 1144 /* Reset zlib for inflate */ 1145 if (hibernate_zlib_reset(&local_hib, 0) != Z_OK) 1146 panic("hibernate failed to reset zlib for inflate"); 1147 1148 hibernate_process_chunk(&local_hib, &chunks[fchunks[i]], 1149 image_cur); 1150 1151 image_cur += chunks[fchunks[i]].compressed_size; 1152 1153 } 1154 1155 /* 1156 * Resume the loaded kernel by jumping to the MD resume vector. 1157 * We won't be returning from this call. 1158 */ 1159 hibernate_resume_machdep(); 1160 } 1161 1162 /* 1163 * Bounce a compressed image chunk to the piglet, entering mappings for the 1164 * copied pages as needed 1165 */ 1166 void 1167 hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) 1168 { 1169 size_t ct, ofs; 1170 paddr_t src = img_cur; 1171 vaddr_t dest = piglet; 1172 1173 /* Copy first partial page */ 1174 ct = (PAGE_SIZE) - (src & PAGE_MASK); 1175 ofs = (src & PAGE_MASK); 1176 1177 if (ct < PAGE_SIZE) { 1178 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, 1179 (src - ofs), 0); 1180 hibernate_flush(); 1181 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); 1182 src += ct; 1183 dest += ct; 1184 } 1185 1186 /* Copy remaining pages */ 1187 while (src < size + img_cur) { 1188 hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); 1189 hibernate_flush(); 1190 ct = PAGE_SIZE; 1191 bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); 1192 hibernate_flush(); 1193 src += ct; 1194 dest += ct; 1195 } 1196 } 1197 1198 /* 1199 * Process a chunk by bouncing it to the piglet, followed by unpacking 1200 */ 1201 void 1202 hibernate_process_chunk(union hibernate_info *hib, 1203 struct hibernate_disk_chunk *chunk, paddr_t img_cur) 1204 { 1205 char *pva = (char *)hib->piglet_va; 1206 1207 hibernate_copy_chunk_to_piglet(img_cur, 1208 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); 1209 hibernate_inflate_region(hib, chunk->base, 1210 (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), 1211 chunk->compressed_size); 1212 } 1213 1214 /* 1215 * Calculate RLE component for 'inaddr'. Clamps to max RLE pages between 1216 * inaddr and range_end. 1217 */ 1218 int 1219 hibernate_calc_rle(paddr_t inaddr, paddr_t range_end) 1220 { 1221 int rle; 1222 1223 rle = uvm_page_rle(inaddr); 1224 KASSERT(rle >= 0 && rle <= MAX_RLE); 1225 1226 /* Clamp RLE to range end */ 1227 if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end) 1228 rle = (range_end - inaddr) / PAGE_SIZE; 1229 1230 return (rle); 1231 } 1232 1233 /* 1234 * Write the RLE byte for page at 'inaddr' to the output stream. 1235 * Returns the number of pages to be skipped at 'inaddr'. 1236 */ 1237 int 1238 hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr, 1239 paddr_t range_end, daddr_t *blkctr, 1240 size_t *out_remaining) 1241 { 1242 int rle, err, *rleloc; 1243 struct hibernate_zlib_state *hibernate_state; 1244 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1245 1246 hibernate_state = 1247 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1248 1249 rle = hibernate_calc_rle(inaddr, range_end); 1250 1251 rleloc = (int *)hibernate_rle_page + MAX_RLE - 1; 1252 *rleloc = rle; 1253 1254 /* Deflate the RLE byte into the stream */ 1255 hibernate_deflate(hib, (paddr_t)rleloc, out_remaining); 1256 1257 /* Did we fill the output page? If so, flush to disk */ 1258 if (*out_remaining == 0) { 1259 if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset, 1260 (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, 1261 hib->io_page))) { 1262 DPRINTF("hib write error %d\n", err); 1263 return (err); 1264 } 1265 1266 *blkctr += PAGE_SIZE / DEV_BSIZE; 1267 *out_remaining = PAGE_SIZE; 1268 1269 /* If we didn't deflate the entire RLE byte, finish it now */ 1270 if (hibernate_state->hib_stream.avail_in != 0) 1271 hibernate_deflate(hib, 1272 (vaddr_t)hibernate_state->hib_stream.next_in, 1273 out_remaining); 1274 } 1275 1276 return (rle); 1277 } 1278 1279 /* 1280 * Write a compressed version of this machine's memory to disk, at the 1281 * precalculated swap offset: 1282 * 1283 * end of swap - signature block size - chunk table size - memory size 1284 * 1285 * The function begins by looping through each phys mem range, cutting each 1286 * one into MD sized chunks. These chunks are then compressed individually 1287 * and written out to disk, in phys mem order. Some chunks might compress 1288 * more than others, and for this reason, each chunk's size is recorded 1289 * in the chunk table, which is written to disk after the image has 1290 * properly been compressed and written (in hibernate_write_chunktable). 1291 * 1292 * When this function is called, the machine is nearly suspended - most 1293 * devices are quiesced/suspended, interrupts are off, and cold has 1294 * been set. This means that there can be no side effects once the 1295 * write has started, and the write function itself can also have no 1296 * side effects. This also means no printfs are permitted (since printf 1297 * has side effects.) 1298 * 1299 * Return values : 1300 * 1301 * 0 - success 1302 * EIO - I/O error occurred writing the chunks 1303 * EINVAL - Failed to write a complete range 1304 * ENOMEM - Memory allocation failure during preparation of the zlib arena 1305 */ 1306 int 1307 hibernate_write_chunks(union hibernate_info *hib) 1308 { 1309 paddr_t range_base, range_end, inaddr, temp_inaddr; 1310 size_t nblocks, out_remaining, used; 1311 struct hibernate_disk_chunk *chunks; 1312 vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE; 1313 daddr_t blkctr = 0; 1314 int i, rle, err; 1315 struct hibernate_zlib_state *hibernate_state; 1316 1317 hibernate_state = 1318 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1319 1320 hib->chunk_ctr = 0; 1321 1322 /* 1323 * Map the utility VAs to the piglet. See the piglet map at the 1324 * top of this file for piglet layout information. 1325 */ 1326 hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE; 1327 hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE; 1328 1329 chunks = (struct hibernate_disk_chunk *)(hib->piglet_va + 1330 HIBERNATE_CHUNK_SIZE); 1331 1332 /* Calculate the chunk regions */ 1333 for (i = 0; i < hib->nranges; i++) { 1334 range_base = hib->ranges[i].base; 1335 range_end = hib->ranges[i].end; 1336 1337 inaddr = range_base; 1338 1339 while (inaddr < range_end) { 1340 chunks[hib->chunk_ctr].base = inaddr; 1341 if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) 1342 chunks[hib->chunk_ctr].end = inaddr + 1343 HIBERNATE_CHUNK_SIZE; 1344 else 1345 chunks[hib->chunk_ctr].end = range_end; 1346 1347 inaddr += HIBERNATE_CHUNK_SIZE; 1348 hib->chunk_ctr ++; 1349 } 1350 } 1351 1352 uvm_pmr_dirty_everything(); 1353 uvm_pmr_zero_everything(); 1354 1355 /* Compress and write the chunks in the chunktable */ 1356 for (i = 0; i < hib->chunk_ctr; i++) { 1357 range_base = chunks[i].base; 1358 range_end = chunks[i].end; 1359 1360 chunks[i].offset = blkctr + hib->image_offset; 1361 1362 /* Reset zlib for deflate */ 1363 if (hibernate_zlib_reset(hib, 1) != Z_OK) { 1364 DPRINTF("hibernate_zlib_reset failed for deflate\n"); 1365 return (ENOMEM); 1366 } 1367 1368 inaddr = range_base; 1369 1370 /* 1371 * For each range, loop through its phys mem region 1372 * and write out the chunks (the last chunk might be 1373 * smaller than the chunk size). 1374 */ 1375 while (inaddr < range_end) { 1376 out_remaining = PAGE_SIZE; 1377 while (out_remaining > 0 && inaddr < range_end) { 1378 /* 1379 * Adjust for regions that are not evenly 1380 * divisible by PAGE_SIZE or overflowed 1381 * pages from the previous iteration. 1382 */ 1383 temp_inaddr = (inaddr & PAGE_MASK) + 1384 hibernate_copy_page; 1385 1386 /* Deflate from temp_inaddr to IO page */ 1387 if (inaddr != range_end) { 1388 if (inaddr % PAGE_SIZE == 0) { 1389 rle = hibernate_write_rle(hib, 1390 inaddr, 1391 range_end, 1392 &blkctr, 1393 &out_remaining); 1394 } 1395 1396 if (rle == 0) { 1397 pmap_kenter_pa(hibernate_temp_page, 1398 inaddr & PMAP_PA_MASK, 1399 PROT_READ); 1400 1401 pmap_activate(curproc); 1402 1403 bcopy((caddr_t)hibernate_temp_page, 1404 (caddr_t)hibernate_copy_page, 1405 PAGE_SIZE); 1406 inaddr += hibernate_deflate(hib, 1407 temp_inaddr, 1408 &out_remaining); 1409 } else { 1410 inaddr += rle * PAGE_SIZE; 1411 if (inaddr > range_end) 1412 inaddr = range_end; 1413 } 1414 1415 } 1416 1417 if (out_remaining == 0) { 1418 /* Filled up the page */ 1419 nblocks = PAGE_SIZE / DEV_BSIZE; 1420 1421 if ((err = hib->io_func(hib->dev, 1422 blkctr + hib->image_offset, 1423 (vaddr_t)hibernate_io_page, 1424 PAGE_SIZE, HIB_W, hib->io_page))) { 1425 DPRINTF("hib write error %d\n", 1426 err); 1427 return (err); 1428 } 1429 1430 blkctr += nblocks; 1431 } 1432 } 1433 } 1434 1435 if (inaddr != range_end) { 1436 DPRINTF("deflate range ended prematurely\n"); 1437 return (EINVAL); 1438 } 1439 1440 /* 1441 * End of range. Round up to next secsize bytes 1442 * after finishing compress 1443 */ 1444 if (out_remaining == 0) 1445 out_remaining = PAGE_SIZE; 1446 1447 /* Finish compress */ 1448 hibernate_state->hib_stream.next_in = (unsigned char *)inaddr; 1449 hibernate_state->hib_stream.avail_in = 0; 1450 hibernate_state->hib_stream.next_out = 1451 (unsigned char *)hibernate_io_page + 1452 (PAGE_SIZE - out_remaining); 1453 1454 /* We have an extra output page available for finalize */ 1455 hibernate_state->hib_stream.avail_out = 1456 out_remaining + PAGE_SIZE; 1457 1458 if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) != 1459 Z_STREAM_END) { 1460 DPRINTF("deflate error in output stream: %d\n", err); 1461 return (err); 1462 } 1463 1464 out_remaining = hibernate_state->hib_stream.avail_out; 1465 1466 used = 2 * PAGE_SIZE - out_remaining; 1467 nblocks = used / DEV_BSIZE; 1468 1469 /* Round up to next block if needed */ 1470 if (used % DEV_BSIZE != 0) 1471 nblocks ++; 1472 1473 /* Write final block(s) for this chunk */ 1474 if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset, 1475 (vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE, 1476 HIB_W, hib->io_page))) { 1477 DPRINTF("hib final write error %d\n", err); 1478 return (err); 1479 } 1480 1481 blkctr += nblocks; 1482 1483 chunks[i].compressed_size = (blkctr + hib->image_offset - 1484 chunks[i].offset) * DEV_BSIZE; 1485 } 1486 1487 hib->chunktable_offset = hib->image_offset + blkctr; 1488 return (0); 1489 } 1490 1491 /* 1492 * Reset the zlib stream state and allocate a new hiballoc area for either 1493 * inflate or deflate. This function is called once for each hibernate chunk. 1494 * Calling hiballoc_init multiple times is acceptable since the memory it is 1495 * provided is unmanaged memory (stolen). We use the memory provided to us 1496 * by the piglet allocated via the supplied hib. 1497 */ 1498 int 1499 hibernate_zlib_reset(union hibernate_info *hib, int deflate) 1500 { 1501 vaddr_t hibernate_zlib_start; 1502 size_t hibernate_zlib_size; 1503 char *pva = (char *)hib->piglet_va; 1504 struct hibernate_zlib_state *hibernate_state; 1505 1506 hibernate_state = 1507 (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; 1508 1509 if (!deflate) 1510 pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); 1511 1512 /* 1513 * See piglet layout information at the start of this file for 1514 * information on the zlib page assignments. 1515 */ 1516 hibernate_zlib_start = (vaddr_t)(pva + (29 * PAGE_SIZE)); 1517 hibernate_zlib_size = 80 * PAGE_SIZE; 1518 1519 memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size); 1520 memset(hibernate_state, 0, PAGE_SIZE); 1521 1522 /* Set up stream structure */ 1523 hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; 1524 hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; 1525 1526 /* Initialize the hiballoc arena for zlib allocs/frees */ 1527 hiballoc_init(&hibernate_state->hiballoc_arena, 1528 (caddr_t)hibernate_zlib_start, hibernate_zlib_size); 1529 1530 if (deflate) { 1531 return deflateInit(&hibernate_state->hib_stream, 1532 Z_BEST_SPEED); 1533 } else 1534 return inflateInit(&hibernate_state->hib_stream); 1535 } 1536 1537 /* 1538 * Reads the hibernated memory image from disk, whose location and 1539 * size are recorded in hib. Begin by reading the persisted 1540 * chunk table, which records the original chunk placement location 1541 * and compressed size for each. Next, allocate a pig region of 1542 * sufficient size to hold the compressed image. Next, read the 1543 * chunks into the pig area (calling hibernate_read_chunks to do this), 1544 * and finally, if all of the above succeeds, clear the hibernate signature. 1545 * The function will then return to hibernate_resume, which will proceed 1546 * to unpack the pig image to the correct place in memory. 1547 */ 1548 int 1549 hibernate_read_image(union hibernate_info *hib) 1550 { 1551 size_t compressed_size, disk_size, chunktable_size, pig_sz; 1552 paddr_t image_start, image_end, pig_start, pig_end; 1553 struct hibernate_disk_chunk *chunks; 1554 daddr_t blkctr; 1555 vaddr_t chunktable = (vaddr_t)NULL; 1556 paddr_t piglet_chunktable = hib->piglet_pa + 1557 HIBERNATE_CHUNK_SIZE; 1558 int i, status; 1559 1560 status = 0; 1561 pmap_activate(curproc); 1562 1563 /* Calculate total chunk table size in disk blocks */ 1564 chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE; 1565 1566 blkctr = hib->chunktable_offset; 1567 1568 chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, 1569 &kp_none, &kd_nowait); 1570 1571 if (!chunktable) 1572 return (1); 1573 1574 /* Map chunktable pages */ 1575 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE) 1576 pmap_kenter_pa(chunktable + i, piglet_chunktable + i, 1577 PROT_READ | PROT_WRITE); 1578 pmap_update(pmap_kernel()); 1579 1580 /* Read the chunktable from disk into the piglet chunktable */ 1581 for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; 1582 i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE) 1583 hibernate_block_io(hib, blkctr, MAXPHYS, 1584 chunktable + i, 0); 1585 1586 blkctr = hib->image_offset; 1587 compressed_size = 0; 1588 1589 chunks = (struct hibernate_disk_chunk *)chunktable; 1590 1591 for (i = 0; i < hib->chunk_ctr; i++) 1592 compressed_size += chunks[i].compressed_size; 1593 1594 disk_size = compressed_size; 1595 1596 printf("unhibernating @ block %lld length %lu bytes\n", 1597 hib->sig_offset - chunktable_size, 1598 compressed_size); 1599 1600 /* Allocate the pig area */ 1601 pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; 1602 if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) { 1603 status = 1; 1604 goto unmap; 1605 } 1606 1607 pig_end = pig_start + pig_sz; 1608 1609 /* Calculate image extents. Pig image must end on a chunk boundary. */ 1610 image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); 1611 image_start = image_end - disk_size; 1612 1613 hibernate_read_chunks(hib, image_start, image_end, disk_size, 1614 chunks); 1615 1616 /* Prepare the resume time pmap/page table */ 1617 hibernate_populate_resume_pt(hib, image_start, image_end); 1618 1619 unmap: 1620 /* Unmap chunktable pages */ 1621 pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE); 1622 pmap_update(pmap_kernel()); 1623 1624 return (status); 1625 } 1626 1627 /* 1628 * Read the hibernated memory chunks from disk (chunk information at this 1629 * point is stored in the piglet) into the pig area specified by 1630 * [pig_start .. pig_end]. Order the chunks so that the final chunk is the 1631 * only chunk with overlap possibilities. 1632 */ 1633 int 1634 hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start, 1635 paddr_t pig_end, size_t image_compr_size, 1636 struct hibernate_disk_chunk *chunks) 1637 { 1638 paddr_t img_cur, piglet_base; 1639 daddr_t blkctr; 1640 size_t processed, compressed_size, read_size; 1641 int nchunks, nfchunks, num_io_pages; 1642 vaddr_t tempva, hibernate_fchunk_area; 1643 short *fchunks, i, j; 1644 1645 tempva = (vaddr_t)NULL; 1646 hibernate_fchunk_area = (vaddr_t)NULL; 1647 nfchunks = 0; 1648 piglet_base = hib->piglet_pa; 1649 global_pig_start = pig_start; 1650 1651 /* 1652 * These mappings go into the resuming kernel's page table, and are 1653 * used only during image read. They dissappear from existence 1654 * when the suspended kernel is unpacked on top of us. 1655 */ 1656 tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none, 1657 &kd_nowait); 1658 if (!tempva) 1659 return (1); 1660 hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any, 1661 &kp_none, &kd_nowait); 1662 if (!hibernate_fchunk_area) 1663 return (1); 1664 1665 /* Final output chunk ordering VA */ 1666 fchunks = (short *)hibernate_fchunk_area; 1667 1668 /* Map the chunk ordering region */ 1669 for(i = 0; i < 24 ; i++) 1670 pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE), 1671 piglet_base + ((4 + i) * PAGE_SIZE), 1672 PROT_READ | PROT_WRITE); 1673 pmap_update(pmap_kernel()); 1674 1675 nchunks = hib->chunk_ctr; 1676 1677 /* Initially start all chunks as unplaced */ 1678 for (i = 0; i < nchunks; i++) 1679 chunks[i].flags = 0; 1680 1681 /* 1682 * Search the list for chunks that are outside the pig area. These 1683 * can be placed first in the final output list. 1684 */ 1685 for (i = 0; i < nchunks; i++) { 1686 if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { 1687 fchunks[nfchunks] = i; 1688 nfchunks++; 1689 chunks[i].flags |= HIBERNATE_CHUNK_PLACED; 1690 } 1691 } 1692 1693 /* 1694 * Walk the ordering, place the chunks in ascending memory order. 1695 */ 1696 for (i = 0; i < nchunks; i++) { 1697 if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) { 1698 fchunks[nfchunks] = i; 1699 nfchunks++; 1700 chunks[i].flags = HIBERNATE_CHUNK_PLACED; 1701 } 1702 } 1703 1704 img_cur = pig_start; 1705 1706 for (i = 0; i < nfchunks; i++) { 1707 blkctr = chunks[fchunks[i]].offset; 1708 processed = 0; 1709 compressed_size = chunks[fchunks[i]].compressed_size; 1710 1711 while (processed < compressed_size) { 1712 if (compressed_size - processed >= MAXPHYS) 1713 read_size = MAXPHYS; 1714 else 1715 read_size = compressed_size - processed; 1716 1717 /* 1718 * We're reading read_size bytes, offset from the 1719 * start of a page by img_cur % PAGE_SIZE, so the 1720 * end will be read_size + (img_cur % PAGE_SIZE) 1721 * from the start of the first page. Round that 1722 * up to the next page size. 1723 */ 1724 num_io_pages = (read_size + (img_cur % PAGE_SIZE) 1725 + PAGE_SIZE - 1) / PAGE_SIZE; 1726 1727 KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1); 1728 1729 /* Map pages for this read */ 1730 for (j = 0; j < num_io_pages; j ++) 1731 pmap_kenter_pa(tempva + j * PAGE_SIZE, 1732 img_cur + j * PAGE_SIZE, 1733 PROT_READ | PROT_WRITE); 1734 1735 pmap_update(pmap_kernel()); 1736 1737 hibernate_block_io(hib, blkctr, read_size, 1738 tempva + (img_cur & PAGE_MASK), 0); 1739 1740 blkctr += (read_size / DEV_BSIZE); 1741 1742 pmap_kremove(tempva, num_io_pages * PAGE_SIZE); 1743 pmap_update(pmap_kernel()); 1744 1745 processed += read_size; 1746 img_cur += read_size; 1747 } 1748 } 1749 1750 pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE); 1751 pmap_update(pmap_kernel()); 1752 1753 return (0); 1754 } 1755 1756 /* 1757 * Hibernating a machine comprises the following operations: 1758 * 1. Calculating this machine's hibernate_info information 1759 * 2. Allocating a piglet and saving the piglet's physaddr 1760 * 3. Calculating the memory chunks 1761 * 4. Writing the compressed chunks to disk 1762 * 5. Writing the chunk table 1763 * 6. Writing the signature block (hibernate_info) 1764 * 1765 * On most architectures, the function calling hibernate_suspend would 1766 * then power off the machine using some MD-specific implementation. 1767 */ 1768 int 1769 hibernate_suspend(void) 1770 { 1771 union hibernate_info hib; 1772 u_long start, end; 1773 1774 /* 1775 * Calculate memory ranges, swap offsets, etc. 1776 * This also allocates a piglet whose physaddr is stored in 1777 * hib->piglet_pa and vaddr stored in hib->piglet_va 1778 */ 1779 if (get_hibernate_info(&hib, 1)) { 1780 DPRINTF("failed to obtain hibernate info\n"); 1781 return (1); 1782 } 1783 1784 /* Find a page-addressed region in swap [start,end] */ 1785 if (uvm_hibswap(hib.dev, &start, &end)) { 1786 printf("hibernate: cannot find any swap\n"); 1787 return (1); 1788 } 1789 1790 if (end - start < 1000) { 1791 printf("hibernate: insufficient swap (%lu is too small)\n", 1792 end - start); 1793 return (1); 1794 } 1795 1796 /* Calculate block offsets in swap */ 1797 hib.image_offset = ctod(start); 1798 1799 DPRINTF("hibernate @ block %lld max-length %lu blocks\n", 1800 hib.image_offset, ctod(end) - ctod(start)); 1801 1802 pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, 1803 PROT_READ | PROT_WRITE); 1804 pmap_activate(curproc); 1805 1806 DPRINTF("hibernate: writing chunks\n"); 1807 if (hibernate_write_chunks(&hib)) { 1808 DPRINTF("hibernate_write_chunks failed\n"); 1809 goto fail; 1810 } 1811 1812 DPRINTF("hibernate: writing chunktable\n"); 1813 if (hibernate_write_chunktable(&hib)) { 1814 DPRINTF("hibernate_write_chunktable failed\n"); 1815 goto fail; 1816 } 1817 1818 DPRINTF("hibernate: writing signature\n"); 1819 if (hibernate_write_signature(&hib)) { 1820 DPRINTF("hibernate_write_signature failed\n"); 1821 goto fail; 1822 } 1823 1824 /* Allow the disk to settle */ 1825 delay(500000); 1826 1827 /* 1828 * Give the device-specific I/O function a notification that we're 1829 * done, and that it can clean up or shutdown as needed. 1830 */ 1831 hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page); 1832 1833 return (0); 1834 fail: 1835 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 1836 pmap_update(pmap_kernel()); 1837 return (1); 1838 } 1839 1840 int 1841 hibernate_alloc(void) 1842 { 1843 KASSERT(global_piglet_va == 0); 1844 KASSERT(hibernate_temp_page == 0); 1845 1846 /* Allocate a piglet, store its addresses in the supplied globals */ 1847 if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa, 1848 HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE)) 1849 return (ENOMEM); 1850 1851 /* 1852 * Allocate VA for the temp page. 1853 * 1854 * This will become part of the suspended kernel and will 1855 * be freed in hibernate_free, upon resume (or hibernate 1856 * failure) 1857 */ 1858 hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, 1859 &kp_none, &kd_nowait); 1860 if (!hibernate_temp_page) { 1861 DPRINTF("out of memory allocating hibernate_temp_page\n"); 1862 return (ENOMEM); 1863 } 1864 1865 return (0); 1866 } 1867 1868 /* 1869 * Free items allocated by hibernate_alloc() 1870 */ 1871 void 1872 hibernate_free(void) 1873 { 1874 if (global_piglet_va) 1875 uvm_pmr_free_piglet(global_piglet_va, 1876 4 * HIBERNATE_CHUNK_SIZE); 1877 1878 if (hibernate_temp_page) { 1879 pmap_kremove(hibernate_temp_page, PAGE_SIZE); 1880 km_free((void *)hibernate_temp_page, PAGE_SIZE, 1881 &kv_any, &kp_none); 1882 } 1883 1884 global_piglet_va = 0; 1885 hibernate_temp_page = 0; 1886 pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE); 1887 pmap_update(pmap_kernel()); 1888 } 1889